
 1

Supplemental Material
Building better genome annotations across the tree of life

Adam H. Freedman, Timothy B. Sackton
Faculty of Arts and Sciences Informatics Group, Harvard University, Cambridge,

Massachusetts 02138

Table of Contents
Supplemental Code
Code S1: Custom python scripts ………………………………........................2
Supplemental Text
Text S1..13
Supplemental Figures
Figure S1...15
Figure S2...16
Figure S3...19
Figure S4...23
Figure S5...24
Figure S6...27
Figure S7...28
Figure S8...31
Figure S9...34
Figure S10...35
Figure S11...36
Supplemental Results
Results S1...37
Results S2...37

 2

Supplemental Code S1

BuildUtrCdsRatioTable.py
import sys
from numpy import median
cds_lengths = open(sys.argv[1],'r')
cds_fields = cds_lengths.readline().strip().split('\t')
cds_dict = {}
for line in cds_lengths:
 line_dict = dict(zip(cds_fields,line.strip().split('\t')))
 cds_dict[line_dict['seqid']] = int(line_dict['length'])

utr_lengths = open(sys.argv[2],'r')
utr_fields = utr_lengths.readline().strip().split('\t')
utr_dict = {}
for line in utr_lengths:
 line_dict = dict(zip(utr_fields,line.strip().split('\t')))
 utr_dict[line_dict['tsid']] = int(line_dict['total_utr_length'])
utr2cds_ratios = []
fout = open(sys.argv[3],'w')
fout.write('tsid\tcds_length\tutr_length\tutr2cds\n')
for tsid in cds_dict:
 if tsid in utr_dict:
 fout.write('%s\t%s\t%s\t%s\n' %
(tsid,cds_dict[tsid],utr_dict[tsid],utr_dict[tsid]/cds_dict[tsid]))
 utr2cds_ratios.append(utr_dict[tsid]/cds_dict[tsid])
 else:
 fout.write('%s\t%s\t0\t0\n' % (tsid,cds_dict[tsid]))
fout.close()
print(median(utr2cds_ratios))

###########
CalcGeneUniqueToMethodClassRate.py
methods = ['braker','cgp','lift','maker','scal','stie']
def ClassifyMethodList(methods,methodlist):
 method_classes = set()
 if 'ncbi' in methodlist:
 ncbi = True
 else:
 ncbi = False
 for method in methods:
 method_present = [method in i for i in methodlist]
 if True in method_present:
 method_classes.add(method)
 if sum(method_present) >0:
 if len(method_present) == sum(method_present):
 unique = True
 return unique,ncbi,list(method_classes)
 break
 elif len(method_present) - sum(method_present) == 1 and
'ncbi' in methodlist:
 unique = True
 return unique,ncbi,list(method_classes)
 break

 3

 if 'unique' not in locals():
 return False,ncbi,list(method_classes)

import sys
from numpy import corrcoef
from scipy.stats import pearsonr
from collections import defaultdict
mergebed = open(sys.argv[1],'r')
species = sys.argv[2]
method_total = defaultdict(int)
method_intergenic = defaultdict(int)
method_unique = defaultdict(int)
for method in methods:
 method_total[method] = 0
 method_intergenic[method] =0
 method_unique[method] = 0
for line in mergebed:
 methodlist = line.strip().split()[3].split(',')
 unique,ncbi,method_classes = ClassifyMethodList(methods,methodlist)
 for methodclass in method_classes:
 method_total[methodclass]+=1

 if unique == True and ncbi == False:
 method_unique[method_classes[0]]+=1
 method_intergenic[method_classes[0]]+=1
 elif unique == True and ncbi ==True:
 method_unique[method_classes[0]]+=1
 elif unique == False and ncbi == False:
 for method in method_classes:
 method_intergenic[method]+=1
fout =
open('{}_methodclass_unique_intergenic_rates.tsv'.format(sys.argv[1]),'w'
)
fout.write('species\tmethodclass\tclassunique\tclassintergenic\n')
x= []
y=[]
for methodclass in methods:
 x.append(method_unique[methodclass]/method_total[methodclass])
 y.append(method_intergenic[methodclass]/method_total[methodclass])

fout.write('{}\t{}\t{}\t{}\n'.format(species,methodclass,method_unique[me
thodclass]/method_total[methodclass],method_intergenic[methodclass]/metho
d_total[methodclass]))
fout.close()

print(corrcoef(x,y))
print(pearsonr(x,y))
#########

 4

CalculateBlastpFractionRefProteinsCovered.py
import argparse
fields='qseqid sseqid pident length mismatch gapopen qstart qend sstart
send evalue bitscore qlen slen'.split()

if __name__=="__main__":
 parser = argparse.ArgumentParser(description='calculate fraction of
reference proteins covered by at least one predicted protein')
 parser.add_argument('-blast','--blast-
table',dest='blast',type=str,help='blast output table')
 parser.add_argument('-refn','--number-reference-
proteins',dest='refprotn',type=int,help='number of reference proteins')
 parser.add_argument('-cov','--ref-cov-
threshold',dest='coverage',type=float,help='fractional coverage
threshold')
 opts = parser.parse_args()
 refprotset=set()
 fopen = open(opts.blast,'r')
 for line in fopen:
 linedict = dict(zip(fields,line.strip().split('\t')))
 coverage = int(linedict['length'])/int(linedict['qlen'])
 if float(linedict['evalue']) <= 10**-5 and coverage
>opts.coverage:
 refprotset.add(linedict['qseqid'])
 frac_covered = len(refprotset)/int(opts.refprotn)
 fout =
open('refprotein_proportioncovered_cov_{}covthresh.txt'.format(opts.cover
age),'w')
 fout.write('proportion ref proteins with
coverage:{}\n'.format(str(frac_covered)))
 print(frac_covered)
 fout.close()
#########

