Supplemental Material
Building better genome annotations across the tree of life
Adam H. Freedman, Timothy B. Sackton
Faculty of Arts and Sciences Informatics Group, Harvard University, Cambridge,
Massachusetts 02138

Table of Contents

Supplemental Code

Code S1: Custom python SCriptsccoviviiiiii 0l 2
Supplemental Text

=S T SRR 13
Supplemental Figures

FIQUIE S e 15
FIQUIE S2.. e e e e e e e 16
FIQUIE S e 19
FIQUIE S4. .. 23
FIQUIE S5t e e e 24
FIQUIE SB.....ceeeeeeie ettt e e 27
I UIE S et 28
FIQUIE S8 ..t 31
FIQUIE SO, et 34
FIGUIE ST0... e e e e 35
FIQUIE ST e e e 36
Supplemental Results

RESUILS ST .. e e e e e aaaeeeas 37
RESUILS S2.....ooiieiieeeee e e e e e e aaaeeeas 37

Supplemental Code S1

BuildUtrCdsRatioTable.py

import sys

from numpy import median

cds lengths = open(sys.argv[l],'r'")

cds fields = cds lengths.readline() .strip() .split('\t")
cds_dict = {}

for line in cds_lengths:

line dict = dict(zip(cds fields,line.strip().split('\t")))
cds_dict[line dict['seqgid']] = int(line dict['length'])
utr lengths = open(sys.argv[2],'r")

utr fields = utr lengths.readline().strip().split('\t")
utr dict = {}
for line in utr lengths:

line dict = dict(zip(utr fields,line.strip().split('\t")))

utr dict[line dict['tsid']] = int(line dict['total utr length'])
utr2cds ratios = []
fout = open(sys.argv[3],'w'")

fout.write('tsid\tcds length\tutr length\tutr2cds\n')
for tsid in cds dict:
if tsid in utr dict:
fout.write('$s\t%s\t%s\t%s\n' %
(tsid,cds _dict[tsid],utr dict[tsid],utr dict[tsid]/cds dict[tsid]))
utr2cds ratios.append(utr dict[tsid]/cds dict[tsid])
else:
fout.write ('$s\t%s\t0\tO\n' % (tsid,cds dict[tsid]))
fout.close()
print (median (utr2cds ratios))

HHHHHH R4
CalcGeneUniqueToMethodClassRate.py
methods = ['braker', 'cgp','lift', 'maker','scal', 'stie']
def ClassifyMethodList (methods,methodlist) :
method classes = set()
if 'ncbi' in methodlist:
ncbi = True
else:
ncbi = False
for method in methods:
method present = [method in i for i in methodlist]
if True in method present:
method classes.add (method)
if sum(method present) >0:

if len(method present) == sum(method present):
unique = True
return unique,ncbi, list (method classes)
break
elif len(method present) - sum(method present) == 1 and
'ncbi' in methodlist:
unique = True
return unique,ncbi,list (method classes)
break

if 'unique' not in locals():
return False,ncbi,list (method classes)

import sys

from numpy import corrcoef

from scipy.stats import pearsonr
from collections import defaultdict
mergebed = open(sys.argv[l],'r")
species = sys.argv[2]

method total = defaultdict (int)
method intergenic = defaultdict (int)
method unique = defaultdict (int)

for method in methods:

method total[method] = 0
method intergenic[method] =0
method unique[method] = 0

for line in mergebed:
methodlist = line.strip () .split() [3].split(',")
unique, ncbi,method classes = ClassifyMethodList (methods,methodlist)
for methodclass in method classes:
method total[methodclass]+=1

if unique == True and ncbi == False:
method unique[method classes[0]]+=1
method intergenic[method classes[0]]+=1

elif unique == True and ncbi ==True:
method unique[method classes[0]]+=1
elif unique == False and ncbi == False:

for method in method classes:
method intergenic[method]+=1
fout =
open('{} methodclass unique intergenic rates.tsv'.format(sys.argv[1l]), 'w'
)
fout.write ('species\tmethodclass\tclassunique\tclassintergenic\n"')
x= []
y=1[]
for methodclass in methods:
x.append(method_unique[methodclass]/method_total[methodclass])
y.append(method_intergenic[methodclass]/method_total[methodclass])

fout.write (" {}I\t{}\t{}\t{}\n'.format (species,methodclass,method unique [me
thodclass]/method_total[methodclass],method_intergenic[methodclass]/metho
d total[methodclass]))

fout.close()

print (corrcoef (x,y)
print (pearsonr (x,y)

HHHHRHH#

)
)

CalculateBlastpFractionRefProteinsCovered.py
import argparse
fields="gseqgid ssegid pident length mismatch gapopen gstart gend sstart
send evalue bitscore glen slen'.split/()
if name ==" main ":

parser = argparse.ArgumentParser (description='calculate fraction of
reference proteins covered by at least one predicted protein')

parser.add argument ('-blast','--blast-
table',dest="'blast', type=str,help="'blast output table')
parser.add argument ('-refn', '--number-reference-
proteins',dest="refprotn', type=int,help="number of reference proteins')
parser.add argument ('-cov', '--ref-cov-

threshold',dest="'coverage', type=float,help="'fractional coverage
threshold')
opts = parser.parse args()
refprotset=set ()
fopen = open (opts.blast,'r')
for line in fopen:
linedict = dict(zip(fields,line.strip() .split('\t"')))
coverage = int (linedict['length'])/int(linedict(['glen'])
if float(linedict['evalue']) <= 10**-5 and coverage
>opts.coverage:
refprotset.add (linedict['gseqgid'])
frac covered = len(refprotset)/int (opts.refprotn)
fout =
open ('refprotein proportioncovered cov_ {}covthresh.txt'.format (opts.cover
age),'w'")
fout.write('proportion ref proteins with
coverage:{}\n'.format(str(frac_covered)))
print (frac covered)
fout.close()

