
k -mer manifold Approximation and Projection (KMAP)

algorithm

(Supplementary Note 3)

Chengbo Fu, Lu Cheng

February 7, 2025

Contents

1 Introduction 1

2 Input and output 2

3 Loss function 2

4 Distance calculation 3

5 Inference algorithm 4

1 Introduction

Given a set of k -mers, we would like to visualize them in a 2 dimensional (2D) space to illustrate its
structure. As we know, k -mers live in the k -mer manifold (Supplementary Note 1), which is a high
dimensional non-euclidean space. Projecting k -mers in this high dimensional space requires a proper
understanding of the k -mer manifold.

A popular method for project high-dimensional data to low-dimensional space is UMAP (Uniform
Manifold Approximation and Projection), which is used in various scenarios. However, UMAP has
difficulties in visualizing k -mers. The fundamental hypothesis of UMAP is that the high-dimensional
data lives in a uniform space and the un-uniformality comes from the metric. For each data point,
UMAP tries to scale the distances from their neighbours such that closer points are pushed away and
distant points are pulled closer. However, this hypothesis contradicts with our goal in the sense that
we would like to distinguish motif k -mers with random k -mers. The discreteness of the Hamming
distance between k -mers, as well as redundancy of identical k -mers, poses challenges in the UMAP
optimization.

Here we present the KMAP algorithm (k -mer Manifold Approximation and Projection) for visu-
alizing k -mers in 2D, which is an extension of the UMAP algorithm. KMAP has made the following
improvements to address the aforementioned challenges: (1) a global distance metric to depict the
whole k -mer manifold (2) distance smoothing to pull similar points closer and handle distance dis-
creteness (3) logistic transformation of distance to repulse distant k -mers (4) a diffusion term to solve
the gradient exploding problem.

The output of KMAP is a 2D visualization of k -mers, where each point represent a k -mer. The
inner part of the visualization are motif k -mers, while the outer part are random k -mers. Figure 1
shows the visualization results of both KMAP and UMAP. It can be seen that random k -mers are
grouped into one cluster in UMAP. UMAP fails to converge after a few rounds of optimization due to
gradient exploding.

1

Figure 1: Visualization results of UMAP and KMAP on HT-SELEX data of transcription factor
NFKB2. Each dot represents a k -mer. The motif k -mers are scattered around in UMAP due to
gradient exploding. KMAP captures the main motif, as well as a minor motif right below the main
motif.

2 Input and output

The input of KMAP is a list of k -mers denoted by X = (x1,x2, · · · ,xN), where xi could equal to xj

for i ̸= j. In the supervised sampling case, we also have the labels of the input k -mers, but they are
only used for coloring purposes in the final visualization.

The idea of KMAP is to project k -mers living in the k -mer manifold to low dimensional embeddings,
which depicts important information of the k -mer manifold. KMAP projects each k -mer xi to a 2D
embedding wi = (wi0, wi1). We denote the low dimensional embeddings as W = (w1,w2, · · · ,wN),
which is the output of KMAP.

3 Loss function

In the projection, we would like to keep the similarities between all k -mer pairs in the low dimensional
space. If xi and xj are similar, we would like their projections wi and wj to be close in the low
dimensional space. On the contrary, we would like wi and wj to be distant when xi and xj are
dissimilar. To quantify the similarity of xi and xj , we could use the following high dimensional
similarity probability

pij = exp(
−d(xi,xj)

2σ2
), (1)

where the distance function d(·) and scaling parameter σ is set to 0.5.
The low dimensional similarity probability is given by

qij =
1

1 + ||wi −wj ||2
(2)

Given the similarity matrices P and Q, we could evaluate the goodness of projecting X to W by
the following loss function:

LKMAP =
∑
i

∑
j

pij log
pij
qij

+ (1− pij) log
(1− pij)

(1− qij)
, (3)

2

where i, j ∈ {1, 2, · · · , N} and i ̸= j. This loss function is the same as UMAP, which is the cross
entropy between P and Q. The loss function gets its minimum value when pij = qij . The first term
pulls similar k -mers together, while the second term pushes dissimilar k -mers away.

