k-mer manifold Approximation and Projection (KMAP)
algorithm

(Supplementary Note 3)

Chengbo Fu, Lu Cheng
February 7, 2025

Contents

1 Introduction 1
2 Input and output 2
3 Loss function 2
4 Distance calculation 3
5 Inference algorithm 4

1 Introduction

Given a set of k-mers, we would like to visualize them in a 2 dimensional (2D) space to illustrate its
structure. As we know, k-mers live in the k-mer manifold (Supplementary Note 1), which is a high
dimensional non-euclidean space. Projecting k-mers in this high dimensional space requires a proper
understanding of the k-mer manifold.

A popular method for project high-dimensional data to low-dimensional space is UMAP (Uniform
Manifold Approximation and Projection), which is used in various scenarios. However, UMAP has
difficulties in visualizing k-mers. The fundamental hypothesis of UMAP is that the high-dimensional
data lives in a uniform space and the un-uniformality comes from the metric. For each data point,
UMAP tries to scale the distances from their neighbours such that closer points are pushed away and
distant points are pulled closer. However, this hypothesis contradicts with our goal in the sense that
we would like to distinguish motif k-mers with random k-mers. The discreteness of the Hamming
distance between k-mers, as well as redundancy of identical k-mers, poses challenges in the UMAP
optimization.

Here we present the KMAP algorithm (k-mer Manifold Approximation and Projection) for visu-
alizing k-mers in 2D, which is an extension of the UMAP algorithm. KMAP has made the following
improvements to address the aforementioned challenges: (1) a global distance metric to depict the
whole k-mer manifold (2) distance smoothing to pull similar points closer and handle distance dis-
creteness (3) logistic transformation of distance to repulse distant k-mers (4) a diffusion term to solve
the gradient exploding problem.

The output of KMAP is a 2D visualization of k-mers, where each point represent a k-mer. The
inner part of the visualization are motif k-mers, while the outer part are random k-mers. Figure 1
shows the visualization results of both KMAP and UMAP. It can be seen that random k-mers are
grouped into one cluster in UMAP. UMAP fails to converge after a few rounds of optimization due to
gradient exploding.



as .
" Cluster ", y Cluster
-~ '.T . Matif " Mot
— .#. . Rarsdom - Random
. ” . . .
J ” .
UMAP KMAP

Figure 1: Visualization results of UMAP and KMAP on HT-SELEX data of transcription factor
NFKB2. Each dot represents a k-mer. The motif k-mers are scattered around in UMAP due to
gradient exploding. KMAP captures the main motif, as well as a minor motif right below the main
motif.

2 Input and output

The input of KMAP is a list of k-mers denoted by X = (21,22, - ,xn), where x; could equal to ;
for i # j. In the supervised sampling case, we also have the labels of the input k-mers, but they are
only used for coloring purposes in the final visualization.

The idea of KMAP is to project k-mers living in the k-mer manifold to low dimensional embeddings,
which depicts important information of the k-mer manifold. KMAP projects each k-mer x; to a 2D
embedding w; = (wjp, w;1). We denote the low dimensional embeddings as W = (w1, ws, -+ ,wy),
which is the output of KMAP.

3 Loss function

In the projection, we would like to keep the similarities between all k-mer pairs in the low dimensional
space. If x; and x; are similar, we would like their projections w; and w; to be close in the low
dimensional space. On the contrary, we would like w; and w; to be distant when x; and x; are
dissimilar. To quantify the similarity of x; and «;, we could use the following high dimensional
similarity probability
—d(x;. T
iz zi), )
202 ’
where the distance function d(-) and scaling parameter o is set to 0.5.
The low dimensional similarity probability is given by

bij = 63329(

1
L [wi — w2

(2)

qij

Given the similarity matrices P and @, we could evaluate the goodness of projecting X to W by
the following loss function:

- 1 — s
Lxmap = Y Y pij log 22 + (1 - pi;) log M’ (3)
il Tij (1 —qi5)



where i,5 € {1,2,--- ,N} and ¢ # j. This loss function is the same as UMAP, which is the cross
entropy between P and (). The loss function gets its minimum value when p;; = ¢;;. The first term
pulls similar k-mers together, while the second term pushes dissimilar k-mers away.

4 Distance calculation

Due to the intrinsic difference between the k-mer manifold and the Euclidean space (Sec. 6.1 in
Supplmentary Note 1), it is not possible to pe rfectly map a k-mer to the 2D Euclidean space. The
major problem is that the distances between k-mers within a Hamming ball are generally larger than
that of a circle in the Euclidean space. Here we use a distance smoothing based on 20 nearest neighbours
to mitigate this problem.

For each k-mer x;, we use IN; to denote its 20 nearest neighbours based on Hamming distance. The
smoothed distance between x; and x; is given by

1
»li) = T A1 mson), 4
hlwew) = TR, 2, 2 Mo e W

where s, and s, are one of the 20 nearest neighbours of x; and x;, respectively. dg(-) denotes the
Hamming distance function.

Average Distance Between Motif Classes Average Distance Between Motif Classes

Motifl

= o
Motifl

Motif2
Motif2

Class
Motif3
Class

Motif3

Random

- o
Random

Motif3
Class Class

Initial distance Smoothed distance

Figure 2: Smoothed k-mer distance on a simulated data (k = 8). The simulated data contains 3
motifs (500 k-mers each) and 1000 random k-mers. Each element in the heatmap shows the average
distance across all pairs between different classes. It can be seen that the average distances within
motif classes has drop from ~1.8 to ~1.3 after smoothing. It can also be seen that the average distance
between two random k-mers is ~ 6, which is close to its theoretical expectation %k =6 (Remark 1.1
in Supplementary Note 1).