HHHHRHH#

CalculateTotalUtrLengthFromUtrBed.py
import sys
from collections import defaultdict
from numpy import median
ts list = []
tscript fasta = open(sys.argv[1l],'r")
for line in tscript fasta:

if line[0] == '>"':

ts list.append(line.strip() .split () [0].replace('>",""))

utr bed open = open(sys.argv[2],'r")

utr length dict = defaultdict (int)
for interval in utr bed open:
chrom, start,end, tsid = interval.strip() .split('\t")
utr length dict[tsid] += int(end)-int(start)
fout = open('%s utrlengths.tsv' % sys.argv[l],'w')
fout.write('tsid\ttotal utr length\n')
utr lengths = []

for tsid in ts_ list:
if tsid in utr length dict:
fout.write('%$s\t%s\n' % (tsid,utr length dict[tsid]))
utr lengths.append(utr length dict[tsid])
else:
fout.write('%$s\t0O\n' % tsid)
utr lengths.append(0)
fout.close()

utr median = open('%s utrmedian length.txt' % sys.argv[1l],'w')
utr median.write('$s\n' % median(utr lengths))
utr median.close ()

BHARBHAHAHEHH

FilterOutUnsupportedBrakerAugustusAnnotations.py
import argparse
fields = ["segid", "source", "type", "start",

"end", "score", "strand", "phase", "attributes"]

def ParseBrakerGtfAttributes (attributes,cleanlabels=True) :
attribute dict = {}
attribute list = attributes[:-1].replace('"','").split(';")
for attribute in attribute list:
key,value = attribute.split ()

if cleanlabels == True:
if key in ['transcript id', 'gene id'] and 'file' in value:
value = value.split (' ") [-1]
attribute dictlkey] = wvalue

return attribute dict

def BuiltTscript2GeneDict (brakergtf, fields):
fopen = open (brakergtf, 'r')
ts2gene = {}
for line in fopen:
linedict = dict(zip(fields,line.strip() .split('\t"')))
if linedict['type'] == 'CDS':
attribute dict =
ParseBrakerGtfAttributes (linedict['attributes'],cleanlabels=False)
ts2genelattribute dict['transcript id']] =
attribute dict['gene id']
fopen.close ()
return ts2gene

if name ==" main ":

parser = argparse.ArgumentParser (description="Filters braker.gtf by
retaining only supported annotations, with either any or full support
gtfs produced by BRAKER selectSupportedSubsets.py script.")

parser.add argument ('-supported','--hint-supported-
gtf',dest="supported', type=str,help="braker support eval script generated
gtf with any support')

parser.add argument ('-gtf', '--braker-
gtf',dest="braker', type=str,help="braker.gtf output file')

parser.add argument ('-o','--output-
gtf',dest="output', type=str,help='merge of GeneMark and supported
AUGUSTUS annotations')

parser.add argument ('-blastp', '--use-blastp-
support',dest="blastp',action="store true', help='switch indicating
whether use blastp evidence to keep annotations')

parser.add argument ('-bp-file','--blastp-results-
file',dest="blastpfile', type=str,help="name of file with blastp results,
outputformat 6'")

opts = parser.parse args()

if opts.blastp == True:

ts2gene = BuiltTscript2GeneDict (opts.braker,fields)

blastp supported genes = set()

blastp supported tscripts = set()

blastp open = open (opts.blastpfile,'r"')

for line in blastp open:
linelist = line.strip() .split('\t")
blastp supported tscripts.add(linelist[0])
blastp supported genes.add(ts2gene[linelist[0]])

supported genes = set ()

supported tscripts = set()

supported = open (opts.supported, 'r')
for line in supported:

if line[0] !="#"':
linedict = dict(zip(fields,line.strip() .split('\t"')))
if linedict['type'] in ['intron', 'start codon', 'stop codon']:

attribute dict =
ParseBrakerGtfAttributes (linedict['attributes'])
if attribute dict['supported'] == 'True':
supported genes.add(attribute dict['gene id'])

supported tscripts.add(attribute dict['transcript id'])

brakerin = open (opts.braker,'r")
fout = open (opts.output, 'w')
for line in brakerin:
if 1ine[0] == "#':
fout.write(line)
elif line =='\n':
pass
elif "GeneMark" in line:
if opts.blastp == True:
linedict = dict(zip(fields,line.strip() .split('\t')))
attribute dict =
ParseBrakerGtfAttributes (linedict['attributes'],cleanlabels=False)
if attribute dict['transcript id'] in
blastp supported tscripts and attribute dict['gene id'] in
blastp supported genes:
fout.write(line)
else:
fout.write(line)
else:

linedict = dict(zip(fields,line.strip() .split('\t"')))
if linedict['type'] == 'gene':
if linedict['attributes'].split(' ") [-1] in
supported genes:
fout.write(line)
elif linedict['attributes'] in blastp supported genes:
fout.write(line)
elif linedict['type']l == 'transcript':
if linedict['attributes'].split(' ") [-1] in
supported tscripts:
fout.write(line)
elif linedict['attributes'] in blastp supported tscripts:
fout.write(line)
elif linedict['type'l in
['exon', 'CDS', 'stop codon', 'start codon', 'intron']:
attribute dict =
ParseBrakerGtfAttributes (linedict['attributes'])
if attribute dict['gene id'] in supported genes and
attribute dict['transcript id'] in supported tscripts:
fout.write(line)
else:
attribute dict =
ParseBrakerGtfAttributes (linedict['attributes'],cleanlabels=False)
if attribute dict['gene id'] in
blastp supported genes and attribute dict['transcript id'] in
blastp supported tscripts:
fout.write(line)
else:
raise ValueError ('%s not in list of valid feature types'
% line dict['type'l])

fout.close ()

