Supplemental Material for

Fast sequence alignment for centromere with RaMA
Pinglu Zhang!2, Yanming WeiZ%3, Qinzhong Tian'2, Quan Zou!2, Yansu Wang®2*

1. Institute of Fundamental and Frontier Sciences, University of Electronic Science and
Technology of China, Chengdu, China

2. Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology
of China, Quzhou, China

3. School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, China

*Corresponding author: wangyansu@uestc.edu.cn

Supplemental Method

Parameter Settings for Different Alignment Methods

We utilized four methods—minimap2 [1], wavefront alignment (WFA) [2],
UniAligner [3], and RaMA—to align the centromere sequences. Below, we provide
a detailed explanation of the parameter settings for each method.

For the first method minimap2 (git commit hash
0cc3cdca27f050fb80a19c¢90d25ecc6ab0b0907b), which is available at

https://github.com/lh3 /minimapZ2, we selected the same parameter settings used

in previous studies:

minimap2 -a -1 15G -K 8G -t thread_num -ax asm20 --secondary=no --egx -s 2500
ref.fasta query.fasta > output.sam

The authors of previous study[4] selected specific minimap2 parameters to
optimize alignment for repetitive and structurally divergent regions in diploid
human genomes. They used *-1 15G" for additional memory and "-K 8G" to allow
loading 8 Gb of sequence at once, accommodating the full genome and preventing
alignment bottlenecks. The "-ax asm20" option was chosen to align sequences with
up to 20% divergence, suitable for variable a-satellite HOR structures. They used
“--secondary=no’ to prevent multi-mapping, ensuring each query aligns only once,

and "--egx to parse CIGAR strings for calculating mean sequence identity. Finally,
1

mailto:wangyansu@uestc.edu.cn
https://github.com/lh3/minimap2

they set -s 2500" as the minimal alignment score to avoid spurious alignments
while retaining accurate centromere alignments, following tests of various values.
After obtaining the SAM alignment results, we used the following samtools[5]

command to retain only the primary alignments:

samtools view -h -F 256 -F 2048 output.sam -0 output_primary.sam

The wavefront alignment algorithm (git commit hash
cf3eb92dd0aa9bf067d5488a606d8c91173e74eb), which is available at
https://github.com/smarco/WFA2-lib, is a recently proposed tool for pairwise
sequence alignment that operates in O(ns) time, where n is the read length and s
is the alignment score. By leveraging homologous regions between sequences, it
accelerates the alignment process, making it significantly faster than traditional
dynamic programming methods, particularly for long and noisy reads. We used a
2-piece affine gap cost with the following scoring settings: match = 0, mismatch =
3, gap_openl = 4, gap_extensionl = 2, gap_open2 = 12, and gap_extension2 = 1,
aiming to minimize the total score. Here, gap_openl and gap_extension1 are the
penalties for short gaps, while gap_open2 and gap_extension2 are the penalties for
long gaps. WFA is a deterministic algorithm, and we did not employ any
optimization strategies, ensuring that the solution obtained is the optimal solution
of dynamic programming. In practical use, since RaMA incorporates WFA, we
configured RaMA to bypass anchor finding and directly use WFA for centromere
alignment, obtaining the WFA results directly.

For wfmash [6], we performed the alignment using its default parameters,
with the following command:
wfmash ref.fasta query.fasta > output.paf

For UniAligner [3], a parameter-free sequence alignment framework, we used

the default settings. The alignment command is as follows:

tandem_aligner --first first.fasta - -second second.fasta -o output_dir

The code for UniAligner can be found at https://github.com/seryrzu/unialigner,
with the git commit hash c5aleecab7bd17485a0fe3422684409c3e884f31.

Finally, for our work RaMA, the source code is available at

https://github.com/smarco/WFA2-lib
https://github.com/seryrzu/unialigner

https://github.com/malabz/RaMA, with the used version's git commit hash being
8661cde3eale0a4bc22d850c17321878e28f6948. RaMA was run with default
parameters, using the following alignhment command:

RaMA -r /path/to/ref fasta -q /path/to/query.fasta -o /path/to/output_dir

When invoking WFA [2], RaMA used the same 2-piece affine gap cost with the
following parameters: match = 0, mismatch = 3, gap open1 = 4, gap extensionl = 2,
gap open2 = 12, and gap extension2 = 1, with the aim of minimizing the total score.
In this scheme, gap openl and gap extensionl are the penalties for short gaps,

while gap open2 and gap extension?2 are the penalties for long gaps.

Creating Simulated Data with Regions Removed from Template

To demonstrate the capability of different methods in capturing the genetic
evolution of centromeres, we generated a set of simulated data. We used the X
chromosome centromere of CHM13 as the template. The X chromosome sequence
of CHM13 can be obtained from https://s3-us-west-2.amazonaws.com/human-
pangenomics/T2T/CHM13/assemblies/analysis_set/chm13v2.0.fa.gz, with the
centromere located at positions 57,819,763 to 60,927,195. To extract the
centromere region of the X chromosome, we used the following command:
samtools faidx chm13v2.0.fa chrX:57819763-60927195 > chrX_cen.fa
Next, we used HORmon to annotate the extracted centromere sequence. HORmon
requires monomers as a basis for annotation, which can be inferred using
HORmon's built-in monomer inference program:
monomer_inference -seq chrX_cen.fa -mon test_data/AlphaSat.fa -o chrX
We directly use the monomers inferred in the HORmon|[7], which can be obtained
from https://figshare.com/articles/dataset/HORmon/16755097/2. To start the
annotation, we use the following command:

HORmMon --seq chrX_cen.fa --mon cenX_monomers.fa --cen-id X -o chrX_res -t 12
The final HOR annotation results are recorded in the 'HORdecomposition.tsv' file

located in the ‘chrX_res’ folder. We selected two regions: 182368-547935 as

3

https://github.com/malabz/RaMA

Region 1, and 2417322-2773488 as Region 2. These regions each represent
complete HOR blocks. By removing these two regions, we obtained two sequences
for the simulated dataset. Therefore, the correct alignment CIGAR result for these

two sequences is "182368=36556811869390=356167D333939=".