CalculateTotalUtrLengthFromUtrBed.py
import sys
from collections import defaultdict
from numpy import median
ts_list = []
tscript_fasta = open(sys.argv[1],'r')
for line in tscript_fasta:
 if line[0] == '>':
 ts_list.append(line.strip().split()[0].replace('>',''))
utr_bed_open = open(sys.argv[2],'r')

utr_length_dict = defaultdict(int)
for interval in utr_bed_open:
 chrom,start,end,tsid = interval.strip().split('\t')
 utr_length_dict[tsid] += int(end)-int(start)

fout = open('%s_utrlengths.tsv' % sys.argv[1],'w')
fout.write('tsid\ttotal_utr_length\n')
utr_lengths = []

 5

for tsid in ts_list:
 if tsid in utr_length_dict:
 fout.write('%s\t%s\n' % (tsid,utr_length_dict[tsid]))
 utr_lengths.append(utr_length_dict[tsid])
else:
 fout.write('%s\t0\n' % tsid)
 utr_lengths.append(0)
fout.close()

utr_median = open('%s_utrmedian_length.txt' % sys.argv[1],'w')
utr_median.write('%s\n' % median(utr_lengths))
utr_median.close()
#############

FilterOutUnsupportedBrakerAugustusAnnotations.py
import argparse
fields = ["seqid", "source", "type", "start",
 "end", "score", "strand", "phase", "attributes"]

def ParseBrakerGtfAttributes(attributes,cleanlabels=True):
 attribute_dict = {}
 attribute_list = attributes[:-1].replace('"','').split(';')
 for attribute in attribute_list:
 key,value = attribute.split()
 if cleanlabels == True:
 if key in ['transcript_id','gene_id'] and 'file' in value:
 value = value.split('_')[-1]
 attribute_dict[key] = value
 return attribute_dict

def BuiltTscript2GeneDict(brakergtf,fields):
 fopen = open(brakergtf,'r')
 ts2gene = {}
 for line in fopen:
 linedict = dict(zip(fields,line.strip().split('\t')))
 if linedict['type'] == 'CDS':
 attribute_dict =
ParseBrakerGtfAttributes(linedict['attributes'],cleanlabels=False)
 ts2gene[attribute_dict['transcript_id']] =
attribute_dict['gene_id']
 fopen.close()
 return ts2gene

if __name__=="__main__":
 parser = argparse.ArgumentParser(description="Filters braker.gtf by
retaining only supported annotations, with either any or full support
gtfs produced by BRAKER selectSupportedSubsets.py script.")
 parser.add_argument('-supported','--hint-supported-
gtf',dest='supported',type=str,help='braker support eval script generated
gtf with any support')
 parser.add_argument('-gtf','--braker-
gtf',dest='braker',type=str,help='braker.gtf output file')

 6

 parser.add_argument('-o','--output-
gtf',dest='output',type=str,help='merge of GeneMark and supported
AUGUSTUS annotations')
 parser.add_argument('-blastp','--use-blastp-
support',dest='blastp',action='store_true',help='switch indicating
whether use blastp evidence to keep annotations')
 parser.add_argument('-bp-file','--blastp-results-
file',dest='blastpfile',type=str,help='name of file with blastp results,
outputformat 6')
 opts = parser.parse_args()

 if opts.blastp == True:
 ts2gene = BuiltTscript2GeneDict(opts.braker,fields)
 blastp_supported_genes = set()
 blastp_supported_tscripts = set()
 blastp_open = open(opts.blastpfile,'r')
 for line in blastp_open:
 linelist = line.strip().split('\t')
 blastp_supported_tscripts.add(linelist[0])
 blastp_supported_genes.add(ts2gene[linelist[0]])

 supported_genes = set()
 supported_tscripts = set()
 supported = open(opts.supported,'r')
 for line in supported:
 if line[0] !='#':
 linedict = dict(zip(fields,line.strip().split('\t')))
 if linedict['type'] in ['intron','start_codon','stop_codon']:
 attribute_dict =
ParseBrakerGtfAttributes(linedict['attributes'])
 if attribute_dict['supported'] == 'True':
 supported_genes.add(attribute_dict['gene_id'])

supported_tscripts.add(attribute_dict['transcript_id'])

 brakerin = open(opts.braker,'r')
 fout = open(opts.output,'w')
 for line in brakerin:
 if line[0] == '#':
 fout.write(line)
 elif line =='\n':
 pass
 elif "GeneMark" in line:
 if opts.blastp == True:
 linedict = dict(zip(fields,line.strip().split('\t')))
 attribute_dict =
ParseBrakerGtfAttributes(linedict['attributes'],cleanlabels=False)
 if attribute_dict['transcript_id'] in
blastp_supported_tscripts and attribute_dict['gene_id'] in
blastp_supported_genes:
 fout.write(line)
 else:
 fout.write(line)
 else:

 7

 linedict = dict(zip(fields,line.strip().split('\t')))
 if linedict['type'] == 'gene':
 if linedict['attributes'].split('_')[-1] in
supported_genes:
 fout.write(line)
 elif linedict['attributes'] in blastp_supported_genes:
 fout.write(line)
 elif linedict['type'] == 'transcript':
 if linedict['attributes'].split('_')[-1] in
supported_tscripts:
 fout.write(line)
 elif linedict['attributes'] in blastp_supported_tscripts:
 fout.write(line)
 elif linedict['type'] in
['exon','CDS','stop_codon','start_codon','intron']:
 attribute_dict =
ParseBrakerGtfAttributes(linedict['attributes'])
 if attribute_dict['gene_id'] in supported_genes and
attribute_dict['transcript_id'] in supported_tscripts:
 fout.write(line)
 else:
 attribute_dict =
ParseBrakerGtfAttributes(linedict['attributes'],cleanlabels=False)
 if attribute_dict['gene_id'] in
blastp_supported_genes and attribute_dict['transcript_id'] in
blastp_supported_tscripts:
 fout.write(line)
 else:
 raise ValueError('%s not in list of valid feature types'
% line_dict['type'])

 fout.close()
#########

GenerateFastaSeqLengthTable.py
from Bio import SeqIO
from numpy import median
import argparse

if __name__=="__main__":
 parser = argparse.ArgumentParser(description='args for computing
stats from assembly fiile')
 parser.add_argument('-f','--
fastain',dest='frecords',type=str,help='input transcriptome fasta file')
 parser.add_argument('-colname','--output-column-
name',dest='colname',type=str,help='column name for written table')
 opts = parser.parse_args()

 lengths=[]
 fout = open('%s_seqlengths.tsv' % (opts.frecords),'w')
 fout.write('seqid\tlength\tmethod\n')
 for record in SeqIO.parse(opts.frecords,'fasta'):
 fout.write('%s\t%s\t%s\n' %
(record.id,len(record.seq),opts.colname))

 8

 lengths.append(len(record.seq))
 print('median: %s\n' % median(lengths))
 print('max: %s\n' % max(lengths))
 print('min: %s\n' % min(lengths))
fout.close()
##########

GetMedianAnnotationAlignRate.py
import sys
from glob import glob
from numpy import median
prefix = sys.argv[1]

logs = glob("*log")
rates = []
for log in logs:
 logopen = open(log,'r')
 logread = logopen.readlines()
 for line in logread:
 if 'overall' in line:
 rate = float(line.split()[0].replace('%',''))
 rates.append(rate)
fout = open('median_align_rate_%s.txt' % prefix, 'w')
fout.write('median annotation align rate: %s\n' % median(rates))
fout.close()
##########

WriteBrakerCdsTranscriptAndGeneIntervalBedFilesWithNoUTRs.py
import argparse
from collections import OrderedDict

fields = ["seqid", "source", "type", "start",
 "end", "score", "strand", "phase", "attributes"]
ts_dict = OrderedDict()
ts2gene = {}
gene_dict = OrderedDict()

def ParseBrakerAttributes(attributes):
 attribute_dict = {}
 attribute_list = attributes.split(';')
 for attribute in attribute_list:
 key,value = attribute.split('=')
 attribute_dict[key] = value
 return attribute_dict

def BuildTscript2GeneforLiftoff(gff3):
 ts2gene = {}
 fopen = open(gff3,'r')
 for line in fopen:
 if line[0] != '#':
 line_dict = dict(zip(fields,line.strip().split('\t')))
 if line_dict['type'] == 'mRNA':
 attribute_dict =
ParseBrakerAttributes(line_dict['attributes'])

 9

 ts2gene[attribute_dict['ID']] = attribute_dict['Parent']
 fopen.close()
 return ts2gene

if __name__=="__main__":
 parser = argparse.ArgumentParser(description="Generate CDS transcript
and gene interval bed without UTRs")
 parser.add_argument('-gff3','--braker-annotation-
gff3',dest='gff3',type=str,help='Braker gff3')
 parser.add_argument('-o','--output-bed-
prefix',dest='bedprefix',type=str,help='prefix for output bed files')
 parser.add_argument('-maker','--
makergff',dest='maker',action='store_true',help='indicates maker
annotation so handle gene id properly')
 parser.add_argument('-liftoff','--liftoff-
gff3',dest='liftoff',action='store_true',help='indicates liftoff
annotation')
 opts = parser.parse_args()

 if opts.liftoff == True:
 ts2gene = BuildTscript2GeneforLiftoff(opts.gff3)
 else:
 ts2gene = {}
 gffin = open(opts.gff3,'r')
 for line in gffin:
 if line[0] != '#':
 line_dict = dict(zip(fields,line.strip().split('\t')))
 if line_dict['type'] in ['mRNA','transcript']:
 attribute_dict =
ParseBrakerAttributes(line_dict['attributes'])
 tsid = attribute_dict['ID']
 if opts.maker ==True:
 geneid = attribute_dict['Parent']
 else:
 try:
 geneid = attribute_dict['geneID']
 except:
 geneid = attribute_dict['Parent'] # added
 if opts.liftoff == False:
 ts2gene[tsid] = geneid
 elif line_dict['type'] == 'CDS':
 attribute_dict =
ParseBrakerAttributes(line_dict['attributes'])
 tsid = attribute_dict['Parent']
 if tsid in ts2gene: # this accounts for liftoff cases
where CDS and gene but no mRNA
 geneid = ts2gene[tsid]
 elif 'gene' in attribute_dict['Parent']:
 geneid = attribute_dict['Parent']