HHHHRHH#

GenerateFastaSeqLengthTable.py
from Bio import SeqlO
from numpy import median
import argparse
if name ==" main ":

parser = argparse.ArgumentParser (description='args for computing
stats from assembly fiile')

parser.add argument ('-f','--
fastain',dest="frecords', type=str,help="input transcriptome fasta file')
parser.add argument ('-colname', '--output-column-

name',dest="'colname', type=str,help="'column name for written table')
opts = parser.parse args()

lengths=[]
fout = open('%s_ seglengths.tsv' % (opts.frecords), 'w')
fout.write ('segid\tlength\tmethod\n"')
for record in SeqIO.parse (opts.frecords, 'fasta'):
fout.write ('$s\t%s\t%s\n' %
(record.id, len (record.seq),opts.colname))

lengths.append (len (record.seq))
print ('median: %$s\n' % median (lengths))
print ('max: %s\n' % max(lengths))
print ('min: %s\n' % min (lengths))
fout.close()

H#HH AR R

GetMedianAnnotationAlignRate.py
import sys

from glob import glob

from numpy import median

prefix = sys.argv[l]

logs = glob ("*log")

rates = []
for log in logs:
logopen = open(log,'r')

logread = logopen.readlines ()
for line in logread:
if 'overall' in line:

rate = float(line.split () [0].replace('%',"'"))
rates.append (rate)
fout = open('median align rate %s.txt' % prefix, 'w')

Q

fout.write('median annotation align rate: %$s\n' % median (rates))
fout.close()

H#HH ARG

WriteBrakerCdsTranscriptAndGeneIntervalBedFilesWithNoUTRs.py
import argparse
from collections import OrderedDict

fields = ["segid", "source", "type", "start",
"end", "score", "strand", "phase", "attributes"]
ts dict = OrderedDict ()
ts2gene = {}
gene _dict = OrderedDict ()

def ParseBrakerAttributes (attributes):
attribute dict = {}
attribute list attributes.split(';")
for attribute in attribute list:
key,value = attribute.split('=")
attribute dictlkey] = wvalue
return attribute dict

def BuildTscript2GeneforLiftoff (gff3):
ts2gene = {}
fopen = open(gff3,'r")
for line in fopen:

if line[0] != "4#':
line dict = dict(zip(fields,line.strip() .split('\t")))

if line dict['type']l == 'mRNA':
attribute dict =
ParseBrakerAttributes(line dict['attributes'])

ts2genelattribute dict['ID']] = attribute dict['Parent']
fopen.close ()
return ts2gene

if name ==" main ":
parser = argparse.ArgumentParser (description="Generate CDS transcript
and gene interval bed without UTRs")

parser.add argument ('-gff3', '--braker-annotation-
gff3',dest="gff3', type=str,help="'Braker gff3"')
parser.add argument ('-o','--output-bed-

prefix',dest="bedprefix', type=str,help="prefix for output bed files')

parser.add argument ('-maker','--
makergff',dest="maker',action="store true', help='indicates maker
annotation so handle gene id properly')

parser.add argument ('-liftoff','--liftoff-
gff3',dest="1liftoff',action="store true',help='indicates liftoff
annotation')

opts = parser.parse args()

if opts.liftoff == True:
ts2gene = BuildTscript2GeneforLiftoff (opts.gff3)
else:
ts2gene = {}
gffin = open(opts.gff3,'r")
for line in gffin:

if line[0] != "4#':
line dict = dict(zip(fields,line.strip() .split('\t")))
if line dict['type']l in ['mRNA', 'transcript']:

attribute dict =
ParseBrakerAttributes(line dict['attributes'])
tsid = attribute dict['ID']
if opts.maker ==True:
geneid = attribute dict['Parent']

else:
try:
geneid = attribute dict['genelD']
except:
geneid = attribute dict['Parent'] # added
if opts.liftoff == False:
ts2gene[tsid] = geneid
elif line dict['type'] == 'CDS':

attribute dict =
ParseBrakerAttributes(line dict['attributes'])
tsid = attribute dict['Parent']
if tsid in ts2gene: # this accounts for liftoff cases
where CDS and gene but no mRNA
geneid = ts2gene[tsid]
elif 'gene' in attribute dict['Parent']:
geneid = attribute dict['Parent']

transcript level
if tsid not in ts dict and 'gene' not in tsid:

ts dict[tsid] = {'strand': line dict['strand'], 'chr':
line dict['segid'], 'start': int(line dict['start']), 'end':
int (line dict['end'])}
elif tsid in ts_dict and 'gene' not in tsid:

ts dict[tsid] ['start'] =
min(int (line dict['start']),ts dict[tsid]['start'])
ts dict[tsid]['end'] =
max (int (line dict['end']),ts dict[tsid]['end'])
else:

print ('{} is also a gene feature'.format (tsid))

gene level
if geneid not in gene dict:

gene _dict[geneid] = {'strand':
line dict['strand'],'chr': line dict['segid'], 'start':
int(line dict['start']), 'end': int(line dict['end'])}
else:
gene dict[geneid] ['start'] =
min(int (line dict['start']),gene dict[geneid] ['start'])
gene dict[geneid] ['end'] =
max (int (line dict['end']),gene dict[geneid] ['end'])
tsout = open('%s CDS transcript interval.bed' % opts.bedprefix, 'w')
geneout = open('%s CDS gene interval.bed' % opts.bedprefix,'w')

for transcript in ts dict:
tsout.write ('$s\t%s\t%s\t%s\t.\t%s\n' %
(ts_dict[transcript] ['chr'],ts dict[transcript] ['start']-
1,ts dict[transcript]['end'],transcript,ts dict[transcript]['strand']))
for gene in gene dict:
geneout.write ('%$s\t%s\t%s\t%s\t.\t%s\n' %
(gene _dict[gene] ['chr'],gene dict[gene]['start']-
1,gene dict[gene] ['end'],gene,gene dict[gene] ['strand']))

tsout.close ()
geneout.close ()

