
1

Supplemental Material for

Fast sequence alignment for centromere with RaMA

Pinglu Zhang1,2, Yanming Wei2,3, Qinzhong Tian1,2, Quan Zou1,2, Yansu Wang1,2,*

1. Institute of Fundamental and Frontier Sciences, University of Electronic Science and

Technology of China, Chengdu, China

2. Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology

of China, Quzhou, China

3. School of Computer Science and Technology, Xidian University, Xi’an, Shaanxi, China

*Corresponding author: wangyansu@uestc.edu.cn

Supplemental Method

Parameter Settings for Different Alignment Methods

 We utilized four methods—minimap2 [1], wavefront alignment (WFA) [2],

UniAligner [3], and RaMA—to align the centromere sequences. Below, we provide

a detailed explanation of the parameter settings for each method.

For the first method minimap2 (git commit hash

0cc3cdca27f050fb80a19c90d25ecc6ab0b0907b), which is available at

https://github.com/lh3/minimap2, we selected the same parameter settings used

in previous studies:

minimap2 -a -I 15G -K 8G -t thread_num -ax asm20 --secondary=no --eqx -s 2500

ref.fasta query.fasta > output.sam

The authors of previous study[4] selected specific minimap2 parameters to

optimize alignment for repetitive and structurally divergent regions in diploid

human genomes. They used `-I 15G` for additional memory and `-K 8G` to allow

loading 8 Gb of sequence at once, accommodating the full genome and preventing

alignment bottlenecks. The ̀ -ax asm20` option was chosen to align sequences with

up to 20% divergence, suitable for variable α-satellite HOR structures. They used

`--secondary=no` to prevent multi-mapping, ensuring each query aligns only once,

and `--eqx` to parse CIGAR strings for calculating mean sequence identity. Finally,

mailto:wangyansu@uestc.edu.cn
https://github.com/lh3/minimap2

2

they set `-s 2500` as the minimal alignment score to avoid spurious alignments

while retaining accurate centromere alignments, following tests of various values.

After obtaining the SAM alignment results, we used the following samtools[5]

command to retain only the primary alignments:

samtools view -h -F 256 -F 2048 output.sam -o output_primary.sam

The wavefront alignment algorithm (git commit hash

cf3eb92dd0aa9bf067d5488a606d8c91173e74eb), which is available at

https://github.com/smarco/WFA2-lib, is a recently proposed tool for pairwise

sequence alignment that operates in 𝑂(𝑛𝑠) time, where 𝑛 is the read length and 𝑠

is the alignment score. By leveraging homologous regions between sequences, it

accelerates the alignment process, making it significantly faster than traditional

dynamic programming methods, particularly for long and noisy reads. We used a

2-piece affine gap cost with the following scoring settings: match = 0, mismatch =

3, gap_open1 = 4, gap_extension1 = 2, gap_open2 = 12, and gap_extension2 = 1,

aiming to minimize the total score. Here, gap_open1 and gap_extension1 are the

penalties for short gaps, while gap_open2 and gap_extension2 are the penalties for

long gaps. WFA is a deterministic algorithm, and we did not employ any

optimization strategies, ensuring that the solution obtained is the optimal solution

of dynamic programming. In practical use, since RaMA incorporates WFA, we

configured RaMA to bypass anchor finding and directly use WFA for centromere

alignment, obtaining the WFA results directly.

For wfmash [6], we performed the alignment using its default parameters,

with the following command:

wfmash ref.fasta query.fasta > output.paf

 For UniAligner [3], a parameter-free sequence alignment framework, we used

the default settings. The alignment command is as follows:

tandem_aligner --first first.fasta --second second.fasta -o output_dir

The code for UniAligner can be found at https://github.com/seryrzu/unialigner,

with the git commit hash c5a1eecab7bd17485a0fe3422684409c3e884f31.

 Finally, for our work RaMA, the source code is available at

https://github.com/smarco/WFA2-lib
https://github.com/seryrzu/unialigner

3

https://github.com/malabz/RaMA, with the used version's git commit hash being

8661cde3ea0e0a4bc22d850c17321878e28f6948. RaMA was run with default

parameters, using the following alignment command:

RaMA -r /path/to/ref.fasta -q /path/to/query.fasta -o /path/to/output_dir

When invoking WFA [2], RaMA used the same 2-piece affine gap cost with the

following parameters: match = 0, mismatch = 3, gap open1 = 4, gap extension1 = 2,

gap open2 = 12, and gap extension2 = 1, with the aim of minimizing the total score.