 # transcript level #
 if tsid not in ts_dict and 'gene' not in tsid:

 10

 ts_dict[tsid] = {'strand': line_dict['strand'],'chr':
line_dict['seqid'],'start': int(line_dict['start']), 'end':
int(line_dict['end'])}
 elif tsid in ts_dict and 'gene' not in tsid:
 ts_dict[tsid]['start'] =
min(int(line_dict['start']),ts_dict[tsid]['start'])
 ts_dict[tsid]['end'] =
max(int(line_dict['end']),ts_dict[tsid]['end'])
 else:
 print('{} is also a gene feature'.format(tsid))

 # gene level #
 if geneid not in gene_dict:
 gene_dict[geneid] = {'strand':
line_dict['strand'],'chr': line_dict['seqid'],'start':
int(line_dict['start']), 'end': int(line_dict['end'])}
 else:
 gene_dict[geneid]['start'] =
min(int(line_dict['start']),gene_dict[geneid]['start'])
 gene_dict[geneid]['end'] =
max(int(line_dict['end']),gene_dict[geneid]['end'])

 tsout = open('%s_CDS_transcript_interval.bed' % opts.bedprefix,'w')
 geneout = open('%s_CDS_gene_interval.bed' % opts.bedprefix,'w')

 for transcript in ts_dict:
 tsout.write('%s\t%s\t%s\t%s\t.\t%s\n' %
(ts_dict[transcript]['chr'],ts_dict[transcript]['start']-
1,ts_dict[transcript]['end'],transcript,ts_dict[transcript]['strand']))
 for gene in gene_dict:
 geneout.write('%s\t%s\t%s\t%s\t.\t%s\n' %
(gene_dict[gene]['chr'],gene_dict[gene]['start']-
1,gene_dict[gene]['end'],gene,gene_dict[gene]['strand']))

 tsout.close()
 geneout.close()
#########

WriteTransdecoderCdsTranscriptAndGeneIntervalBedFiles.py
import argparse
from collections import OrderedDict

fields = ["seqid", "source", "type", "start",
 "end", "score", "strand", "phase", "attributes"]

ts_dict = OrderedDict()
ts2gene = {}
gene_dict = OrderedDict()

def ParseTransdecoderAttributes(attributes):
 attribute_dict = {}
 attribute_list = attributes.split(';')
 for attribute in attribute_list:
 key,value = attribute.split('=')

 11

 attribute_dict[key] = value
 return attribute_dict

if __name__=="__main__":
 parser = argparse.ArgumentParser(description="Generate CDS transcript
and gene interval bed without UTRs")
 parser.add_argument('-tdecgff3','--transdecoder-annotation-
gff3',dest='tdecgff3',type=str,help='transdecoder genome-coordinate
gff3')
 parser.add_argument('-o','--output-bed-
prefix',dest='bedprefix',type=str,help='prefix for output bed files')
 opts = parser.parse_args()

 gffin = open(opts.tdecgff3,'r')
 for line in gffin:
 if line[0] != '#':
 line_dict = dict(zip(fields,line.strip().split('\t')))
 if line_dict['type'] == 'mRNA':
 attribute_dict =
ParseTransdecoderAttributes(line_dict['attributes'])
 tsid = '.'.join(attribute_dict['ID'].split('.')[:-1])
 geneid = attribute_dict['Parent']
 ts2gene[tsid] = geneid
 elif line_dict['type'] == 'CDS':
 attribute_dict =
ParseTransdecoderAttributes(line_dict['attributes'])
 tsid = '.'.join(attribute_dict['Parent'].split('.')[:-1])
 #try:
 geneid = ts2gene[tsid]
 #except:
 # tsid = tsid.replace('gene','rna')
 # geneid = ts2gene[tsid]

 # transcript level #
 if tsid not in ts_dict:
 ts_dict[tsid] = {'strand': line_dict['strand'],'chr':
line_dict['seqid'],'start': int(line_dict['start']), 'end':
int(line_dict['end'])}
 else:
 ts_dict[tsid]['start'] =
min(int(line_dict['start']),ts_dict[tsid]['start'])
 ts_dict[tsid]['end'] =
max(int(line_dict['end']),ts_dict[tsid]['end'])

 # gene level #
 if geneid not in gene_dict:
 gene_dict[geneid] = {'strand':
line_dict['strand'],'chr': line_dict['seqid'],'start':
int(line_dict['start']), 'end': int(line_dict['end'])}
 else:
 gene_dict[geneid]['start'] =
min(int(line_dict['start']),gene_dict[geneid]['start'])
 gene_dict[geneid]['end'] =
max(int(line_dict['end']),gene_dict[geneid]['end'])

 12

 tsout = open('%s_transdecoder_CDS_transcript_interval.bed' %
opts.bedprefix,'w')
 geneout = open('%s_transdecoder_CDS_gene_interval.bed' %
opts.bedprefix,'w')

 for transcript in ts_dict:
 tsout.write('%s\t%s\t%s\t%s\t.\t%s\n' %
(ts_dict[transcript]['chr'],ts_dict[transcript]['start']-
1,ts_dict[transcript]['end'],transcript,ts_dict[transcript]['strand']))
 for gene in gene_dict:
 geneout.write('%s\t%s\t%s\t%s\t.\t%s\n' %
(gene_dict[gene]['chr'],gene_dict[gene]['start']-
1,gene_dict[gene]['end'],gene,gene_dict[gene]['strand']))

 tsout.close()
 geneout.close()

 13

Supplemental Methods S1: Quantifying undetected CDS in UTR predictions

To determine the extent to which TransDecoder incorrectly annotates CDS exons as
UTR, we do the following.