HHHHRHH#

WriteTransdecoderCdsTranscriptAndGeneIntervalBedFiles.py
import argparse
from collections import OrderedDict

fields = ["segid", "source", "type", "start",
"end", "score", "strand", "phase", "attributes"]

ts dict = OrderedDict ()
ts2gene = {}
gene _dict = OrderedDict ()

def ParseTransdecoderAttributes (attributes):
attribute dict = {}
attribute list = attributes.split(';"')
for attribute in attribute list:
key,value = attribute.split('=")

10

attribute dictlkey] = wvalue
return attribute dict

if name ==" main ":

parser = argparse.ArgumentParser (description="Generate CDS transcript
and gene interval bed without UTRs")

parser.add argument ('-tdecgff3', '--transdecoder-annotation-
gff3',dest="tdecgff3"', type=str,help="'transdecoder genome-coordinate
gff3")

parser.add argument ('-o','--output-bed-
prefix',dest="bedprefix', type=str,help="prefix for output bed files')

opts = parser.parse args()

gffin = open (opts.tdecgff3,'r")
for line in gffin:

if line[0] != "4#':
line dict = dict(zip(fields,line.strip() .split('\t")))

if line dict['type']l == 'mRNA':

attribute dict =
ParseTransdecoderAttributes (line dict['attributes'])

tsid = '.'.Jjoin(attribute dict['ID'].split('."') [:-1])

geneid = attribute dict['Parent']

ts2gene[tsid] = geneid

elif line dict['type'] == 'CDS':

attribute dict =

ParseTransdecoderAttributes (line dict['attributes'])

tsid = '.'.join(attribute dict['Parent'].split('.")[:-1])
#try:

geneid = ts2gene[tsid]

#except:

tsid = tsid.replace('gene', 'rna')

geneid = ts2gene[tsid]

transcript level
if tsid not in ts_dict:

ts dict[tsid] = {'strand': line dict['strand'], 'chr':
line dict['segid'], 'start': int(line dict['start']), 'end':
int (line dict['end'])}

else:

ts dict[tsid] ['start'] =
min(int (line dict['start']),ts dict[tsid]['start'])

ts dict[tsid]['end'] =
max (int (line dict['end']),ts dict[tsid]['end'])

gene level
if geneid not in gene dict:

gene _dict[geneid] = {'strand':
line dict['strand'],'chr': line dict['segid'], 'start':
int(line dict['start']), 'end': int(line dict['end'])}
else:
gene dict[geneid] ['start'] =
min (int (line dict['start']),gene dict[geneid] ['start'])
gene dict[geneid] ['end'] =
max (int (line dict['end']),gene dict[geneid] ['end'])

11

tsout = open('%s transdecoder CDS transcript interval.bed' %
opts.bedprefix, 'w')

geneout = open('%s transdecoder CDS gene interval.bed' %
opts.bedprefix, 'w')

for transcript in ts dict:
tsout.write ('$s\t%s\t%s\t%s\t.\t%s\n' %
(ts_dict[transcript] ['chr'],ts dict[transcript] ['start']-
1,ts dict[transcript]['end'],transcript,ts dict[transcript]['strand']))
for gene in gene dict:
geneout.write ('%$s\t%s\t%s\t%s\t.\t%s\n' %
(gene _dict[gene] ['chr'],gene dict[gene]['start']-
1,gene dict[gene] ['end'],gene,gene dict[gene] ['strand']))

tsout.close ()
geneout.close ()

12

Supplemental Methods S1: Quantifying undetected CDS in UTR predictions

To determine the extent to which TransDecoder incorrectly annotates CDS exons as
UTR, we do the following.

First, from a StringTie+TransDecoder or Scallop+TransDecoder gff3 file, we first extract
a CDS fasta with gffread as follows:

gffread annotation_transdecoder.genome.gff3 —g genome.fasta -x
CDS. fasta

Next, we use a custom python script to extract the length of the CDS in CDS.fasta:
python GenerateFastaSegLengthTable.py CDS.fasta
which produces CDS.fasta_seqlengths.tsv.

Next, we use awk to generate a UTR interval bed file:

awk —-F'\t' '$3 == "five_prime_UTR" || $3 ==
"three_prime_UTR"{print $1"\t"$4-1"\t"$5"\t"$9}"
annotation_transdecoder.genome.gff3|awk —F".utr" '{print $1}'
|sed 's/ID=//g' > utr.bed

Next, we calculate the total UTR length (i.e. the sum of 5' and 3' UTR lengths per
transcript) using a custom python script:

python CalculateTotalUtrLengthFromUtrBed.py CDS.fasta utr.bed

This script produces as output a tab-separated table, CDS.fasta_utrlengths.tsv, with the
first and second columns containing the transcript id and the utr length, respectively.