Generating Non-Repetitive Sequences of Different Similarities Using

INDELible

In our study, we simulated non-repetitive sequences with varying levels of
similarity using INDELible [8]. A script was developed to generate sequences with
similarity ranges from 70% to 99%, with divergence times corresponding to each
similarity level. The control files for INDELible were configured using the TVM
nucleotide substitution model, specified state frequencies, insertion and deletion
rates, and a Lavalette indel length distribution. Specifically, the substitution model
parameters were set as b=0.01, c=0.01, d=0.04, e=0.04, and a=f=1, with state
frequencies of T=0.25, C=0.31, A=0.31, and G=0.13. Rate parameters included
pinv=0.84, alpha=1.03, and ngamcat=4. The indel model used a Lavalette
distribution with a=5 and M=50, with an insertion rate of 0.01 and a deletion rate
of 0.1 relative to a substitution rate of 1. Each sequence was simulated to a length
of 1,000,000 nucleotides. This simulation approach generated a robust dataset to

evaluate alignment methods, covering a broad spectrum of sequence similarities.

Generating Hybrid Sequence of Tandem Repeats and Non-Tandem Repeats

To explore the performance of RaMA on tandem repeat and non-tandem
repeat sequences, we used INDELible to simulate two non-repetitive sequences of
1,000,000 in length with 95% similarity, and then inserted the centromeres from
chromosomes 16 and 20 of CHM13 and CHM1 into them. For the parameters used
in INDELible, please refer to the section 'Generating Non-Repetitive Sequences of
Different Similarities Using INDELible'. We inserted the centromeres from

chromosomes 16 and 20 of CHM13 and CHM1 at positions 300,000 and 800,000,
4

respectively. The insertion of these two centromeres divided the entire sequence
into five segments. The positions and lengths of these five segments in the two
sequences are shown in the Table S6. Segment 1 spans 0-300000 in Seq1 and 0-
299983 in Seq2. Centromere 1 covers 300000-1938824 in Seql and 299983-
1868018 in Seq2. Segment 2 runs from 2238824-2738824 in Seq1 and 2168001-
2668036 in Seq2. Centromere 2 extends from 2738824-4912627 in Seql and
2668036-5431726 in Seq2. Segment 3 spans 4912627-5106497 in Seql and
5431726-5625639 in Seq2.

Comparison of RaMA and Other Methods on Non-Repetitive Sequences

One significant limitation of UniAligner is its suitability only for repetitive
sequences, as it does not align the remaining regions after rare-alignment. RaMA
addresses this issue by aligning these regions as well. We generated simulated
datasets of 1,000,000 bp with sequence similarities ranging from 75% to 99%
using INDELible [8] (see Supplemental Method). Alignments were performed
using RaMA, UniAligner, and WFA, with affine gap penalties set for WFA (match =
0, mismatch = 2, gap open = 3, gap extension = 1). Q scores of the alignment results
are shown in Fig S10. When sequence similarity is low, WFA provides the highest
alignment quality, followed by RaMA, with UniAligner performing the worst. As
similarity exceeds 83%, RaMA's alignment quality becomes consistent with or
surpasses WFA. UniAligner consistently underperforms across all similarity levels.
Notably, at 90% similarity, the Q scores of all methods approach 1, likely due to
favorable sequence characteristics. These findings suggest RaMA excels in aligning
non-repetitive sequences with moderate to high similarity, while UniAligner does
not.

We investigated UniAligner's poor alignment quality on non-repetitive
sequences by selecting sequences with 80% similarity, where the quality
difference was most pronounced. We analyzed the gaps and mismatches in the

alignment results. As shown in Fig S11, WFA's gaps and mismatches closely match

5

the true alignment, whereas UniAligner shows significantly more gaps and fewer
mismatches. This discrepancy arises from UniAligner's alignment algorithm: it
aligns indel-runs between anchor points, resulting in mismatches if the lengths are
equal, and producing deletion-runs and insertion-runs, leading to many gaps if the
lengths are unequal.

We further investigated the behavior of sparse match anchors across different
sequence similarity levels. The simulated sequences had a length of 1 million base
pairs. The relationship between sequence similarity and both the number of
sparse match anchors, as well as the total length of these anchors, is presented in
Fig S12 and Fig S13. Interestingly, as shown in Fig S12 and Fig S13, for non-
repetitive sequences, the number of anchors and the total length of anchors exhibit
opposite trends. We define anchor coverage as the ratio of the total anchor length
to the total sequence length. The variation in anchor coverage with respect to
sequence similarity is shown in Fig S14. We also performed alignments for each
chromosome's centromere using RaMA, with CHM13 as the reference and CHM1
as the query. The number of anchors, total anchor length, and anchor coverage are
summarized in Table S7. Across the centromeres of 23 chromosomes, the average
coverage is 32%, with a maximum of 76% on chromosome 19. In contrast, the
minimum coverage for non-repetitive sequences at 70% similarity is 88%. This
indicates that rare match anchors are significantly fewer in tandem repeat

sequences compared to non-repetitive sequences.

Comparison of RaMA and Other Methods on Hybrid Sequences

In chromosomes, extra tandem repeat sequences often appear interspersed
with non-tandem repeat sequences. WFA enables RaMA to handle long sequence
alignments effectively. Therefore, in this section, we explore the performance of
RaMA and UniAligner on hybrid sequences. We used RaMA and UniAligner to align
hybrid sequences, and their alignment paths are shown in Fig S15. As shown in the

Fig S15, both methods demonstrate strong boundary distinction capabilities for

6

the regions. For a given region pair, the match bases refer to the number of bases
in the query region that align to the reference in the alignment result. Coverage is
defined as the ratio of match bases to the length of the reference. We present the
alignment coverage of RaMA and UniAligner for the five regions in the Table S8.
The results show that RaMA achieves slightly higher alignment quality than
UniAligner across all five regions. This experiment demonstrates RaMA's potential
for accurately aligning hybrid sequences. In conclusion, although this experiment
does not fully showcase RaMA's performance on hybrid sequences, it offers

valuable insights into RaMA's potential for accurate alignment of these sequences.

Linear Range Minimum Query Strategy

To accelerate the range minimum query on the LCP array, we employed a
linear range minimum query algorithm based on block sparse table. In this section,
we provide a detailed explanation of this algorithm. For range minimum queries,
the sparse table [9] is a widely used algorithm, with a time complexity of O(n log
n) for its construction. However, this can be relatively slow compared to the O(n)
complexity of directly building an enhanced suffix array [10]. Therefore, we aim to
improve the sparse table to achieve O(n) construction time as well. A simple and
straightforward approach is to divide the sequence into blocks of length log n, and
use a sparse table to manage the minimum value of each block. This reduces the
construction time of the sparse table to O(n). Of course, this alone is insufficient,
as it only allows queries at the block level. To address this, additional auxiliary data
structures are needed to fully refine this approach.

