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Supplementary Notes 

Supplementary Note 1: Graph attention networks enhance gene regulatory signals 

We adopted the GRN benchmark in CellOracle to validate the improvement of GAT model on the 

original GRN. Five tissues available both in the Tabula Muris scRNA-seq dataset (Schaum et al. 

2018) and mouse sci-ATAC-seq atlas data (Cusanovich et al. 2018) were selected as the ground-truth 

datasets: heart, kidney, liver, lung and spleen. The ground-truth GRNs were curated using 1,298 

chromatin immunoprecipitation followed by sequencing (ChIP–seq) datasets for totally 80 regulatory 

factors across these tissues (Kamimoto et al. 2023). The TF number of each ground-truth GRN ranges 

from 7 to 44, and the TF-target connection number ranges from 340 to 33,247. The scATAC-seq data 

were provided by mouse sci-ATAC-seq atlas (Cusanovich et al. 2018), and 13 samples across 5 

tissues in the scRNA-seq dataset were utilized to conduct the GRN benchmark. 

  For each sample, we used CellOracle to calculate a primary GRN, and then GAT was applied to 

enhance the GRN. As for the GAT training, we performed a ten-fold cross-validation approach to 

improve the quality of the recovering TF-target links (Methods). As shown in Fig. S1A, the GAT 

prediction model gives the prediction result with a high area under the precision-recall curve 

(AUPRC) score on the test sets across all the 13 samples, which indicates the model robustly learns 

the regulatory relations between TFs and targets for each fold. For example, in sample Liver_2 and 

Spleen_0, the prediction model achieves AUPRC over 0.980 across all folds. The fold-average 

AUROC score ranges from 0.917 (Kidney_2) to 0.995 (Lung_0) across samples, which indicates 

GAT model is highly effective in capturing the regulatory signals of different tissues. 

  To further evaluate the GAT-recovered TF-target links, we calculated the accuracy (ACC) of the 

predicted links by comparing them to the ground-truth GRN for each TF across different samples. 

Specifically, for each TF, a recovered link was considered correct if it was present in the ground-truth 

GRN. We aggregated the data across all 13 samples in Fig. S1A, resulting in a total of 109 TFs and 

their targets as the ground truth. For each TF, we randomly sampled unconnected links whose number 

is equal to the number of predicted links as the control group. Among these, GAT outperforms the 

random method in 50 TFs, shows comparable performance in 30 TFs, and performs worse in 29 TFs 

(Fig. S1B). Moreover, the overall performance metrics of GAT were significantly higher than those of 
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the random method (one-side Wilcoxon test p-value = 9.6×10–4, Fig. S1C). These results highlight the 

ability of GAT to recover biologically meaningful regulatory links. 

Additionally, we illustrated the recovered links of a specific TF Creb1, a kind of cyclic 

adenosine monophosphate (cAMP) responsive element modulator, in sample Kidney_0 (Fig. S1D). 8 

of 12 links (red lines) are in the ground-truth kidney GRN, and Arpc4 and Mthrf are demonstrated to 

be targets of Creb1 in JASPAR predicted transcription factor targets dataset (Rouillard et al. 2016; 

Castro-Mondragon et al. 2022). All the results demonstrate that the GAT module captures the 

regulatory relations and enhances the regulatory signals of the primary GRN. 

Moreover, to evaluate the effectiveness of the GAT encoder in our GRN scenario, we compared 

it to three other encoders: MLP, GCN (Kipf and Welling 2016), and GraphSAGE (Hamilton et al. 

2017). Both GCN and GraphSAGE are GNNs that lack an attention mechanism (Fig. S2). For each 

base GRN in the benchmarking cell states, we trained the models using a tenfold scheme. The average 

accuracy on the test sets was used to represent the performance. Overall, GAT (ACC=0.975) 

outperformed MLP (ACC=0.971), GCN (ACC=0.973), and GraphSAGE (ACC=0.974). While MLP 

provided relatively satisfactory results, we found GAT to be a more effective and robust encoder for 

learning node features. We further replaced the MLP prediction module with a dot-product-based 

prediction mechanism, which resulted in a significant performance drop compared to the GAT model 

(Fig. S2). This suggests that the GAT mechanism captures complex relationships beyond the simple 

dot product.  
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Supplementary Note 2: Parameter settings 

Recovery ratio 

To better understand the impact of the recovery ratio, we conducted experiments to explore how the 

number of recovered links and identification performance vary with different recovery ratios. We 

tested recovery ratios of 0.5%, 1%, 5%, 10%, 20%, 30%, 40%, and 50%. As shown in Fig. S14, the 

number of recovered links exhibited a linear relationship with the recovery ratio. At a recovery ratio 

of 30%, the GAT module has already recovered more links than the original GRN contained. 

Regarding identification performance, the recovery ratio of 10% achieved the best result. Overall, 

performance initially increased with the recovery ratio and then declined. 

We hope to balance the number of recovered links with identification performance. On the one 

hand, we aim for the GAT module to recover an appropriate number of links without disrupting the 

base GRN structure. On the other hand, we seek to recover links that enhance identification 

performance. Based on this balance, we selected a recovery ratio of 5% as the default value. 

Weight of different propagation steps 

Regarding the propagation step parameters, they represent the weights of different propagation steps. 

To analyze their impact, we conducted an experiment testing various propagation step settings and 

compared the performance across the benchmarking states. The tested settings were:  

1. 𝜆𝜆1 = 1, 𝜆𝜆2 = 0, 𝜆𝜆3 = 0;  

2. 𝜆𝜆1 = 0, 𝜆𝜆2 = 1, 𝜆𝜆3 = 0;  

3. 𝜆𝜆1 = 0, 𝜆𝜆2 = 0, 𝜆𝜆3 = 1;  

4. 𝜆𝜆1 = 0.6, 𝜆𝜆2 = 0.2,𝜆𝜆3 = 0.2.   