First, from a StringTie+TransDecoder or Scallop+TransDecoder gff3 file, we first extract
a CDS fasta with gffread as follows:

gffread annotation_transdecoder.genome.gff3 -g genome.fasta -x
CDS.fasta

Next, we use a custom python script to extract the length of the CDS in CDS.fasta:

python GenerateFastaSeqLengthTable.py CDS.fasta

which produces CDS.fasta_seqlengths.tsv.

Next, we use awk to generate a UTR interval bed file:

awk -F'\t' '$3 == "five_prime_UTR" || $3 ==
"three_prime_UTR"{print $1"\t"$4-1"\t"$5"\t"$9}'
annotation_transdecoder.genome.gff3|awk -F".utr" '{print $1}'
|sed 's/ID=//g' > utr.bed

Next, we calculate the total UTR length (i.e. the sum of 5' and 3' UTR lengths per
transcript) using a custom python script:

python CalculateTotalUtrLengthFromUtrBed.py CDS.fasta utr.bed

This script produces as output a tab-separated table, CDS.fasta_utrlengths.tsv, with the
first and second columns containing the transcript id and the utr length, respectively.

Next we use a custom python script to calculate the median utr-to-CDS ratio across the
set of CDS-containing transcripts:

python BuildUtrCdsRatioTable.py CDS.fasta_seqlengths.tsv CDS.fasta_utrlengths.tsv
utr2cds_ratiotable.tsv > median_utr2cdsratio.txt

This script produces a table of UTR-to-CDS ratios for the CDS transcripts, but also
prints to standard out the median,which we redirect to a text file (as demonstrated
above).

Our subsequent analysis examines whether a correlation exists between the frequency
of BLASTX hits for the predicted UTRs, and the ratio of the median UTR-to-CDS ratio
for the TransDecoder annotation to that derived from NCBI. A value greater than one for
this ratio of ratios indicates an excess of predicted UTR relative to NCBI. If as this ratio

 14

or ratios gets larger (and exceeds 1), the frequency of UTR BLASTX hits also
increases, we take this as evidence for incorrect classification of CDS as UTRs.

Figure S1. Proteome compleasm scores for leipidpoterans. For comparison to
other taxonomic groups, see Figure 1.

0.00

0.25

0.50

0.75

1.00

H. e
rat

o

D. p
lex

ipp
us

B. m
ori

C
om

pl
ea

sm
 s

co
re BRAKER2 (P)

BRAKER1 (P)
BRAKER3 (P)
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR
MAKER (P)

15

3.8

4.0

4.2

4.4

400 800 1200 1600
Median CDS length

lo
g 1

0(

pr
ed

ic
te

d
C

D
S)

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
D. melanogaster
D. yakuba
D. pseudoobscura

A

B

4.25

4.50

4.75

5.00

600 800 1000 1200
Median CDS length

lo
g 1

0(

pr
ed

ic
te

d
C

D
S)

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
A. thaliana
A. lyrata
C. rubella
B. oleracea

16

C

D

4.25

4.50

4.75

400 800 1200 1600
Median CDS length

lo
g 1

0(

pr
ed

ic
te

d
C

D
S)

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
G. gallus
C. japonica
A. platyrhynchos

4.00

4.25

4.50

4.75

5.00

600 800 1000
Median CDS length

lo
g 1

0(

pr
ed

ic
te

d
C

D
S)

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
Z. mays
S. italica
O. sativa
B. distachyon

17

Figure S2. Joint distributions of number of predicted CDS over median
predicted CDS length for (A) dipterans, (B) rosids, and (C) birds, (D) monocots
and (E) mammals.

E

4.6

5.0

5.4

400 800 1200
Median CDS length

lo
g 1

0(

pr
ed

ic
te

d
C

D
S)

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
H. sapiens
M. mulatta
M. musculus
C. familiaris

18

1

2

3

4

5

lo
g 1

0C
D

S
le

ng
th

BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

MAKER
TOGA
Liftoff
NCBI

1

2

3

4

5
lo

g 1
0C

D
S

le
ng

th
BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

MAKER
TOGA
Liftoff
NCBI

1

2

3

4

5

lo
g 1

0C
D

S
le

ng
th

BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

TOGA
Liftoff
NCBI

A

B

C

19

0

1

2

3

4

lo
g 1

0C
D

S
le

ng
th

BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

TOGA
Liftoff
NCBI

1

2

3

4

lo
g 1

0C
D

S
le

ng
th

BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

MAKER
TOGA
Liftoff
NCBI

1

2

3

4

5
lo

g 1
0C

D
S

le
ng

th

BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

TOGA
Liftoff
NCBI

D

E

F

20

1

2

3

4

5

lo
g 1

0C
D

S
le

ng
th

BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

MAKER
TOGA
Liftoff
NCBI

1

2

3

4

lo
g 1

0C
D

S
le

ng
th

BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

MAKER
TOGA
Liftoff
NCBI

G

H

I

1

2

3

4

lo
g 1

0C
D

S
le

ng
th

BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

TOGA
Liftoff
NCBI

21

1

2

3

4

5
lo

g 1
0C

D
S

le
ng

th

BRAKERprotein

BRAKERRNA

BRAKER3
CGPprotein

CGPRNA
ScallopHISAT2
ScallopSTAR
StringtieHISAT2
StringtieSTAR

TOGA
Liftoff
NCBI

J

Figure S3. Violin plots of CDS length distributions for annotation methods
and NCBI benchmark for (A) H. sapiens, (B) C. familiaris, (C) G. gallus, (D)
A. platyrhynchos, (E) Z. mays, (F) O. sativa, (G) A. thaliana, (H) C. rubella,
(I) D. melanogaster, and (J) D. pseudoobscura.