In this scheme, gap open1 and gap extension1 are the penalties for short gaps,

while gap open2 and gap extension2 are the penalties for long gaps.

Creating Simulated Data with Regions Removed from Template

To demonstrate the capability of different methods in capturing the genetic

evolution of centromeres, we generated a set of simulated data. We used the X

chromosome centromere of CHM13 as the template. The X chromosome sequence

of CHM13 can be obtained from https://s3-us-west-2.amazonaws.com/human-

pangenomics/T2T/CHM13/assemblies/analysis_set/chm13v2.0.fa.gz, with the

centromere located at positions 57,819,763 to 60,927,195. To extract the

centromere region of the X chromosome, we used the following command:

samtools faidx chm13v2.0.fa chrX:57819763-60927195 > chrX_cen.fa

Next, we used HORmon to annotate the extracted centromere sequence. HORmon

requires monomers as a basis for annotation, which can be inferred using

HORmon's built-in monomer inference program:

monomer_inference -seq chrX_cen.fa -mon test_data/AlphaSat.fa -o chrX

We directly use the monomers inferred in the HORmon[7], which can be obtained

from https://figshare.com/articles/dataset/HORmon/16755097/2. To start the

annotation, we use the following command:

HORmon --seq chrX_cen.fa --mon cenX_monomers.fa --cen-id X -o chrX_res -t 12

The final HOR annotation results are recorded in the `HORdecomposition.tsv` file

located in the `chrX_res` folder. We selected two regions: 182368-547935 as

https://github.com/malabz/RaMA

4

Region 1, and 2417322-2773488 as Region 2. These regions each represent

complete HOR blocks. By removing these two regions, we obtained two sequences

for the simulated dataset. Therefore, the correct alignment CIGAR result for these

two sequences is `182368=365568I1869390=356167D333939=`.

Generating Non-Repetitive Sequences of Different Similarities Using

INDELible

In our study, we simulated non-repetitive sequences with varying levels of

similarity using INDELible [8]. A script was developed to generate sequences with

similarity ranges from 70% to 99%, with divergence times corresponding to each

similarity level. The control files for INDELible were configured using the TVM

nucleotide substitution model, specified state frequencies, insertion and deletion

rates, and a Lavalette indel length distribution. Specifically, the substitution model

parameters were set as b=0.01, c=0.01, d=0.04, e=0.04, and a=f=1, with state

frequencies of T=0.25, C=0.31, A=0.31, and G=0.13. Rate parameters included

pinv=0.84, alpha=1.03, and ngamcat=4. The indel model used a Lavalette

distribution with a=5 and M=50, with an insertion rate of 0.01 and a deletion rate

of 0.1 relative to a substitution rate of 1. Each sequence was simulated to a length

of 1,000,000 nucleotides. This simulation approach generated a robust dataset to

evaluate alignment methods, covering a broad spectrum of sequence similarities.

Generating Hybrid Sequence of Tandem Repeats and Non-Tandem Repeats

To explore the performance of RaMA on tandem repeat and non-tandem

repeat sequences, we used INDELible to simulate two non-repetitive sequences of

1,000,000 in length with 95% similarity, and then inserted the centromeres from

chromosomes 16 and 20 of CHM13 and CHM1 into them. For the parameters used

in INDELible, please refer to the section 'Generating Non-Repetitive Sequences of

Different Similarities Using INDELible'. We inserted the centromeres from

chromosomes 16 and 20 of CHM13 and CHM1 at positions 300,000 and 800,000,

5

respectively. The insertion of these two centromeres divided the entire sequence

into five segments. The positions and lengths of these five segments in the two

sequences are shown in the Table S6. Segment 1 spans 0–300000 in Seq1 and 0–

299983 in Seq2. Centromere 1 covers 300000–1938824 in Seq1 and 299983–

1868018 in Seq2. Segment 2 runs from 2238824–2738824 in Seq1 and 2168001–

2668036 in Seq2. Centromere 2 extends from 2738824–4912627 in Seq1 and

2668036–5431726 in Seq2. Segment 3 spans 4912627–5106497 in Seq1 and

5431726–5625639 in Seq2.