For query crossing multiple blocks, we utilize two auxiliary arrays: the prefix
minimum (Pre) and suffix minimum (Sub). The prefix minimum for each element
stores the minimum value from the start of the block up to that element, while the
suffix minimum stores the minimum from the element to the end of the block.
These allow us to handle any intra-block query efficiently by simply looking up the

precomputed values in O(1) time. So when the query range spans across

7

multiple blocks, as shown in Fig S16, the strategy involves dividing the query into
three parts: the portion within the starting block, handled by the suffix minimum;
the portion within the ending block, handled by the prefix minimum; and the
portion spanning entire blocks, managed by the sparse table. The result is the
minimum of these three values, ensuring that cross-block queries are answered
efficiently in constant time after preprocessing.

To handle query within one block efficiently, we use a monotonic stack
combined with state compression, as shown in the example from Fig S16. In this
example, we are working with thearray A = [3,2,5,4, 7] and performing a query
to find the minimum value in the range [I2 = 1,72 = 2] within the same block.
We use a monotonic stack to track the minimum values. we precompute an F array,
where F[i] stores the minimum value from A[0] to A[i] using a monotonic
stack. As we traverse the block, starting with A[1] = 2, itis pushed onto the stack
because it is smaller than A[0] = 3, which was previously on top. Larger elements,
like A[0] = 3, are popped out. The remaining elements are all larger than 2, so
they are not pushed onto the stack. To further optimize, we use state compression
by encoding the stack's status into a bitmask. This means we can store the entire
monotonic stack using just a 64-bit integer. Naturally, this also implies that the
length of each block cannot exceed 64, and the length of array A cannot exceed 264.
For example, after processing A[0,2], the bitmask F[2] = 0b000010 indicates
that only A[1] = 2 remains in the stack at this point. To efficiently perform the
query for [1,2], we right-shift the bitmask by 1 bit (since I2=1), resulting in
0b000001. We then find the position of the first '1' in the shifted bitmask, which
corresponds to the index of the minimum value within the queried range. In this
case, the first '1' appears at position 0, meaning the minimum value is at index
1+0=1. Thus, the minimum value in the range [1,2] is A[1] = 2. This process allows
us to find the minimum value in constant time O(1), leveraging both the
monotonic stack and efficient bitwise operations.

In the construction process of the algorithm, four key arrays are involved: the

prefix minimum array Pre, the suffix minimum array Sub, the sparse table S, and
the compressed state array F. Both Pre and Sub store the prefix and suffix
minimum values within each block, and they are computed in O(n) time through
a single linear pass over the array, with each requiring O(n) space. The sparse
table S is built for efficient cross-block queries, which takes O(n) time for
preprocessing as it operates on the block-level minimums and stores results in
O(n) space. The compressed state array F represents the status of the
monotonic stack within each block and allows intra-block queries to be resolved
in constant time using bitwise operations. Constructing F involves a linear scan,
giving it a time complexity of O(n) and requiring only O(n) space. Therefore,
considering the construction of all these arrays involves only linear operations
relative to the size of the input, the total time complexity of the algorithm is 0(n),
and the space complexity remains O(n) as well. In the next section, "Construction
of the Enhanced Suffix Array for Subsequences," we experimentally demonstrate
that the constant factor in the construction process of this algorithm is smaller

than that of the suffix array construction algorithm.

Construction of the Enhanced Suffix Array for Subsequences

RaMA identifies rare matches through a recursive process. Initially, an
enhanced suffix array is constructed for the two input sequences, and the LCP
array is used to efficiently locate rare matches. These rare matches are then used
to partition the sequences into subsequences, which undergo the same process
iteratively until no further rare matches are found. Thus, a key challenge in
algorithm optimization lies in how to quickly construct the enhanced suffix array
for the subsequences. The most straightforward approach is to directly construct
the enhanced suffix array for each subsequence, as done in UniAligner [3]. In
practice, with the suffix array of the original sequence, we can efficiently construct
the suffix array for subsequences in a single pass using the Inverse Suffix Array

(ISA). To construct the suffix array for a subsequence using the Inverse Suffix Array

(ISA), we leverage the fact that the ISA maps the position of a suffix in the original
sequence to its rank in the suffix array. For a subsequence, we can use the ISA of
the original sequence to quickly determine the rank of each suffix within the
subsequence. Specifically, for each suffix in the subsequence, we find its rank in the
original sequence using the ISA. By sorting these ranks, we effectively build the
suffix array for the subsequence. This approach is efficient because it avoids the
need to recompute the suffix array from scratch, instead utilizing the existing
structure of the original sequence's ISA.

To construct the LCP array, each LCP value requires a range minimum query
(RMQ) on the original LCP sequence. Notably, both the construction of the suffix
array using the ISA and the RMQ-based LCP array construction can be parallelized
using multithreading to enhance performance. We implemented both the sparse
table [9] and the block sparse table and compared their construction times with
that of the enhanced suffix array [10]. We performed tests on data sizes ranging
from 1 million to 20 million, measuring the construction time ten times for each
size and taking the average. The results are presented in the Fig S17, it can be seen
that the construction time of the enhanced suffix array is slightly faster than that
of the sparse table, while the block sparse table is significantly faster than the
enhanced suffix array. For instance, when the data size reaches 20 million, the
construction time for the sparse table is 10.5 seconds, the enhanced suffix array
takes 9.7 seconds, and the block sparse table finishes in just 2.16 seconds. This
demonstrates that the constant factor for the block sparse table is much smaller
than that of the enhanced suffix array.

Using the same settings, we also compared the query times of the sparse table
and block sparse table across different data sizes with the construction time of the
enhanced suffix array. The results are shown in the Fig S18. For example, when the
data size is 20 million, the query times for the sparse table and block sparse table
are similar, at 5.34 seconds and 5.15 seconds, respectively, both significantly faster