Fig. 2 shows that the smoothed distances in a simulated data. Compared with the original Ham-
ming distance, the average distances between k-mers within the Hamming ball (motif) has decreased,
which better reflect the similarity in the Euclidean space. The smoothing function (Eq. 4) pulls motif
k-mers closer.

After that, we perform a logistic transformation of the smoothed distance to enlarge the gap
between a random Hamming ball and its outer orbits by the following function

16 16
flz) = 1+ e @20 1+ e (02k—02)(—k/2)’ (5)

where k is the length of input k-mer. The transformed distance ranges between 0 and 16. v = 0.2k—0.2
controls the curvature of the transformation. x¢ = k/2 is the change point parameter. g is the rough



boundary between Hamming ball and the outer orbits. According to Remark 1.1 in Supplementary
Note 1, the expected distance between two random k-mers is %l@ i.e. a k-mer in the Hamming ball
and a k-mer in the outer orbits. Hence, we choose xy = g as the rough boundary. The logistic
transformation (Eq. 5) has the effect of repulsing motif k-mers from random k-mers.

In the end, we get the final distance

d(zi, ;) = f(do(xi,z;)) Vi, j€{1,2,---N} (6)

5 Inference algorithm

Here we want to optimize the values of W such that the loss function Lxmap (Eq. 3) reaches its
minimum. We use gradient descent algorithm to do this. The gradient is given by the following
derivations. First we isolate all terms that depend on W from the loss function, i.e. g;;.

(1-— pi;)
(1 —aij)

- Z Z —pijlog qij — (1 — pij) log (1 — gi;) + const,
i

Dij
L= ZZPi;‘ loquj + (1 = pij)log
L (7)

where i # j and const is a constant that depend on p;;. Note that p;; is not a function of any w;, so
it can be treated as a constant here.
Next we derive the gradient of ¢;; w.r.t. w;.

1
9gi; _ O —wy )

ow; ow;

_ 1 . Owi —wy|?)

(1 + [Jwi — w,[[?)? dw;
_ —1 CO((wi —wy)" - (w; — wy))

(1 + [Jwi — w,[[*)? dw;
_ -1 I((w; — wy)) I((w; — w;)) . 8
o (1+||wifwj”2)2' ( ow, )'(wi—wj)-FT-(wi—wj)

-1
= o w1 e I ()
—2(w; — w;)

(14 [[w; — w;[?)?

= —2(w; — w;)q;;

gi’ii, the gradient of the loss function L w.r.t. w; is given by

Given the gradient of

T
IThe rule of derivative of the dot Product % = 6(9(—:)) “v 4 % - u, where w and v are N X 1 vectors.



1 9g; (1-—piy) 9qij
i — - - -7 . 1.
8w2 Z Z “Pig qij 8wz 1-— qij awl

ng pij) 8%’;’
=2 —|— — . only keep terms relevant w.r.t. w;
Z [ dij (1- qu)} ow; (only P )

_ 22 [—pz‘j +Pijdi; + dij — qz‘jpij] 0qi;
aij (1 = qi;) ow;

qij — Pij (9(1”
=2
Z sz 1 - qu ow;

dij — Pi
= ZZ ” 99w, — w;)q;; (Eq. 8)
q” qw

. 2‘]2; Dij — qz])
22 (1—q) (w; — wy)

"
—42 Pij = @) Ty (Wi = w)
= 4ij)

1
_42 Pij — Qij m(wi_Wj)
i J

Now have the gradlent of the loss function. We could use the gradient descent algorithm to optimize
w;. However, we note that the denominator of the middle term m in Eq. 9 can be zero in the
i j
optimization, which causes gradient exploding. Therefore, we added a diffusion term (Gaussian noise)
to w; and w; in the optimization when they are close.
w; +e€ if ||jw; —w;| <0.1
wj:{ﬁ s — wj | < w0

wj otherwise

where € = (€, €1) and €g, €1 ~ N(0,0.012) are two independent Gaussian samples.

The full KMAP visualization algorithm is provided in Alg. 1, which is a typical gradient descent
algorithm. After obtaining the low dimensional embeddings W, we could produce the 2D plot and
color k-mers according to provided labels or perform further clustering to color the k-mers.



Algorithm 1 KMAP Visualization algorithm

Input: k-mer list X = (1,2, -+ ,xn), learning rate n = 0.01, iterations T = 2500
Output: 2D embeddings W = (w1, ws, -+ ,wy)
1: Calculate the smoothed distance matrix D from X according to Eq. 6
2: Calculate the high dimensional similarity probability matrix P from D according to Eq. 1
3: Initialize W by sampling w; from standard normal distribution, i.e. w;g,w;; ~ N(0,12) for i =
{1,2,--- N}
4: fort=1,2,---,T do

5. Calculate the low dimensional similarity probability matrix @ from W according to Eq. 2
6:  Calculate the current loss Ly given P and @) according to Eq. 3

7. fori=1,2,---,N do

8: for j=1,2,---,N do

9: if ¢ # j and w; = w; then

10: Update w; by adding the diffusion terms according to Eq. 10

11: end if

12: end for

13: Calculate the loss function gradient B%Lu w.r.t. w; given P, Q, W according to Eq. 9
14: Update w; by w; = w; — 77(;%71

15:  end for

16:  Calculate the low dimensional similarity probability matrix @ from updated W according to Eq.
2

17:  Calculate the new loss Ly, given P and @ according to Eq. 3

18:  if |Lpew — Leurr| < 1078 Leyrr| then

19: break

20: end if

21: Lcurr — Lnew
22: end for

23: return W




	Introduction
	Input and output
	Loss function
	Distance calculation
	Inference algorithm