4 Distance calculation

Due to the intrinsic difference between the k -mer manifold and the Euclidean space (Sec. 6.1 in
Supplmentary Note 1), it is not possible to pe rfectly map a k -mer to the 2D Euclidean space. The
major problem is that the distances between k -mers within a Hamming ball are generally larger than
that of a circle in the Euclidean space. Here we use a distance smoothing based on 20 nearest neighbours
to mitigate this problem.

For each k -mer xi, we use Ni to denote its 20 nearest neighbours based on Hamming distance. The
smoothed distance between xi and xj is given by

d0(xi,xj) =
1

|Ni||Nj |
∑

sm∈Ni

∑
sn∈Nj

dH(sm, sn), (4)

where sm and sn are one of the 20 nearest neighbours of xi and xj , respectively. dH(·) denotes the
Hamming distance function.

Figure 2: Smoothed k -mer distance on a simulated data (k = 8). The simulated data contains 3
motifs (500 k -mers each) and 1000 random k -mers. Each element in the heatmap shows the average
distance across all pairs between different classes. It can be seen that the average distances within
motif classes has drop from ∼1.8 to ∼1.3 after smoothing. It can also be seen that the average distance
between two random k -mers is ∼ 6, which is close to its theoretical expectation 3

4k = 6 (Remark 1.1
in Supplementary Note 1).

Fig. 2 shows that the smoothed distances in a simulated data. Compared with the original Ham-
ming distance, the average distances between k -mers within the Hamming ball (motif) has decreased,
which better reflect the similarity in the Euclidean space. The smoothing function (Eq. 4) pulls motif
k -mers closer.

After that, we perform a logistic transformation of the smoothed distance to enlarge the gap
between a random Hamming ball and its outer orbits by the following function

f(x) =
16

1 + e−γ(x−x0)
=

16

1 + e−(0.2k−0.2)(x−k/2)
, (5)

where k is the length of input k -mer. The transformed distance ranges between 0 and 16. γ = 0.2k−0.2
controls the curvature of the transformation. x0 = k/2 is the change point parameter. x0 is the rough

3

boundary between Hamming ball and the outer orbits. According to Remark 1.1 in Supplementary
Note 1, the expected distance between two random k -mers is 3

4k, i.e. a k -mer in the Hamming ball

and a k -mer in the outer orbits. Hence, we choose x0 = k
2 as the rough boundary. The logistic

transformation (Eq. 5) has the effect of repulsing motif k -mers from random k -mers.
In the end, we get the final distance

d(xi,xj) = f(d0(xi,xj)) ∀i, j ∈ {1, 2, · · ·N} (6)

5 Inference algorithm

Here we want to optimize the values of W such that the loss function LKMAP (Eq. 3) reaches its
minimum. We use gradient descent algorithm to do this. The gradient is given by the following
derivations. First we isolate all terms that depend on W from the loss function, i.e. qij .

L =
∑
i

∑
j

pij log
pij
qij

+ (1− pij) log
(1− pi;)

(1− qij)

=
∑
i

∑
j

−pij log qij − (1− pij) log (1− qij) + const,
(7)

where i ̸= j and const is a constant that depend on pij . Note that pij is not a function of any wi, so
it can be treated as a constant here.

Next we derive the gradient of qij w.r.t. wi.