than the 9.74 seconds required to construct the enhanced suffix array for a

10

sequence of the same length. A key advantage of querying, compared to the
construction of the enhanced suffix array, is that it can be parallelized, whereas the
latter cannot. Using a data size of 10 million as an example, the Fig S19 shows how
the total query time changes as the number of threads increases. It clearly
demonstrates that multithreading significantly optimizes the querying process.
In RaMA, the process recursively searches for rare matches to split the
sequences, followed by constructing enhanced suffix arrays for the subsequences.
However, the length of the subsequences requiring an enhanced suffix array is
unpredictable, as the same segment may be processed multiple times. To analyze
this, we used RaMA to compare the centromeres of different chromosomes from
CHM13 and CHM1, recording the ratio of subsequence length to the original
sequence length. The results, shown in the Fig S20, indicate that the average ratio
is 1.7. We used the 1.7 ratio to compare the time required by three different
strategies for constructing the enhanced suffix array for subsequences. For an
input size of N, all three strategies involve constructing the enhanced suffix array
for a sequence of length N. In the subsequent steps, an enhanced suffix array needs
to be constructed for a subsequence of length 1.7N. The three strategies are as
follows: (1) Strategy 1 directly constructs the suffix array for the subsequence. (2)
Strategy 2 constructs the block sparse table for the input data of size N, performs
1.7N queries to build the LCP array, and uses the ISA to quickly obtain the suffix
array for the subsequence. (3) Strategy 3 is the same as Strategy 2 but utilizes 16
threads to parallelize the queries. The results are shown in the Fig S21. As
observed, the single-threaded block sparse table strategy is slightly faster than the
direct construction of the enhanced suffix array, while the parallelized block
sparse table strategy is significantly faster than both. The speed of strategy 3 is
approximately twice that of strategy 1. This indicates that the block sparse table
optimization effectively utilizes modern processors to accelerate the search for

rare matches.

11

Supplemental Figures

A1 B1

—— RaMA —— RaMA
—=- WFA(2)

~N

[
b
=)

—=- WFA(2)

o
& £
£ x25
%‘ 2.0 S
‘_
'g 22.0
(]
; 15 3
Q
2 T e
= .
210 =
v 210
o
a £
g G
g 505
IS £
(o]
0.0 0.0
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 15 2.0 2.5 3.0
A2 Template without Regionl (MB) B2 Centromere of CHM13 for chrX (MB)
—— RaMA 3.0/ — RaMA

Lt
wn

—=- WFA(10) —=—- WFA(10)

2.5

g
o

2.0

=
w

15

-
=]

Template without Region2 (MB)
o
w

Centromere of HG002 for chrX (MB)

o
=}

0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 15 2.0 2.5 3.0
Template without Region1 (MB) Centromere of CHM13 for chrX (MB)

>
w
98
w

—— RaMA —— RaMA
=== WFA(50) === WFA(50)

)

5]
bl
=)

- N
wi o
=N N
w o w

I

o
Ly
=]

e
5

Template without Region2 (MB)
o
wn

Centromere of HG002 for chrX (MB)

o
o

o
o

0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 15 2.0 25 3.0
Template without Regionl (MB) Centromere of CHM13 for chrX (MB)

Fig S1 Comparison of alignment paths between RaMA and other methods on real and simulated
centromere sequences. Series A uses a template with region1 removed as the reference and a template
with region2 removed as the query. Series B shows the X chromosome centromere of CHM13 as the
reference and HG002 as the query. Labels 1, 2, and 3 correspond to RaMA compared with different
parameters for WFA. The WFA penalty settings are configured as follows: the match penalty is set to 0,
mismatch penalty to 4, short insertion opening penalty to 6, and long insertion opening penalty to 12.
The extension penalty for long insertions is 1, while the extension penalties for short insertions

labeled as 1, 2, and 3 are 2, 10, and 50, respectively.

12

>

@ Reliabilty based on identity

88.01 85,18 5.79 87.45
[J ® o341 " o
9 712 * [o A JPAP
75 . 67,17 - 68.0
| 63.6 64.75
© 59,39 ® 5060 ® e 510 @ ©®
® ® ® o5 >0 i T
£ 50 o ® @
k=] 1503 @ 7.05
g ® e
@ 21.05
§° ®
©
Q I\
K 0
0 @
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
B ® SNV in Full Reference & SNV in Reliable Region
15 A
’ 157
£1.0
2 04 0.26 0.27
Z 05)00 01 008 008 036004 2 023 © 7 A o7 o5 %17 07 013 0,09 007 0,06 0.05 0.08 0.1 0-2 0.08
006 0.06 0.07 0.05 A ‘ 06 . 'y 0.04 o 006 0.06 0.06 0,05 0.05 0.06 009‘ 0.07
wle s s e’ 01; $006000000s
C 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
_ @ Large Indel Ratio
2100 9495 9344 9328 9437938) 92.79
= : 92,51 90.81
E e o ® 0 g xc® o 8772 o
13 82.62 ®
=2
< 80 73.78 ® 7479
3 71.84 70.63 69.41 .
=3 ® ® ° 65.55
3 @ 6104
s 60525 5‘:5 o 5?4
& (]
g
[
5 40 35‘72
B
- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome

Fig S2 Statistical analysis of centromere alignment results between CHM13 and CHM1 using UniAligner.
(A) Proportion of identity-based reliable regions across different chromosomes relative to the
reference sequence length. (B) Comparison of the single nucleotide variant (SNV) rates between the
entire reference sequence region and identity-based reliable regions. (C) Proportion of large indels

across the complete reference sequence region.

13

>

@ Reliability based on identity A Reliability based on rare match

100 [92.9892.03 i 90.1 a5l87 XW 3
py I 2.0
g ® 8050 A ® 80,04 4 MMI166 78595207
9 73 8
= 55200 A @ A BEA g 60.6369.72 A
e 75 64.13 8143 ® @ A 80.06
& 76.9 P 54.86 56,99 ! 58.16
] 54.86 533154.16 A 72.1 @ P
2 50 43.33 - 4205 @ ® 62.37
3 ® 38.78 383 A
® ® 4664 __ 28952859
5 x 22733972 2953 AJJ ; J 245
2 25 32.43 A @ @
£ 7.88
E i A
oo L]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
B @ SNV in full reference A SNV in reliable region based on identity
(]
1.88
~.15 1.15
=
210 0.86 oks A
z 0.07 0.13 oos A 005 0.44 ggg 048 045 05 0.37 015 408 0.08 0.08 13 012 024
0.5 ' A ® A A OX 0.1 0.14
0.07 0.12 OA15 005 @ 003 o g 007 o A 015 91 0.0 0.06 0.05 ©-08 003 '\ 0.08
00| & 7 Y '\ S A o> y | O.TB 0.28 037 0.27 0‘04 4 4 49 ¢ ‘ v \
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
@ Large indel ratio A Reliable large indel ratio based on rare match
= 83.88 ® 391 861965 ® 9 8522
T °® 9135 @ ° 71952929 911 77.08 °
Es e ® ® 6560 = 5
E 58.46 ® A
L ° 5183 49.77
£5p A ® @ 446
8 34,8453 3439.2437 45 36.67 16.08 39.03 39.7937 g4 ®
£ i) A 31.96 A 3036 @ 32.95
] 41.84 o, @ 2517 S 081 Ao .
N et 22,38 21192442, " A 266 99 42 244 55 3 ®
< 25 A A 20131811 A A A 18.87
g A 27.31 A 4 [] A A
£ 572 A
o 5 0.
E A 15.04
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X
Chromosome

Fig S3 Statistical analysis of centromere alignment results between CHM1 and CHM13 using RaMA. (A)
Proportion of two types of reliable regions, based on identity and rare matches, across different
chromosomes relative to the reference sequence length. (B) Comparison of the single nucleotide
variant (SNV) rates between the entire reference sequence region and identity-based reliable regions.
(C) Proportion of large indels across the complete reference sequence region versus within rare-

match-based reliable regions.