22

Figure S4. Correlation between the percentage of predicted genes that are unique
to a particular class of annotation tool (see legend) and the proportion of genes in
that class that are intergenic relative to NCBI protein-coding gene boundaries
(excluding UTRs).

Pearson's ρ=0.975, p=2.2x10−16

0

25

50

75

0 25 50 75
Percent genes unique to method class

Pe
rc

en
t g

en
es

 in
te

rg
en

ic
 (r

el
at

ive
 to

 N
C

BI
)

Method class
BRAKER
CGP
liftover
MAKER
Scallop
Stringtie

Species
A. thaliana

chicken

D. melanogaster

H. sapiens

M. musculus

Z. mays

23

C. familiaris

H. sapiens M. mulatta M. musculus

G. gallus C. japonica A. platyrhynchos

BR
AK

ER
pr

ot
ei

n
BR

AK
ER

R
N

A
BR

AK
ER

3
C

G
P p

ro
te

in
C

G
P R

N
A

Sc
al

lo
p H

IS
AT

2
Sc

al
lo

p S
TA

R
St

rin
gt

ie
H

IS
AT

2
St

rin
gt

ie
ST

AR
M

AK
ER

TO
G

A
Li

fto
ff

BR
AK

ER
pr

ot
ei

n
BR

AK
ER

R
N

A
BR

AK
ER

3
C

G
P p

ro
te

in
C

G
P R

N
A

Sc
al

lo
p H

IS
AT

2
Sc

al
lo

p S
TA

R
St

rin
gt

ie
H

IS
AT

2
St

rin
gt

ie
ST

AR
M

AK
ER

TO
G

A
Li

fto
ff

BR
AK

ER
pr

ot
ei

n
BR

AK
ER

R
N

A
BR

AK
ER

3
C

G
P p

ro
te

in
C

G
P R

N
A

Sc
al

lo
p H

IS
AT

2
Sc

al
lo

p S
TA

R
St

rin
gt

ie
H

IS
AT

2
St

rin
gt

ie
ST

AR
M

AK
ER

TO
G

A
Li

fto
ff

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

%
 p

re
di

ct
ed

 p
ro

te
in

s

Reference protein coverage
by method type

BRAKER: ≥ 80%
BRAKER: < 80%
CGP: ≥ 80%
CGP: < 80%
assembler: ≥ 80%
assembler: < 80%
MAKER: ≥ 80%
MAKER: < 80%
liftover: ≥ 80%
liftover: < 80%

A

24

B

O. sativa B. distachyon

B. oleracea Z. mays S. italica

A. thaliana A. lyrata C. rubella

BR
AK

ER
pr

ot
ei

n
BR

AK
ER

R
N

A
BR

AK
ER

3
C

G
P p

ro
te

in
C

G
P R

N
A

Sc
al

lo
p H

IS
AT

2
Sc

al
lo

p S
TA

R
St

rin
gt

ie
H

IS
AT

2
St

rin
gt

ie
ST

AR
M

AK
ER

TO
G

A
Li

fto
ff

BR
AK

ER
pr

ot
ei

n
BR

AK
ER

R
N

A
BR

AK
ER

3
C

G
P p

ro
te

in
C

G
P R

N
A

Sc
al

lo
p H

IS
AT

2
Sc

al
lo

p S
TA

R
St

rin
gt

ie
H

IS
AT

2
St

rin
gt

ie
ST

AR
M

AK
ER

TO
G

A
Li

fto
ff

BR
AK

ER
pr

ot
ei

n
BR

AK
ER

R
N

A
BR

AK
ER

3
C

G
P p

ro
te

in
C

G
P R

N
A

Sc
al

lo
p H

IS
AT

2
Sc

al
lo

p S
TA

R
St

rin
gt

ie
H

IS
AT

2
St

rin
gt

ie
ST

AR
M

AK
ER

TO
G

A
Li

fto
ff

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

%
 p

re
di

ct
ed

 p
ro

te
in

s

Reference protein coverage
by method type

BRAKER: ≥ 80%
BRAKER: < 80%
CGP: ≥ 80%
CGP: < 80%
assembler: ≥ 80%
assembler: < 80%
MAKER: ≥ 80%
MAKER: < 80%
liftover: ≥ 80%
liftover: < 80%

25

Figure S5. Blastp hit frequency by coverage of predicted proteins to NCBI
proteins for (A) vertebrates, (B) plants, and (C) dipterans.