Next we use a custom python script to calculate the median utr-to-CDS ratio across the
set of CDS-containing transcripts:

python BuildUtrCdsRatioTable.py CDS.fasta_seqglengths.tsv CDS.fasta_utrlengths.tsv
utr2cds_ratiotable.tsv > median_utr2cdsratio.txt

This script produces a table of UTR-to-CDS ratios for the CDS transcripts, but also
prints to standard out the median,which we redirect to a text file (as demonstrated
above).

Our subsequent analysis examines whether a correlation exists between the frequency
of BLASTX hits for the predicted UTRs, and the ratio of the median UTR-to-CDS ratio
for the TransDecoder annotation to that derived from NCBI. A value greater than one for
this ratio of ratios indicates an excess of predicted UTR relative to NCBI. If as this ratio

13

or ratios gets larger (and exceeds 1), the frequency of UTR BLASTX hits also
increases, we take this as evidence for incorrect classification of CDS as UTRs.

14

1.00 -

0.75-
0.50-
0.00 -
o‘\

¢
<;\+\Q o
O

BRAKER1 (P
B BRAKERS3 (P
Scalloppisate

ScaIIOpSTAR
StringtieH|3AT2
StringtieSTAR
MAKER (P)

BRAKER2 %Pi

Compleasm score

o

[}

(€]
1

\e\.

Figure S1. Proteome compleasm scores for leipidpoterans. For comparison to
other taxonomic groups, see Figure 1.

15

log4o(# predicted CDS)

log1o(# predicted CDS)

4.4-

&
N
1

»
o
1

3.8-

>

400

5.00-

4.75-

4.50-

4.25-

A g @
%%
e A4
c@‘
o
A

800 1200 1600
Median CDS length

& o
o ®g
@
A
v
o
600 800 1000 1200

Median CDS length
16

D0 EO0OEEDNEODOO

Method

BRAKER2 (P)
BRAKER?1 (P)
BRAKERS3 (P)
CGPprotein (P)
CGPgna (P)
Scallopysarz
Scallopstar
Stringtiepisate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

Species
O D. melanogaster
O D. yakuba
/\ D. pseudoobscura

Method

BRAKER2 (P)
BRAKER1 (P)
BRAKERS (P)
CGPprotein (P)
CGPgua (P)
Scallopysarz
Scallopstar
Stringtiepisate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

o [o [y = = [o

Species

O A. thaliana
O A. lyrata
A\ C. rubella
Y B. oleracea

)
=
4.75- AA A A&
_ A A
%)
3 8
m
ot ‘ -O @
(0]
k3]
g 450
3 a
i m
> =
o A O
4.25- ~T
o
O
A
400 800 1200 1600
Median CDS length
D
@)
QAA
&
4.75 - VDI ‘
Q X “via_ A b
O © = " O
% o =
8 450-
o A
: RN
S ®
*
o
S 4.25-
O
A
4.00 -
\ 4
600 800 1000

Median CDS length
17

Method

BRAKER2 (P)
BRAKER1 (P)
BRAKERS (P)
CG‘Pprotein (P)
CGPgna (P)
Scallopysatz
Scallopstar
Stringtieqisate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

o s = = [o

Species

O G. gallus

O C. japonica

A\ A. platyrhynchos

Method

BRAKER2 (P)
BRAKER1 (P)
BRAKERS3 (P)
CGF)protein (P)
CGPrna (P)
Scallopyysatz
Scallopstar
Stringtienisate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

E O EEREEODDBEDOO

Species

O Z mays

O S. italica

A\ 0. sativa

Y B. distachyon

i Method

BRAKER2 (P)
BRAKER1 (P)
BRAKERS3 (P)
CGPprotein (P)
CGPgya (P)
Scallopysarz
Scallopstar
Stringtiepisate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

54-

5.0- A

<
EEO0EE RO EEEOD

log4o(# predicted CDS)
g
+°

Species

46-
. % ‘% ™\ O H. sapiens
A \V4 O M. mulatta

A M. musculus
Y C. familiaris

400 800 1200
Median CDS length

Figure S2. Joint distributions of number of predicted CDS over median
predicted CDS length for (A) dipterans, (B) rosids, and (C) birds, (D) monocots
and (E) mammals.

18

log419oCDS length log10CDS length

log419CDS length

19

[|10 ST = T | [S0 S«] S« T e |

[S o 11« T = T |

BRAKERotein
BRAKERRNA
BRAKER3
CG F’protein
CGPgrNa
Scalloppisat2
ScallopSTAR
StringtieH|SAT2
StringtieSTAR
MAKER
TOGA

Liftoff

NCBI

BRAKERotein
BRAKERRNA
BRAKER3
CG Pprotein
CGPgrNA
Scalloppisat2
ScallopSTAR
StringtieH|SAT2
StringtieSTAR
TOGA

Liftoff

NCBI

BIqAKERprotein
BRAKERRgnA
BRAKER3
CG Pprotein
Scalloprigatz
ScallopSTAR
StringtieH|SA1-2
StringtieSTAR
MAKER
TOGA

Liftoff

NCBI

log19oCDS length

log41oCDS length

log19oCDS length

20

[S o 110« T = T | L o 0« = T |

[o 0« e T |

BF{AKERprotein
BRAKERRgNA
BRAKER3
CG Pprotein
CGPrnA
Scalloppisat2
ScallopSTAR
StringtieH|3AT2
Stringtiestar
TOGA

Liftoff

NCBI

BRAKERotein
BRAKERRNA
BRAKER3
CG Pprotein
CGPgrNA
Scalloppisatz
ScallopSTAR
StringtieH|SAT2
StringtieSTAR
MAKER
TOGA

Liftoff

NCBI

BRAKERotein
BRAKERRgNA
BRAKER3
CG Pprotein
CGPrnA
Scalloppsat2
ScallopSTAR
StringtieH|SAT2
StringtieSTAR
TOGA