14

@ Reliabilty based on identity

100 [91.829p pg e ®
99.04 81 87
s ® o0 ® - 31,87
= e B & ®
® P 706 70 ®
o 75 66.26 64,54
< 5 55.02 ® I
g 46.16
£ 50 4333 | 46,16 @ o ®
o 27 N2 40.38 ® 40.28
=
s 25i62 24.5
o
g 25 16.12 [] ®
@
@ o
14 0
0 ()

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

o

® SNV in Full Reference A SNV in Reliable Region

A
1.5 1.57
£1.0
N 0.36 0.54 02
Z 05 008 0.1 008 008 0.13 0.23 007 A 025 027 047 027 0.13 0.09 0.07 905 005 0.08 01 047 0.08
0.06 0.09 0.04 0.06 M g3 014 ‘ 06 @ A ‘ : ‘ 0.03 0.07 g.05 gp5 0.05 0.05 0.02 ‘ 0.07
O.O““.‘.01‘0250.11015‘075“““‘ +
11015 553

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

@ Large Indel Ratio
93.4293.28 94.37 93.8 9251 @

-
o
o

S
— 92.79 90.81
g 9&5) ® @O g xis] 72
e 9522 8262 ®
=3
< 80 71847378 L4 74.79
b} ' 7083 g9.41 ®
g ¢ ¢ e 65:561.04
£ 56.15 P 5564
s 60525 ° Py
C [
£
3 40 35,72
& []
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X

Chromosome

Fig S4 Statistical analysis of centromere alignment results between CHM1 and CHM13 using UniAligner.
(A) Proportion of identity-based reliable regions across different chromosomes relative to the
reference sequence length. (B) Comparison of the single nucleotide variant (SNV) rates between the
entire reference sequence region and identity-based reliable regions. (C) Proportion of large indels

across the complete reference sequence region.

15

Comparison of Real Time across three Methods

minimap2 RaMA A wfmash

3000

2000

Real Time (s)

1000

A
AAA AAAAAAAA

A

Asgi®fn, 1

a A

123456 7 8 91011121314151617 1819202122 X
Chromosome

Fig S5 Comparison of runtime across three sequence alignment methods on different chromosomes.
This figure shows the real runtime of three pairwise sequence alignment methods—RaMA, minimap2,
and wfmash with 32 threads —on different chromosomes from CHM13 and CHM1 genomes. Each
method is represented by different colors and shapes: green circles for RaMA, red squares for
minimap2, and blue triangles for wfmash. The y-axis represents the runtime in seconds, while the x-
axis shows the chromosome numbers. It can be observed that RaMA exhibits higher runtimes on
several chromosomes, especially on larger ones like chr1 and chr3, while minimap2 and wfmash have

relatively shorter runtimes, with wfmash being particularly fast on smaller chromosomes.

Comparison of Memory Usage across three Methods

minimap2 RaMA A wfmash

w
o

N
o

Memory Usage (GB)
S
>
>

AAAA
AAAAAAAAAAAA A
AALa

123456 7 8 91011121314151617 1819202122 X
Chromosome

Fig S6 Comparison of memory usage across three sequence alignment methods on different
chromosomes. This figure shows the memory usage of three pairwise sequence alignment methods
with 32 threads—RaMA, minimap2, and wfmash—on different chromosomes from CHM13 and CHM1
genomes. Each method is represented by different colors and shapes: green circles for RaMA, red
squares for minimap2, and blue triangles for wfmash. The y-axis represents the memory usage in
gigabytes (GB), while the x-axis shows the chromosome numbers. It can be observed that RaMA
generally consumes more memory on most chromosomes, while minimap2 and wfmash show lower

memory usage, with wfmash being the most memory-efficient method across most chromosomes.

16

Alignment Time vs Similarity

—e— RaMA Time
200 1 —e— UniAligner Time
150 -
0
)
£ 100 4
E
50
0 .

70 75 80 85 90 95 100
Similarity (%)

Fig S7 Alignment Time of RaMA and UniAligner on Datasets with Different Similarities

Alignment Memory Usage vs Similarity

). -#- RaMA Memory
ya R UniAligner Memory
250 A -~ N n
s AN i
/ N "
/ N "
4 N [N}
v N 1
/ . H
200 a S 1
—_ -/ N ,‘ 'l |I
m --u--u Iy [
= \ Iy [
<z A P
> 1 1 \ 1 1
S 150+ (I T - "
€ Vol S ! ! I
@ Ll R _ !
1 1
= [NI 1 n h
Y - i]
100 ‘\l’ i || " ‘\ /,.‘\ ,’
| | 1 [S
\ VY A
1
1] vl (W]
1 ,l ‘\ ’ \-:
voa
50 |I /, \i
ol
70 75 80 85 920 95 100

Similarity (%)

Fig S8 Alignment Max Memory of RaMA and UniAligner on Datasets with Different Similarities

17

Sequence 1

Sequence 2]

Filter anchor

Sequence 1l

Sequence 2

Fig S9 Anchor Filtering: Initially, the sequence contains two types of rare matches: A and B, each with
three matches, resulting in four pairs of anchors: A1A2, A1A3, B1B2 and B1B3. Following dynamic
programming, only A1A2 and B1B2 are saved. A1A3 were removed because they did not meet the

requirement for colinearity, and B1B3 were removed due to their excessive gap cost.

1.007 —— RaMA

—e— Unialigner

0.941

0.931

70 75 80 85 90 95 100
Similarity from 70% to 99%

Fig S10 Q-score comparison of alignment results for simulated non-repetitive sequences with

different similarities using RaMA, UniAligner and WFA.

18

62451 62132

True
600001 W RaMA
B WFA
EEl UniAligner

50000 1

40000 -

Count

30000 1

20000 1

10000 -

Gaps Mismatches

Fig S11 Statistical analysis of bases count for gaps and mismatches in alignment results for sequences
with 80% similarity using three methods.