∂qij
∂wi

=
∂(1

1+||wi−wj ||2)

∂wi

=
1

(1 + ||wi −wj ||2)2
· −1 · ∂(||wi −wj ||2)

∂wi

=
−1

(1 + ||wi −wj ||2)2
· ∂((wi −wj)

T · (wi −wj))

∂wi

=
−1

(1 + ||wi −wj ||2)2
·
[
(
∂((wi −wj))

∂wi
) · (wi −wj) +

∂((wi −wj))

∂wi
· (wi −wj)

]
1

=
−1

(1 + ||wi −wj ||2)2
·
[
IT · (wi −wj) + IT · (wi −wj)

]
=

−2(wi −wj)

(1 + ||wi −wj ||2)2

= −2(wi −wj)q
2
ij

(8)

Given the gradient of
∂qij
∂wi

, the gradient of the loss function L w.r.t. wi is given by

1The rule of derivative of the dot Product
∂(uT v)

∂w
=

∂(u)
∂w

· v +
∂(v)
∂w

· u, where u and v are N × 1 vectors.

4

∂L

∂wi
=

∑
i

∑
j

−pij ·
1

qij
· ∂qij
∂wi

− (1− pij)

1− qij
· −1 · ∂qij

∂wi

= 2
∑
j

[
−pij
qij

+
(1− pij)

(1− qij)

]
· ∂qij
∂wi

(only keep terms relevant w.r.t. wi)

= 2
∑
j

[
−pij + pijqij + qij − qijpij

qij (1− qij)

]
· ∂qij
∂wi

= 2
∑
j

qij − pij
qij (1− qij)

· ∂qij
∂wi

= 2
∑
j

qij − pij
qij (1− qij)

· −2(wi −wj)q
2
ij (Eq. 8)

= 2
∑
j

2qij(pij − qij)

(1− qij)
· (wi −wj)

= 4
∑
j

(pij − qij)
qij

(1− qij)
(wi −wj)

= 4
∑
j

(pij − qij)
1

∥wi −wj∥2
(wi −wj)

(9)

Now have the gradient of the loss function. We could use the gradient descent algorithm to optimize
wi. However, we note that the denominator of the middle term 1

∥wi−wj∥2 in Eq. 9 can be zero in the

optimization, which causes gradient exploding. Therefore, we added a diffusion term (Gaussian noise)
to wi and wj in the optimization when they are close.

wj =

{
wj + ϵ if ∥wi −wj∥ ≤ 0.1

wj otherwise
(10)

where ϵ = (ϵ0, ϵ1) and ϵ0, ϵ1 ∼ N(0, 0.012) are two independent Gaussian samples.
The full KMAP visualization algorithm is provided in Alg. 1, which is a typical gradient descent

algorithm. After obtaining the low dimensional embeddings W , we could produce the 2D plot and
color k -mers according to provided labels or perform further clustering to color the k -mers.

5

Algorithm 1 KMAP Visualization algorithm

Input: k -mer list X = (x1,x2, · · · ,xN), learning rate η = 0.01, iterations T = 2500
Output: 2D embeddings W = (w1,w2, · · · ,wN)
1: Calculate the smoothed distance matrix D from X according to Eq. 6
2: Calculate the high dimensional similarity probability matrix P from D according to Eq. 1
3: Initialize W by sampling wi from standard normal distribution, i.e. wi0, wi1 ∼ N(0, 12) for i =
{1, 2, · · · , N}

4: for t = 1, 2, · · · , T do
5: Calculate the low dimensional similarity probability matrix Q from W according to Eq. 2
6: Calculate the current loss Lcurr given P and Q according to Eq. 3
7: for i = 1, 2, · · · , N do
8: for j = 1, 2, · · · , N do
9: if i ̸= j and wj = wi then

10: Update wj by adding the diffusion terms according to Eq. 10
11: end if
12: end for
13: Calculate the loss function gradient ∂L

∂wi
w.r.t. wi given P , Q, W according to Eq. 9

14: Update wi by wi = wi − η ∂L
∂wi

15: end for
16: Calculate the low dimensional similarity probability matrix Q from updated W according to Eq.

2
17: Calculate the new loss Lnew given P and Q according to Eq. 3
18: if |Lnew − Lcurr| < 10−8|Lcurr| then
19: break
20: end if
21: Lcurr ← Lnew

22: end for
23: return W

6

	Introduction
	Input and output
	Loss function
	Distance calculation
	Inference algorithm