Liftoff

NCBI

log19oCDS length

log41oCDS length

log19oCDS length

[S0 S«]I S« IS e T |

(= | S i [T []

[SIS «]S S« JF=T e |

21

BF‘IAKEHprotein
BRAKERRNA
BRAKER3
CG Pprotein
CGPgrna
Scalloppisat2
ScallopsTar
StringtieH|SAT2
StringtieSTAR
MAKER
TOGA

Liftoff

NCBI

BRAKERprotein
BRAKERRNA
BRAKER3
CG Pprotein
Scallopnisat2
Scallopstar
StringtieH|SAT2
StringtieSTAR
TOGA

Liftoff

NCBI

BRAKERprotein
BRAKERRNA
BRAKER3
CG Pprotein
CGPgrna
Scalloppisat2
ScallopsTar
StringtieH|SAT2
StringtieSTAR
MAKER
TOGA

Liftoff

NCBI

log19oCDS length

>
o
-
o

\}
1

BRAKERrotein
BRAKERRgNA
BRAKER3
CG Pprotein
Scallopnisat2
ScallopSTAR
StringtieH|3AT2
Stringtiestar
TOGA

Liftoff

NCBI

L o 0« = T |

Figure S3. Violin plots of CDS length distributions for annotation methods
and NCBI benchmark for (A) H. sapiens, (B) C. familiaris, (C) G. gallus, (D)
A. platyrhynchos, (E) Z. mays, (F) O. sativa, (G) A. thaliana, (H) C. rubella,

(1) D. melanogaster, and (J) D. pseudoobscura.

22

Method class

—~ BRAKER

o A

(Z) 75 - B CGP

o B liftover

_“2’ MAKER

©

5 B Scallop

o - B Stringtie

3 L. | -

S Species

[

@ [J ® A. thaliana

o A chicken

(@]

T 25- B D. melanogaster

@

(&) .

g—) %E -+ H. sapiens

! X M. musculus
¥ Z mays
Pearson's p=0.975, p=2.2x10""°
0-)

0 25 50 75
Percent genes unique to method class

Figure S4. Correlation between the percentage of predicted genes that are unique
to a particular class of annotation tool (see legend) and the proportion of genes in
that class that are intergenic relative to NCBI protein-coding gene boundaries
(excluding UTRs).

23

BRAKER: < 80%
assembler: < 80%
B MAKER: =80%
MAKER: < 80%
[| liftover: =80%

B CGP: =80%
CGP: < 80%

Reference protein coverage
B assembler: =80%

by method type
B BRAKER: =80%

M. musculus

C. familiaris

| | A. platyrhynchos

C. japonica
M. mulatta

G. gallus
H. sapiens

1|I

100 1

!

100 1

100 1
754
50 1
25

0
754
50
25

0

suiajo.d pajoipaid o,

liftover: < 80%

- HOUIM

- VOOL

F HINVIN

L HV1Sanbuing

L cLVSIHgBulng
L I(._.wao__mom

L NF(@.IQO__NUw
L YNH 459

| c_m:o‘an_muo

- ed3aMvdg

- YNEHIMYHE

B ENIZEE

- HoUN

- VOOL

F HIMVIN

L 4Y1San6uing

L N._.<m_I®_~@C_‘:m
L m_<._.mQO__.mom

L N._.<m_IQO__m0m
L <Zmn_@O

| c_mEEn_.OO

- ed3aMvad
BASEENZSTE!
BRRRR S ENI

|

754

50 1

25
0

L oy
L vOOL

F HIMVIN

- HvLSanbung

L N._.<m_I®_H@C_bw
L m(hmao__mow

L N._.<m_IQO__mom
L <Zmn_muo

| c_w«oan_OO

- €d3axvdg

- YNgHIMVHE
PR IENIEt

24

C. rubella

A. lyrata

A. thaliana

100

75

50

25

0

| | S. italica

Z. mays

B. oleracea

Reference protein coverage

X R
S8 85
oo o
8800>_<w0
Ny R, L®©
W....%%ﬂm>_<
>FLT NySOCTT
T NYYEEWW
Q <<l OOXX
S0 23
EMNOO0O T ==
ZEH HR B

[| liftover: =80%

liftover: < 80%

- HOUIN

- VOOL

- HIMVIN

L HV.1San6ung
L cLVSIHgBug
L IE.@QO__MOW

L N._.<m_IQO__N0m
L <ZIn_.mVO

L :_Qoan_muo

F Ed3aMvdd

- NEH3MYHE
BRRCENESE

B. distachyon

O. sativa

100 1

754
50 1
251

suiejo4d pajoipaud o,

0

100 1

754

50

25

lII

0

- Houn

- VOOL

F HIMVYIN

L E<._.m®_~mc_\:m

L N._.<m_I®_~@C_‘:m
L m<._.mQO__.mom

L N._.<m_IQO__m0m
L <ZE&OO

| EQOEQGO

- ed3aMvyd
BASEENSTE!
BRRRR S ENIT

L oy

L vDOL

F HINVIN

- HviSanbuing

L N._.<w_I®_H@C_b®
L r_<._.wao__mow

| ¢LVSIHdojleog
L <Zmn_oo

| c_m:o‘_an_OO

- ed3aMvyg

- YNEHIMVHE

B ENI R

25

D. melanogaster D. yakuba | | D. pseudoobscura
100 1
Reference protein coverage
by method type
275 B BRAKER: = 80%
% BRAKER: < 80%
a B CGP: =80%
) CGP: < 80%
o 50
3] B assembler: =80%
3 assembler: < 80%
a B VMAKER: =80%
2 25 MAKER: < 80%
M liftover: =80%
liftover: < 80%
0
SERP§ZCEICIEST SZREZLEICLEESE SIRSEICEICEIESS
Srd S8n 202005 Exl 8n B020X0EF Eqxl S8a S0 0X0OF
CUXa 0 ISILIF CuXa o ISILIF Fu¥a g IsTILIF
L Sc08225%= ULxxToc 0 3228B= ixIoco2228%5=
x<Io " =8¢ <L -=28Dc Y <I5"=8Bc
<oc® T3 EE <cc® S3EE <c® SHEE
C o B ED C o B ED T o BUED

Figure S5. Blastp hit frequency by coverage of predicted proteins to NCBI
proteins for (A) vertebrates, (B) plants, and (C) dipterans.