D. melanogaster D. yakuba D. pseudoobscura

BR
AK

ER
pr

ot
ei

n
BR

AK
ER

R
N

A
BR

AK
ER

3
C

G
P p

ro
te

in
C

G
P R

N
A

Sc
al

lo
p H

IS
AT

2
Sc

al
lo

p S
TA

R
St

rin
gt

ie
H

IS
AT

2
St

rin
gt

ie
ST

AR
M

AK
ER

TO
G

A
Li

fto
ff

BR
AK

ER
pr

ot
ei

n
BR

AK
ER

R
N

A
BR

AK
ER

3
C

G
P p

ro
te

in
C

G
P R

N
A

Sc
al

lo
p H

IS
AT

2
Sc

al
lo

p S
TA

R
St

rin
gt

ie
H

IS
AT

2
St

rin
gt

ie
ST

AR
M

AK
ER

TO
G

A
Li

fto
ff

BR
AK

ER
pr

ot
ei

n
BR

AK
ER

R
N

A
BR

AK
ER

3
C

G
P p

ro
te

in
C

G
P R

N
A

Sc
al

lo
p H

IS
AT

2
Sc

al
lo

p S
TA

R
St

rin
gt

ie
H

IS
AT

2
St

rin
gt

ie
ST

AR
M

AK
ER

TO
G

A
Li

fto
ff

0

25

50

75

100

%
 p

re
di

ct
ed

 p
ro

te
in

s

Reference protein coverage
by method type

BRAKER: ≥ 80%
BRAKER: < 80%
CGP: ≥ 80%
CGP: < 80%
assembler: ≥ 80%
assembler: < 80%
MAKER: ≥ 80%
MAKER: < 80%
liftover: ≥ 80%
liftover: < 80%

C

26

Figure S6. By species and method, percentage of predicted proteins with
BLASTP hit to NCBI proteins of species in taxonomic group. Within each
taxonomic group, species are ordered from left to right in order of increasing
divergence from the reference species.

20

40

60

80

100

D
. m

el
an

og
as

te
r

D
. p

se
ud

oo
bs

cu
ra

D
. y

ak
ub

a

A.
 th

al
ia

na

A.
 ly

ra
ta

B.
 o

le
ra

ce
a

C
. r

ub
el

la

Z.
 m

ay
s

O
. s

at
iv

a

S.
 it

al
ic

a

B.
 d

is
ta

ch
yo

n

G
. g

al
lu

s

A.
 p

la
ty

rh
yn

ch
os

C
. j

ap
on

ic
a

H
. s

ap
ie

ns

M
. m

ul
at

ta

C
. f

am
ilia

ris

M
. m

us
cu

lu
s

%
 p

re
di

ct
ed

 p
ro

te
in

s
bl

as
tp

 to
 N

C
BI

BRAKERprotein

BRAKERRNA

BRAKER3

CGPprotein

CGPRNA

ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER

TOGA

Liftoff

27

0.5

0.6

0.7

0.8

0.9

1.0

0.6 0.8 1.0
Transcriptome compleasm score

Pr
ot

eo
m

e
co

m
pl

ea
sm

 s
co

re

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
A. thaliana

A. lyrata

C. rubella

B. oleracea

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Transcriptome compleasm score

Pr
ot

eo
m

e
co

m
pl

ea
sm

 s
co

re

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
D. melanogaster

D. yakuba

D. pseudoobscura

A

B

28

C

D

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Transcriptome compleasm score

Pr
ot

eo
m

e
co

m
pl

ea
sm

 s
co

re

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
G. gallus

C. japonica

A. platyrhynchos

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Transcriptome compleasm score

Pr
ot

eo
m

e
co

m
pl

ea
sm

 s
co

re

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
Z. mays

S. italica

O. sativa

B. distachyon

29

Figure S7. Correlations between proteome and transcriptome compleasm
scores for (A) dipterans, (B) rosids, (C) birds, (D) monocots, and (E) mammals.

E

0.5

0.6

0.7

0.8

0.9

1.0

0.5 0.6 0.7 0.8 0.9 1.0
Transcriptome compleasm score

Pr
ot

eo
m

e
co

m
pl

ea
sm

 s
co

re

Method
BRAKER2 (P)
BRAKER1 (P)
BRAKER3 (P)
CGPprotein (P)
CGPRNA (P)
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)
TOGA (P)
Liftoff

Species
H. sapiens

M. mulatta

M. musculus

C. familiaris

30

A

B

0

50

100

150

Sca
llo

p HISAT2

Sca
llo

p STAR

Strin
gti

e HISAT2

Strin
gti

e STAR

m

is
si

ng
 B

U
SC

O
s

Missingness type
Proteome and transcriptome
False negative (FN)
Incorrect predicted ORF
FN and incorrect ORF
Other

0

10

20

30

40

Sca
llo

p HISAT2

Sca
llo

p STAR

Strin
gti

e HISAT2

Strin
gti

e STAR

m

is
si

ng
 B

U
SC

O
s

Missingness type
Proteome and transcriptome
False negative (FN)
Incorrect predicted ORF
FN and incorrect ORF
Other

31

C

D

0

500

1000

Sca
llo

p HISAT2

Sca
llo

p STAR

Strin
gti

e HISAT2

Strin
gti

e STAR

m

is
si

ng
 B

U
SC

O
s

Missingness type
Proteome and transcriptome
False negative (FN)
Incorrect predicted ORF
FN and incorrect ORF
Other

0

2

4

6

Sca
llo

p HISAT2

Sca
llo

p STAR

Strin
gti

e HISAT2

Strin
gti

e STAR

m

is
si

ng
 B

U
SC

O
s

Missingness type
Proteome and transcriptome
False negative (FN)
Incorrect predicted ORF
FN and incorrect ORF
Other

32

Figure S8. Sources of BUSCO missingness in RNA-seq assembler proteomes
for (A) D. melanogaster, (B) A. thaliana, (C) G. gallus, (D) Z. mays, and (E) H.
sapiens.