19

Total anchor count identified by RaMA
across sequences with different similarities

80,000

60,000

Anchor Count

40,000

20,000

DAL PR P>R RS RR PP PP PP S PP
Sequence Similarity
Fig S12 Number of rare match anchors identified by RaMA for non-repetitive sequences at different
similarity levels

Total anchor length identified by RaMA
across sequences with different similarities

975,000

950,000

925,000

Anchor Length Sum

900,000

RO PFPTPRLES RPN F PP P S P
Sequence Similarity

Fig S13 Total length of rare match anchors identified by RaMA in 1-million-length non-repetitive

sequences at different similarity levels.

20

Total coverage identified by RaMA
across sequences with different similarities

0.975

o
©
5
S

0.925

Anchor Coverage

0.900

APPSR FRL LSRR SP QP PP PG RSP
Sequence Similarity
Fig S14 Coverage of rare match anchors identified by RaMA in 1-million-length non-repetitive
sequences at different similarity levels. Coverage is defined as the ratio of the total length of rare

match anchors to the total sequence length.

21

Comparison of RaMA and UniAligner on Mixed Sequences
Centromere of chr20

non-repeat
segment 3

)
-
c
=}
S 31 — RaMA
2] T
nc_> Centromere of chr16 <_non-repeat UniAligner
- segment 2
Q
3 27
o
1 -
/-s_.non-repeat
04—
segment 1
0 1 2 3 a 5

Reference Position (MB)

Fig S15 Comparison of alignment paths between RaMA and UniAligner on hybrid sequences composed
of tandem repeat and non-tandem repeat regions. We simulated two non-repetitive sequences of
length 1,000,000 with 95% similarity, then inserted the centromeres from chromosomes 16 and 20 of

CHM13 and CHM1 into them. This figure demonstrates that both RaMA and UniAligner have the ability
to distinguish the boundaries of different regions.

22

Range Minimal Query Using Block Sparse Table

min value query crossing blocks min value query within block
. I ¢ - . r =1 |« r.=2
Splitinto input array A length is N ' : g
Blocks [¢ | [Preprocess:
For case of F[2], the min
C manotonic stack for A[0 2] is:
| | | | | | | | | | | | |
Block sizp is log,N " P sforgs min value *| JLros oot
| | | | _ [| from A[0] to A[i] using 0b00010
lonic stack A[1] is in the stack, so the bit
corresponding to index 1 is
L setto 1
D A F[2] = 0b00010
Index block’s min value Convert it ta decimal
using sparse table F F21=2
) ‘ 3 | | | 5|4 oy b — —— —| I Min value query for 1,21 |
Subli] stdres the min I Prel[i] stores the min ! 1. Right shift F[2] by 1 bits
value from A[i] to the min{2,3,1,5} | value from A[i] to the F[2] >>1 = 0b00001
end in ¢ne block ; start in one block Right shifting by 1 gives th
| min{3,154) menolonc ek or AL 2]
— T | I ‘ 2. Leading zeros in the new
meaning min value's index
A min{2,3,1‘5‘4} =1 Y ‘ in the new stack is 0.
3. The index of the minimum
314fafa 9sw e
‘ L o o o 1 which means A[1] = 2.

min{4,ﬁ 31=1
Fig S16 Workflow of the Range Minimal Query algorithm using Block Sparse Table. The input array
A[1..N] is divided into blocks of length log:N), with each block's maximum value precomputed, and
inter-block minimal values handled by sparse table. For range minimum queries across blocks, it
compares the edge parts with the full blocks in between. The sparse table quickly provides the
minimum for the full blocks in the middle. For the incomplete head and tail blocks, we precompute
the Pre and Sub arrays. Pre[i] stores the minimum from A[0] to the block’s start, with Sub following
the same logic, allowing the minimum value of the incomplete blocks to be obtained with a single
query. For query within block, we precompute an F array, where F[i] stores the minimum value from
AJ0] to A[i] using a monotonic stack. The monotonic stack is compressed into a single integer, and
bitwise operations allow us to retrieve the stack for different ranges to obtain the minimum value
within that range. A detailed example of an intra-block query can be seen in the green box on the right

side of the figure.

23

Comparison of Different Method Construction Time

@ Block Sparse Table Construction Enhanced Suffix Array Construction # Sparse Table Construction

10.0

75

5.0

Time (s)

25

0.0

5 10 15 20
Array Size (x 10°)

Fig S17 Comparison of construction time for Block sparse Table, Regular Sparse Table, and Enhanced

Suffix Array across different array sizes, averaged over ten experiments.

Comparison of Suffix Array Construction Time,
Block and Regular Sparse Table Query Time

@ Block Sparse Table Query # Enhanced Suffix Array Construction Sparse Table Query

7.5

5.0

Time (s)

25

0.0

5 10 15 20
Array Size or Query Count (x 10°)

Fig S18 Comparison of construction time for Suffix Array and query times for Regular Sparse Table

and Block sparse Table across different array sizes or query counts, averaged over ten experiments.

24

Comparison of Block Sparse Table Query Time
across Different Numbers of Threads

2.5

N N N
o [é,] o

Average Query Time (s)

o
)

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
Number of Threads

Fig S19 Variation in parallel query time for the Block sparse Table with respect to the number of
threads, for N=1,000,000 queries, averaged over ten experiments.

Ratio of sub suffix array length to original
sequence length in different chromosome

3
250 259 2.59
2
w2 Mean=17
14
1.28 1.27
1.07
0.76
I I 044
N Y - \\\w\%\b\\b\b\\%,\qo\,ﬂ-\-

Chromosome

Fig S20 Ratio of sub suffix array length to the original sequence length across different chromosomes,

based on the alignment results of CHM13 and CHM1 centromeres using RaMA.

25

20

Time (s)

Comparison of the execution time of three strategies in RaMA

@ Block Sparse Table & 16 Thread Query # Block Sparse Table & Query

Enhanced Suffix Array

10
Array Size (x 10°)

15

20

Fig S21 Time comparison of three RaMA strategies across different array sizes averaged over ten

experiments. For input data size N, all three strategies require constructing an enhanced suffix array

for a sequence of length N. For subsequent steps, an enhanced suffix array needs to be constructed for

a sub-sequence of length 1.7N. The three strategies differ in their approach: (1) Strategy 1 directly

constructs the suffix array for the sub-sequence. (2) Strategy 2 constructs the Block sparse Table for

the input data of size N and performs 1.7N queries. (3) Strategy 3 is the same as Strategy 2, but uses

16 threads for parallel querying.