The results demonstrate that model performance is significantly influenced by the propagation steps 

across different cell states (Fig. S15). For instance, in state 7-2, setting the two-step propagation 

weight (𝜆𝜆2) to 1 achieved the best performance, while in state 8-0, the three-step propagation (𝜆𝜆3) 

performed best. In contrast, in some states either two-step propagation or three-step propagation 

decline the model performance (state 0, 5, 8-1, and 11-0). These findings suggest that different cell 



 

5 
 

states may require distinct propagation step settings. For example, in certain states, reprogramming 

TFs may require more propagation steps to exert their influence. To achieve a relatively balanced and 

robust result, we selected 𝜆𝜆1 = 0.6, 𝜆𝜆2 = 0.2,𝜆𝜆3 = 0.2 as the default propagation parameters. 

  



 

6 
 

Supplementary Figures 

 

Supplementary Fig. 1. Graph attention network (GAT) module enhances the regulatory 

signal of original GRN. (A) Boxplots of area under the receiver operating characteristic 

(AUROC) on the test set across 13 samples. The box plots indicate the medians (centerlines), 

means (triangles), first and third quartiles (bounds of boxes). (B-C) Performance of recovering 

TF-target links on 109 TFs across 13 samples. The significance level of one-side Wilcoxon test 

p-value was shown in (C). ***, p-value < 0.001. (D) GAT recovered network of Creb1. 

Ground-truth links are annotated in red. 
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Supplementary Fig. 2. Comparison of GAT to other graph neural networks. Top: 

Performance comparison of MLP, GCN, GraphSAGE, and GAT. Bottom: Performance 

comparison of GAT with and without the dot product predictor. 
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Supplementary Fig. 3. Comparison of TF rankings between TFcomb and TFcomb_WOE. The 

x-axis represents the TF rankings from TFcomb, and the y-axis represents those from 

TFcomb_WOE. Key TFs are highlighted in red. Points above the reference line (the dashed red 

line) show improved rankings with TFcomb relative to TFcomb_WOE. 
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Supplementary Fig. 4. The comparison of the counts of original links and recovered links 

among all TFs. 
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Supplementary Fig. 5. TFcomb TF identification plot on other target cell states. Red lines 

are the quantile thresholds to filter 10 TFs. Key TFs are annotated in red. 
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Supplementary Fig. 6. Significance level of the one-side t-statistic test on whether the 

directing score of the key TF is significantly higher across all states. 
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Supplementary Fig. 7. (A) The UMAP visualization of the source state and the target state 11-

1. The normalized expression of key TF GLIS1 is shown on the UMAP embeddings. (B) The 

UMAP visualization of the source state and the target state 13. The normalized expression of 

key TF NHLH1 is shown on the UMAP embeddings. 
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Supplementary Fig. 8. (A) TFcomb TF identification plot on target state 3. Key TFs are 

annotated in red. (B) TFcomb_WOE TF identification plot on target state 3. Key TFs are 

annotated in red. (C) The UMAP visualization of the source state and the target state 3. The 

normalized expression of key TF KLF1, KLF2 and KLF5 is shown on the UMAP embeddings. 
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Supplementary Fig. 9. TFcomb TF identification plot on target state 9-0. The knowledge of 

NicheNet database is added to supplement the TF-target links. Key TFs are annotated in red. 

The added key TF GRHL is annotated in a red circle. 
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Supplementary Fig. 10. UMAP visualization of single-cell datasets for reprogramming cases. 

The dashed red circles represent source or target cell states. The black arrows point from source 

cell states to target cell states. (A) Fibroblasts to keratinocytes or macrophages in mouse. (B) 

Fibroblasts to cardiomyocytes in mouse. (C) B cells to macrophages in mouse. (D) Fibroblasts 

to induced pluripotent stem cells (iPSCs) in human. 
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Supplementary Fig. 11. Illustration of GAT recovered links of human fibroblasts 

reprogramming to iPSCs. (A) Visualization of the GRN with the top 10 TFs and their targets. 

Recovered links are annotated in black. TFs are annotated in red. The pruple nodes and yellow 

nodes represent the target genes differentially expressed in the target state and the source state, 

respectively. The red lines and blue lines denote the positive links and negative links, 

respectively. (B) Visualization of GRN with top 10 TFs and their recovered links. (C) The 

ranking comparison of TFcomb and TFcomb_WOE. (D) The count comparison of original 

links and recovered links. 
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Supplementary Fig. 12. TF identification comparison by mean rank across different 

reprogramming cases. 

 

 

Supplementary Fig. 13. Left: TFcomb TF identification plot of human fibroblasts to iPSCs. 

Right: TFcomb TF identification plot of mouse fibroblasts to cardiomyocytes. 
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Supplementary Fig. 14. The number of recovered links and identification performance at 

different recovery ratios. Top: Line plot showing the relationship between the number of 

recovered links and the recovery ratio. Bottom: Line plot illustrating the variation of TIS with 

the recovery ratio. 

 
 

 

Supplementary Fig. 15. TIS variation across different parameter settings for propagation steps. 
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Supplementary Fig. 16. UMAP visualization of 2,000 sampled cells and 25 original target 

cells. The ‘louvain5’ is the cluster of sampled cells. 

 

 
Supplementary Fig. 17. The illustration of TIS calculation. 
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