Comparison of RaMA and Other Methods on Non-Repetitive Sequences

One significant limitation of UniAligner is its suitability only for repetitive

sequences, as it does not align the remaining regions after rare-alignment. RaMA

addresses this issue by aligning these regions as well. We generated simulated

datasets of 1,000,000 bp with sequence similarities ranging from 75% to 99%

using INDELible [8] (see Supplemental Method). Alignments were performed

using RaMA, UniAligner, and WFA, with affine gap penalties set for WFA (match =

0, mismatch = 2, gap open = 3, gap extension = 1). Q scores of the alignment results

are shown in Fig S10. When sequence similarity is low, WFA provides the highest

alignment quality, followed by RaMA, with UniAligner performing the worst. As

similarity exceeds 83%, RaMA's alignment quality becomes consistent with or

surpasses WFA. UniAligner consistently underperforms across all similarity levels.

Notably, at 90% similarity, the Q scores of all methods approach 1, likely due to

favorable sequence characteristics. These findings suggest RaMA excels in aligning

non-repetitive sequences with moderate to high similarity, while UniAligner does

not.

We investigated UniAligner's poor alignment quality on non-repetitive

sequences by selecting sequences with 80% similarity, where the quality

difference was most pronounced. We analyzed the gaps and mismatches in the

alignment results. As shown in Fig S11, WFA's gaps and mismatches closely match

6

the true alignment, whereas UniAligner shows significantly more gaps and fewer

mismatches. This discrepancy arises from UniAligner's alignment algorithm: it

aligns indel-runs between anchor points, resulting in mismatches if the lengths are

equal, and producing deletion-runs and insertion-runs, leading to many gaps if the

lengths are unequal.

 We further investigated the behavior of sparse match anchors across different

sequence similarity levels. The simulated sequences had a length of 1 million base

pairs. The relationship between sequence similarity and both the number of

sparse match anchors, as well as the total length of these anchors, is presented in

Fig S12 and Fig S13. Interestingly, as shown in Fig S12 and Fig S13, for non-

repetitive sequences, the number of anchors and the total length of anchors exhibit

opposite trends. We define anchor coverage as the ratio of the total anchor length

to the total sequence length. The variation in anchor coverage with respect to

sequence similarity is shown in Fig S14. We also performed alignments for each

chromosome's centromere using RaMA, with CHM13 as the reference and CHM1

as the query. The number of anchors, total anchor length, and anchor coverage are

summarized in Table S7. Across the centromeres of 23 chromosomes, the average

coverage is 32%, with a maximum of 76% on chromosome 19. In contrast, the

minimum coverage for non-repetitive sequences at 70% similarity is 88%. This

indicates that rare match anchors are significantly fewer in tandem repeat

sequences compared to non-repetitive sequences.

Comparison of RaMA and Other Methods on Hybrid Sequences

In chromosomes, extra tandem repeat sequences often appear interspersed

with non-tandem repeat sequences. WFA enables RaMA to handle long sequence

alignments effectively. Therefore, in this section, we explore the performance of

RaMA and UniAligner on hybrid sequences. We used RaMA and UniAligner to align

hybrid sequences, and their alignment paths are shown in Fig S15. As shown in the

Fig S15, both methods demonstrate strong boundary distinction capabilities for

7

the regions. For a given region pair, the match bases refer to the number of bases

in the query region that align to the reference in the alignment result. Coverage is

defined as the ratio of match bases to the length of the reference. We present the

alignment coverage of RaMA and UniAligner for the five regions in the Table S8.

The results show that RaMA achieves slightly higher alignment quality than

UniAligner across all five regions. This experiment demonstrates RaMA's potential

for accurately aligning hybrid sequences. In conclusion, although this experiment

does not fully showcase RaMA's performance on hybrid sequences, it offers

valuable insights into RaMA's potential for accurate alignment of these sequences.

Linear Range Minimum Query Strategy

To accelerate the range minimum query on the LCP array, we employed a

linear range minimum query algorithm based on block sparse table. In this section,

we provide a detailed explanation of this algorithm. For range minimum queries,

the sparse table [9] is a widely used algorithm, with a time complexity of O(n log

n) for its construction. However, this can be relatively slow compared to the O(n)

complexity of directly building an enhanced suffix array [10]. Therefore, we aim to

improve the sparse table to achieve O(n) construction time as well. A simple and

straightforward approach is to divide the sequence into blocks of length log n, and

use a sparse table to manage the minimum value of each block. This reduces the

construction time of the sparse table to O(n). Of course, this alone is insufficient,

as it only allows queries at the block level. To address this, additional auxiliary data

structures are needed to fully refine this approach.

 For query crossing multiple blocks, we utilize two auxiliary arrays: the prefix

minimum (Pre) and suffix minimum (Sub). The prefix minimum for each element

stores the minimum value from the start of the block up to that element, while the

suffix minimum stores the minimum from the element to the end of the block.