Supplemental Tables

Table S1 Indel Statistics for RaMA Alignment Results of HOR Arrays Across Chromosomes in CHM13

and CHM1
Chro Total Insert | Deletio | Short Long Total
Short | Short | Long Long Short
moso | Indels ions ns Indels Indels Insert | Deleti | Insert | Deleti | Indel
me ions ons ions ons Lengt
h
chrl 787 364 423 162 625 73 89 291 334 278
chr2 571 288 283 163 408 82 81 206 202 289
chr3 | 8802 | 4630 |4172 | 6827 | 1975 1317
3592 | 3235 | 1038 | 937 3
chr4 648 286 362 115 533 55 60 231 302 179
chr5 2593 1423 1170 899 1694 477 422 946 748 1560
chré 324 175 149 62 262 33 29 142 120 112

26

chr7 | 33529 | 17035 | 16494 | 16984 | 16545 | gacs | 8620 | 8671 | 7874 | Soo0
2

chr8 | 1274 | 684 | 590 505 769 263 | 242 | 421 |348 |982
chr9 | 405 199 | 206 75 330 36 39 163 | 167 | 124
chr1io | 1955 | 1119 | 836 831 1124 | 477 | 354 |642 |482 | 1502
chril | 2421 | 1377 | 1044 | 494 1927 | 237 |257 | 1140 | 787 | 785
chr1z | 2193 | 1095 | 1098 | 790 1403 | 424 |366 |671 | 732 | 1403
chr13 | 347 177 | 170 73 274 38 35 139|135 | 131
chr14 | 598 287 | 311 130 468 69 61 218 | 250 | 241
chr15 | 256 168 | 88 47 209 27 20 141 | 68 75
chri6 | 533 274 | 259 113 420 67 46 207 | 213 | 221
chr17 | 594 309 | 285 78 516 37 41 272 | 244 | 119
chr18 | 934 486 | 448 185 749 93 92 393|356 | 302
chr19 | 635 301 | 334 109 526 53 56 248 | 278 | 169
chr20 | 373 198 | 175 65 308 35 30 163 | 145 | 106
chr21 | 103 45 58 16 87 7 9 38 49 29
chr22 | 678 292 | 386 184 494 97 87 195 [299 | 324
chrX | 530 314 | 216 124 406 65 59 249 | 157 | 195

Table S2 Indel Statistics for RaMA Alignment Results of HOR Arrays Across Chromosomes in CHM13
and CHM1

Chro Total Insertio | Deleti | Short Long Total
Short Short Long Long
Short
moso | Indels | ns ons Indels | Indels | Inserti | Deleti | Inserti | Deleti Indel
nde
ons ons ons ons
me Length
chrl 1154 | 545 609 344 810 167 177 378 432 613
chr2 745 371 374 278 467 146 132 225 242 446

chr3 1120 5770 5438 5996 5212
3018 2978 2752 2460 12327

chr4 1108 536 572 359 749 192 167 344 405 660

chr5 4819 | 2487 2332 2409 2410 1164 1245 1323 1087 4359

chré 481 234 247 147 334 76 71 158 176 280

27

chr7 | 1138 | 58563 | 55244 | 64723 | 49084 13531
31270 | 33453 | 27293 | 21791
07 1
chr8 | 2665 | 1332 |1333 | 1174 | 1491 |589 |585 |743 | 748 | 2250
chr9 |582 | 281 301 | 195 |387 |92 103|189 | 198 | 321
chr1o | 7027 | 3658 | 3369 |3712 |3315 | 1964 | 1748 | 1694 | 1621 | 6839
chril | 5206 | 2793 | 2413 | 1878 |3328 |887 | 991 | 1906 | 1422 | 3506
chr1z | 4179 | 2093 | 2086 | 1905 |2274 | 993 |912 |1100 | 1174 | 3659
chr13 | 866 | 487 379 383 |483 |194 |189 |293 |190 | 751
chri4 | 2272 | 1085 | 1187 | 1063 | 1209 |536 | 527 |549 |660 | 2013
chr15 | 520 | 271 249 | 198 |322 |105 |93 166 | 156 | 316
chri6 | 791 | 375 416 | 224 |se67 |115 | 109 |260 [307 | 387
chr17 | 1020 | 525 495 | 300 |720 |157 | 143 |368 |352 |489
chr18 | 1183 | 603 580 |359 |824 |177 | 182 |426 [398 |537
chr19 | 881 | 438 443|264 |617 129 | 135 |309 |308 | 432
chr20 | 634 | 306 328 | 209 |425 |102 |107 |204 |221 |363
chr21 | 223 | 107 116 | 90 133 | 48 42 59 74 179
chr22 | 1190 | 599 591 | 512 | 678 | 262 | 250 |337 |341 |902
chrX | 879 | 466 413|315 |s564 |153 |162 |313 [251 |578

Table S3 Coordinates of centromeres on each chromosome in CHM13 assembly v2.0

Chromosome Centromere Start Centromere End
chrl 121796048 126300487
chr2 92333543 94673023
chr3 91738002 96415026
chr4 49705154 55199795
chr5 47039134 49596625
chré 58286706 61058390
chr7 60414372 63714499
chr8 44215832 46325080
chr9 44951775 47582595

28

chr10 39633793 41664589
chrll 51061948 54413484
chr12 34620838 37202490
chr13 15547593 17498291
chrl4 10092112 12708411
chr15 16678794 17694466
chrlé 35854528 37793352
chr17 23892419 27486939
chrl8 15971633 20740248
chr19 25832447 29749519
chr20 26925852 29099655
chr21 10962853 11303831
chr2?2 12788180 15711065
chrX 57819763 60927195

Table S4 Coordinates of centromeres on each chromosome in CHM1 assembly v1.0

Chromosome Centromere Start Centromere End
chrl 69846251 74163648
chr2 2280725 3823209
chr3 90996577 98681590
chr4 49812514 54001726
chr5 29395586 32818667
chré 58497481 61307082
chr7 58944638 62985385
chr8 41216354 44037473
chr9 45051953 47583457
chr10 39520501 41948392
chr11 50937313 56228467
chr12 34592723 37694387
chr13 6192909 8741416

29

chr14 5595461 7351743
chrl5 6497612 8371049
chr1é6 35822802 37690820
chr17 23728691 28020815
chrl8 16002565 21365394
chr19 25770284 29452617
chr20 26344814 29108504
chr21 5735844 6964260
chr2?2 6404040 8403387
chrX 9013916 12333297