26

40-

% predicted proteins blastp to NCBI

20-

D. melanogaster -

D. pseudoobscura -

D. yakuba -

|©

A. thaliana -
A. lyrata -
B. oleracea -

@) BRAKE Iqprotein

© BRAKERgna

@® BRAKERS3

C. rubella -
Z. mays-
O. sativa -

Q@ CG Pprotein

S. italica -

O Scallopyysate

G. gallus- @

B. distachyon -
A. platyrhynchos -

(@) ScallopSTAR
(@) StringtieH|3AT2

Q@ StringtieSTAR

@
<

C. japonica - ®

©

M. mulatta -
C. familiaris -

H. sapiens -

MAKER

TOGA

Liftoff

Figure S6. By species and method, percentage of predicted proteins with
BLASTP hit to NCBI proteins of species in taxonomic group. Within each
taxonomic group, species are ordered from left to right in order of increasing
divergence from the reference species.

27

(@)

M. musculus -

Proteome compleasm score

Proteome compleasm score

1.0

0.8 1

0.6 1

044 .~

1.0 1

0.9 1

o
S

o©
3

o
o

0.51

&
A 2 %
(=)
(=)
A
A
0.4 0.6 08 1.0

Transcriptome compleasm score

[m]

v

4

0.6 0.8 1.0
Transcriptome compleasm score

28

Method

@ © 0@ ® @ O 06 @ @ 0O

BRAKER2 (P)
BRAKER1 (P)
BRAKERS (P)
CG Pprotein (P)
CGPgna (P)
Scallopyisat2
Scallopstar
Stringtieyisate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

Species

@)
[m]
A

D. melanogaster
D. yakuba
D. pseudoobscura

Method

@ © 0@ @0 0@ @ 0O

BRAKER?2 (P)
BRAKER1 (P)
BRAKERS (P)
CGPprotein (P)
CGPgna (P)
Scallopnisatz
Scallopstar
Stringtieyisate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

Species

o

O
A
v

A. thaliana
A. lyrata

C. rubella
B. oleracea

o
o

Proteome compleasm score
o
(o)

©
~
!

'] Method
4

& & o BRAKER2(P)

BRAKER1 (P)
BRAKERS3 (P)
CG‘Pprotein (P)
CGPgna (P)
Scallopyisat2
Scallopstar
Stringtieyisate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

@ © 0O © @O0 @ @ O

Species
Q' O G.gallus
’ O C. japonica

A.' A\ A. platyrhynchos

Proteome compleasm score

0.4 0.6 0.8 1.0
Transcriptome compleasm score

" Method
f BRAKER?2 (P)

BRAKER1 (P)
BRAKERS3 (P)
CG‘F)prc:.tein (P)
CGPgya (P)
Scallopnisatz
Scallopstar
Stringtiesate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

@ © 0O @ @0 06 @ @ 0O

Species
O Z mays
N O S ijtalica
A itali
N A 0. sativa
\Y4

V B. distachyon

0.4 0.6 0.8 10
Transcriptome compleasm score

29

1.0 -i. Method
BRAKER?2 (P)

'f BRAKER1 (P)

) BRAKERS (P)
V CG‘Pprotein (P)
. CGPgna (P)
Scalloppisat2
Scallopstar
Stringtieysate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

0.9 1

@,

0.8 1

@

0.7 1 v

Sp.
Oe
@ © O @@ OO0 @ @ OO0

Proteome compleasm score

A Species
0.6 1 .
O" O H. sapiens
) O M. mulatta
A M. musculus
v

C. familiaris

0.5-,§
05 06 07 08 09 1.0
Transcriptome compleasm score

Figure S7. Correlations between proteome and transcriptome compleasm
scores for (A) dipterans, (B) rosids, (C) birds, (D) monocots, and (E) mammals.

30

missing BUSCOs

missing BUSCOs

0-
1 1 1
%‘é& é‘@ %/\m 5
Q® \QQ . Q,@ R
O > N . (\q
(& () . \(\Q \S\
% S S

31

Missingness type
Proteome and transcriptome
. False negative (FN)

. Incorrect predicted ORF
L]
H

FN and incorrect ORF
Other

Missingness type
Proteome and transcriptome
. False negative (FN)

. Incorrect predicted ORF
L]
H

FN and incorrect ORF
Other

1000 -

500 -

missing BUSCOs

0-
1 1 1
%‘;\q’ é\‘g\ %/\m S
Q‘» \OQ . Q;» g
© > N . (\Q
0((} o) \(\Q S
2 0 o

missing BUSCOs

32

Missingness type

Proteome and transcriptome
. False negative (FN)
. Incorrect predicted ORF
. FN and incorrect ORF
N

Other

Missingness type

Proteome and transcriptome
. False negative (FN)

Incorrect predicted ORF
FN and incorrect ORF
Other

2000 -

1500 -

missing BUSCOs
S
8

500 -
O -

1

&
v
&
(b\.\O
%0

Missingness type

Proteome and transcriptome
. False negative (FN)
. Incorrect predicted ORF
. FN and incorrect ORF
H

Other

Figure S8. Sources of BUSCO missingness in RNA-seq assembler proteomes
for (A) D. melanogaster, (B) A. thaliana, (C) G. gallus, (D) Z. mays, and (E) H.

sapiens.