E

0

500

1000

1500

2000

Sca
llo

p HISAT2

Sca
llo

p STAR

Strin
gti

e HISAT2

Strin
gti

e STAR

m

is
si

ng
 B

U
SC

O
s

Missingness type
Proteome and transcriptome
False negative (FN)
Incorrect predicted ORF
FN and incorrect ORF
Other

33

Figure S9. RNA-seq alignment rate to proteomes (i.e. CDS sequences).
Species are ordered from left to right in order of increasing divergence from the
reference species. Xs indicate the alignment rate to CDS of the NCBI
annotation.

0.2

0.4

0.6

D
. m

el
an

og
as

te
r

D
. y

ak
ub

a

D
. p

se
ud

oo
bs

cu
ra

A.
 th

al
ia

na

A.
 ly

ra
ta

C
. r

ub
el

la

B.
 o

le
ra

ce
a

Z.
 m

ay
s

S.
 it

al
ic

a

O
. s

at
iv

a

B.
 d

is
ta

ch
yo

n

G
. g

al
lu

s

C
. j

ap
on

ic
a

A.
 p

la
ty

rh
yn

ch
os

H
. s

ap
ie

ns

M
. m

ul
at

ta

M
. m

us
cu

lu
s

C
. f

am
ilia

ris

R
N

A s
eq

 a
lig

nm
en

t r
at

e
to

 C
D

S

BRAKER2 (P)

BRAKER1 (P)

BRAKER3 (P)

CGPprotein (P)

CGPRNA (P)

ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)

TOGA (P)

Liftoff

34

Figure S10. Correlations between RNA-seq alignment rates to annotations for
samples used to generate annotations, versus a separate set of test samples
that were not used in generating annotations.

G. gallus H. sapiens

D. melanogaster A. thaliana Z. mays

0.25 0.50 0.75 0.25 0.50 0.75

0.25 0.50 0.75

0.25

0.50

0.75

0.25

0.50

0.75

RNAseq alignment rate: test data

R
N

A s
eq

 a
lig

nm
en

t r
at

e:
 a

nn
ot

at
io

n
da

ta

Method
BRAKER2 (P)

BRAKER1 (P)

BRAKER3 (P)

CGPprotein (P)

CGPRNA (P)

ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

MAKER (P)

TOGA (P)

Liftoff

35

Figure S11. Ratios of the ratio of the median predicted UTR length/median predicted CDS
length for RNA-seq assemblers over that for NCBI protein coding transcripts. No clear increase
is observed for the most complete and curated annotations (H. sapiens, D. melanogaster, G.
gallus, Z. mays, A. thaliana) relative to other genomes, indicating that the filtering out of cases
of transcriptional readthrough (of the sort that NCBI will filter out for high quality annotations)
does not explain the reduction in alignment rates for RNA-seq assemblers when UTRs are not
included.

1

2

3

D
. m

el
an

og
as

te
r

D
. p

se
ud

oo
bs

cu
ra

D
. y

ak
ub

a

A.
 th

al
ia

na

A.
 ly

ra
ta

B.
 o

le
ra

ce
a

C
. r

ub
el

la

Z.
 m

ay
s

O
. s

at
iv

a

S.
 it

al
ic

a

B.
 d

is
ta

ch
yo

n

G
. g

al
lu

s

A.
 p

la
ty

rh
yn

ch
os

C
. j

ap
on

ic
a

H
. s

ap
ie

ns

M
. m

ul
at

ta

C
. f

am
ilia

ris

M
. m

us
cu

lu
s

pr
ed

ic
te

d
U

TR
−C

D
S

ra
tio

/N
C

BI
 U

TR
−C

D
S

ra
tio

Method
ScallopHISAT2

ScallopSTAR

StringtieHISAT2

StringtieSTAR

36

 37

Supplemental Results S1: Support for using NCBI as truth set for calculation of
intergenic false positive rate for predicted protein-coding genes

We assume that predictions that are specific to a particular class of annotation method (i.e.
CGP, BRAKER, StringTie+TransDecoder, Scallop+TransDecoder, liftover, and MAKER) are
more likely to be false positives than those that overlap across multiple classes of methods.
Thus, if the “unique-to-method class” gene prediction frequency for our reference species (and
M. musculus) is highly correlated with the class-level false positive rate, we would take this as
evidence that the intergenic false positive rate calculated for individual methods relative to the
NCBI annotation is a good approximation to the real false positive rate. Consistent with our
expectations, the percent of genes unique to a method class was highly correlated with the
percentage of intergenic gene predictions for that class (Pearson’s r=0.975, p=2.2´ 10-16;
Supplemental Fig. S4).

Supplemental Results S2: transcriptome RNA-seq alignment rate, training vs. test
data

Training and test data alignment rates were strongly correlated (Supplemental Fig. S10). For
RNA-seq assemblers, for four of five reference species there were modest reductions in
alignment rate with test data compared to the data used to assemble transcripts, but in three of
five species similar alignment rate differences were also observed for other methods including
those that didn’t use RNA-seq data (Supplemental Fig. S10).