Table S5 Coordinates of centromeres on each chromosome in HG002 assembly v1.0 for maternal and

paternal
Chromosome Centromere Start Centromere End
chr1_MATERNAL 122027438 125955688
chr2_MATERNAL 92151246 94103074
chr3_MATERNAL 91302525 96202269
chr4_MATERNAL 50067869 53484024
chr5_MATERNAL 46798262 50386372
chr6_MATERNAL 58406826 63810043
chr7_MATERNAL 60365620 63823418
chr8_MATERNAL 43874099 46711122
chr9_MATERNAL 45056210 47410738
chr10_MATERNAL 39744707 42316517
chr11_MATERNAL 50999815 54520890
chr12_MATERNAL 34645712 37413891
chr13_MATERNAL 15945009 17237358
chr14_MATERNAL 16333134 18227245
chr15_MATERNAL 17565932 18803961
chr16_MATERNAL 36084593 38030775

30

chr17_MATERNAL 23434616 26974283
chr18_MATERNAL 15892634 19438086
chr19_MATERNAL 25955163 29401419
chr20_MATERNAL 26800597 29114249
chr21_MATERNAL 12802086 13492624
chr22_MATERNAL 15170886 17537395
chrX_MATERNAL 57866532 60979089
chr1_PATERNAL 122098079 127818069
chr2_PATERNAL 91976043 93860057
chr3_PATERNAL 91752227 96708256
chr4_PATERNAL 49905202 54056008
chr5_PATERNAL 46811597 56296672
chr6_PATERNAL 58484688 63416222
chr7_PATERNAL 60475720 62980001
chr8_PATERNAL 44141137 46832173
chr9_PATERNAL 43149766 45356409
chr10_PATERNAL 39736349 42039460
chr11_PATERNAL 50977296 53400916
chr12_PATERNAL 34645797 37414611
chr13_PATERNAL 11766683 13098132
chr14_PATERNAL 14415236 16746986
chr15_PATERNAL 14196988 15332200
chr16_PATERNAL 34883482 37233542
chr17_PATERNAL 23369094 27776826
chr18_PATERNAL 15911083 21158049
chr19_PATERNAL 25478659 29550562
chr20_PATERNAL 27138158 29974389
chr21_PATERNAL 9212650 10459921
chr22_PATERNAL 11150940 13678387

31

chrY_PATERNAL 10561582 10878917

Table S6 The positions and lengths of the five segments in the hybrid sequence.

Segment Seql Startindex | Length in Seql Seq2 Startindex | Length in Seq2

Segment 1 0 300000 0 299983
Centromere 1 300000 1938824 299983 1868018
Segment 2 2238824 500000 2168001 500035
Centromere 2 2738824 2173803 2668036 2763690
Segment 3 4912627 193870 5431726 193913

Table S7 Statistics of total anchor length, anchor count, and coverage in RaMA alignment results for
different chromosomes of CHM13 and CHM1. Coverage is defined as the ratio of the total anchor length
to the total sequence length. This table summarizes the total length of anchors, the number of anchors,

and the coverage across various chromosomes in CHM13 and CHM1.

Chromosome Anchor Length Sum Anchor Count Coverage
chrl 2839728 3146 0.630428784
chr2 856477 1922 0.366097167
chr3 2460704 3006 0.526126015
chr4 2164858 2708 0.393994439
chr5 252468 6248 0.098717063
chré 1231592 902 0.444347913
chr7 99035 25362 0.030009451
chr8 228398 3007 0.10828409
chr9 1611356 1897 0.612491923
chr10 91294 3811 0.044954786
chrll 364467 5687 0.108746258
chrl2 269378 4928 0.104343265
chr13 41923 537 0.021491282
chr14 97974 1513 0.037447555
chr15 153407 554 0.151039903
chr1l6 515491 1283 0.265878182
chr17 1937038 2423 0.538886416

32

chr18 2823736 3304 0.592150132
chr19 2999472 2451 0.765743392
chr20 982130 1452 0.45180267
chr21 162450 244 0.476423699
chr22 378753 2431 0.129581903
chrX 1979063 2526 0.63688055

Table S8 The number of correct matches and the coverage of correct matches in the five regions of the
hybrid sequence for RaMA and UniAligner. For a given region pair, the match bases refer to the number

of bases in the query region that align to the reference in the alignment result. Coverage is defined as

the ratio of match bases to the length of the reference.

Region | Region Region RaMA Matched | RaMA UniAligner UniAligner
Start End Length Bases Coverage Matched Bases Coverage
0 299999 300000 293885 0.979617 290206 0.967353
300000 | 2238823 | 1938824 | 639272 0.329722 563272 0.290523
223882

2738823 | 500000 482241 0.964482 473135 0.94627
4
273882

4912626 | 2173803 | 1099443 0.505769 1004062 0.461892
4
491262

5102181 | 189555 129310 0.682177 138254 0.729361
7
Reference

2. Marco-Sola, S., et al., Fast gap-affine pairwise alignment using the wavefront algorithm. Bioinformatics, 2021. 37(4):
p. 456-463.

3. Bzikadze, A.V. and P.A. Pevzner, Unidligner: a parameter-free framework for fast sequence alignment. Nature Methods,
2023.20(9): p. 1346-1354.

4. Logsdon, G.A., et al., The variation and evolution of complete human centromeres. Nature, 2024: p. 1-10.

5. Li, H., et al., The sequence alignment/map format and SAMtools. bioinformatics, 2009. 25(16): p. 2078-2079.

6. Guarracino, et al wfmash: a pangenome-scale aligner. 2021; Available
https://github.com/waveygang/wfmash.

7. Kunyavskaya, O., et al., Automated annotation of human centromeres with HORmon. Genome Research, 2022. 32(6):

p. 1137-1151.

33

Li, H., Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018. 34(18): p. 3094-3100.

https://github.com/waveygang/wfmash

10.

Fletcher, W. and Z. Yang, INDELible: A Flexible Simulator of Biological Sequence Evolution. Molecular Biology and
Evolution, 2009. 26(8): p. 1879-1888.

Bender, M.A. and M. Farach-Colton. The LCA problem revisited. in LATIN 2000: Theoretical Informatics: 4th Latin
American Symposium, Punta del Este, Uruguay, April 10-14, 2000 Proceedings 4.2000. Springer.

Louza, F.A., et al., gsufsort: constructing suffix arrays, LCP arrays and BWTs for string collections. Algorithms for

Molecular Biology, 2020. 15: p. 1-5.

34