33

0.6 1

RNAg¢q alignment rate to CDS

0.4 1

()
I.& ® %l
0
% *%s ® e
% o3 @
%8 o°
Q (0}
(0X5) ®
o (gg @] @ % ‘Q) &(X‘
O‘ (@) ® ‘QI % X
(©) (@) >
x |° S o °o[28 = oo % ®
g‘ e
& 0° |x o © e
(ON©) 0] (&)
° °© oo | o
e® 0] 8 O
. © © © T « © ® © © < o © 0 0 © P
£ § 3 § 8T 3z § 8 £ £ g 2 £ £ 5 5 % %
I\ x 3 = = Q © g 3 [\ S [\ S &) 3. = I3 =
> T 2 IS 3 S 5 - = ® G > S IS S 2 g
Q = §) s < X = N ; : I : & > ® S 3
S . S » O @ () = £ . S
T Q % < O . S R N T s g -
IS 3 Q . O 5 S ¢
g 3 @Q 3
Q < :
3 <
O BRAKER2 (P) @ CGPprotein (PF) @ Scallopstar O MAKER (P)
O BRAKER1 (P) o CGPRNA (P) Q@ StringtieH|SAT2 O© TOGA (P)
@ BRAKER3 (P) (@) SCa"OpH|3AT2 Q StringtieSTAR @ Liftoff

Figure S9. RNA-seq alignment rate to proteomes (i.e. CDS sequences).
Species are ordered from left to right in order of increasing divergence from the
reference species. Xs indicate the alignment rate to CDS of the NCBI

annotation.

34

RNAscq alignment rate: annotation data

D. melanogaster A. thaliana
(&}

0.75-
0.50 -

©)
0.25-

G. gallus H. sapiens
0.75- ®
0.50-
0.25-
025 050 075 025 050 075

RNAseq alignment rate: test data

0.25

Z. mays

0.50

0.75

Method

o

@ © O @6 © © O 0 @ @ O

BRAKER2 (P)
BRAKER1 (P)
BRAKERS (P)
CGPyotein (P)
CGPgna (P)
Scallopyysat2
Scallopsrar
Stringtiensate
Stringtiestar
MAKER (P)
TOGA (P)
Liftoff

Figure S10. Correlations between RNA-seq alignment rates to annotations for
samples used to generate annotations, versus a separate set of test samples

that were not used in generating annotations.

35

ke ‘
© °
S
(@) [J
@)
(_I) [}
C 3-
|_
2 o
8 ® Method
®

< ® ® Scallopysarz
o
'-lg . Y .Sca”OpSTAR
(B 1 °® ® Stringtieysato
(@) 2- } 4 ® + ® [] StringtieSTAR
O ® H .
] o ®) %
o °® °® ®
=) E
) ® []
i®)]
3 []
©
o] ®
o
S
O ;30 NS SN U . RUUINS ENURN NUUNON FS{N UNON UG MO UVN{O0N USROS YOS NN SN S

8 8§ 8§ T & § S 2 8 S8 8 e g e s

? 3 3 8 8 ¢ 8 ¥ E = 5T £ 8 T 8 S

g%ﬁ%b‘E%E%E%‘&EOESEg

Q T e = X S ©

SE38 <S8 iNGufos 88 E g

T 3§ O < . O 3 S 5 T S &

T S @) 5 O O =

g 2 Q Q

a <

Q

Figure S11. Ratios of the ratio of the median predicted UTR length/median predicted CDS
length for RNA-seq assemblers over that for NCBI protein coding transcripts. No clear increase
is observed for the most complete and curated annotations (H. sapiens, D. melanogaster, G.
gallus, Z. mays, A. thaliana) relative to other genomes, indicating that the filtering out of cases
of transcriptional readthrough (of the sort that NCBI will filter out for high quality annotations)
does not explain the reduction in alignment rates for RNA-seq assemblers when UTRs are not

included.

36

Supplemental Results S1: Support for using NCBI as truth set for calculation of
intergenic false positive rate for predicted protein-coding genes

We assume that predictions that are specific to a particular class of annotation method (i.e.
CGP, BRAKER, StringTie+TransDecoder, Scallop+TransDecoder, liftover, and MAKER) are
more likely to be false positives than those that overlap across multiple classes of methods.
Thus, if the “unique-to-method class” gene prediction frequency for our reference species (and
M. musculus) is highly correlated with the class-level false positive rate, we would take this as
evidence that the intergenic false positive rate calculated for individual methods relative to the
NCBI annotation is a good approximation to the real false positive rate. Consistent with our
expectations, the percent of genes unique to a method class was highly correlated with the
percentage of intergenic gene predictions for that class (Pearson’s p=0.975, p=2.2x 10-16;
Supplemental Fig. S4).

Supplemental Results S2: transcriptome RNA-seq alignment rate, training vs. test
data

Training and test data alignment rates were strongly correlated (Supplemental Fig. S10). For
RNA-seq assemblers, for four of five reference species there were modest reductions in
alignment rate with test data compared to the data used to assemble transcripts, but in three of
five species similar alignment rate differences were also observed for other methods including
those that didn’t use RNA-seq data (Supplemental Fig. S10).

37