These allow us to handle any intra-block query efficiently by simply looking up the

precomputed values in 𝑂(1) time. So when the query range spans across

8

multiple blocks, as shown in Fig S16, the strategy involves dividing the query into

three parts: the portion within the starting block, handled by the suffix minimum;

the portion within the ending block, handled by the prefix minimum; and the

portion spanning entire blocks, managed by the sparse table. The result is the

minimum of these three values, ensuring that cross-block queries are answered

efficiently in constant time after preprocessing.

 To handle query within one block efficiently, we use a monotonic stack

combined with state compression, as shown in the example from Fig S16. In this

example, we are working with the array 𝐴 = [3, 2, 5, 4, 7] and performing a query

to find the minimum value in the range [𝑙2 = 1, 𝑟2 = 2] within the same block.

We use a monotonic stack to track the minimum values. we precompute an F array,

where 𝐹[𝑖] stores the minimum value from 𝐴[0] to 𝐴[𝑖] using a monotonic

stack. As we traverse the block, starting with 𝐴[1] = 2, it is pushed onto the stack

because it is smaller than 𝐴[0] = 3, which was previously on top. Larger elements,

like 𝐴[0] = 3, are popped out. The remaining elements are all larger than 2, so

they are not pushed onto the stack. To further optimize, we use state compression

by encoding the stack's status into a bitmask. This means we can store the entire

monotonic stack using just a 64-bit integer. Naturally, this also implies that the

length of each block cannot exceed 64, and the length of array A cannot exceed 264.

For example, after processing 𝐴[0,2] , the bitmask 𝐹[2] = 0𝑏000010 indicates

that only 𝐴[1] = 2 remains in the stack at this point. To efficiently perform the

query for [1,2] , we right-shift the bitmask by 1 bit (since l2=1), resulting in

0𝑏000001. We then find the position of the first '1' in the shifted bitmask, which

corresponds to the index of the minimum value within the queried range. In this

case, the first '1' appears at position 0, meaning the minimum value is at index

1+0=1. Thus, the minimum value in the range [1,2] is 𝐴[1] = 2. This process allows

us to find the minimum value in constant time 𝑂(1) , leveraging both the

monotonic stack and efficient bitwise operations.

 In the construction process of the algorithm, four key arrays are involved: the

9

prefix minimum array Pre, the suffix minimum array Sub, the sparse table S, and

the compressed state array F. Both Pre and Sub store the prefix and suffix

minimum values within each block, and they are computed in 𝑂(𝑛) time through

a single linear pass over the array, with each requiring 𝑂(𝑛) space. The sparse

table S is built for efficient cross-block queries, which takes 𝑂(𝑛) time for

preprocessing as it operates on the block-level minimums and stores results in

𝑂(𝑛) space. The compressed state array 𝐹 represents the status of the

monotonic stack within each block and allows intra-block queries to be resolved

in constant time using bitwise operations. Constructing 𝐹 involves a linear scan,

giving it a time complexity of 𝑂(𝑛) and requiring only 𝑂(𝑛) space. Therefore,

considering the construction of all these arrays involves only linear operations

relative to the size of the input, the total time complexity of the algorithm is 𝑂(𝑛),

and the space complexity remains 𝑂(𝑛) as well. In the next section, "Construction

of the Enhanced Suffix Array for Subsequences," we experimentally demonstrate

that the constant factor in the construction process of this algorithm is smaller

than that of the suffix array construction algorithm.

Construction of the Enhanced Suffix Array for Subsequences

 RaMA identifies rare matches through a recursive process. Initially, an

enhanced suffix array is constructed for the two input sequences, and the LCP

array is used to efficiently locate rare matches. These rare matches are then used

to partition the sequences into subsequences, which undergo the same process

iteratively until no further rare matches are found. Thus, a key challenge in

algorithm optimization lies in how to quickly construct the enhanced suffix array

for the subsequences. The most straightforward approach is to directly construct

the enhanced suffix array for each subsequence, as done in UniAligner [3]. In

practice, with the suffix array of the original sequence, we can efficiently construct

the suffix array for subsequences in a single pass using the Inverse Suffix Array

(ISA). To construct the suffix array for a subsequence using the Inverse Suffix Array

10

(ISA), we leverage the fact that the ISA maps the position of a suffix in the original

sequence to its rank in the suffix array. For a subsequence, we can use the ISA of

the original sequence to quickly determine the rank of each suffix within the

subsequence. Specifically, for each suffix in the subsequence, we find its rank in the

original sequence using the ISA. By sorting these ranks, we effectively build the

suffix array for the subsequence. This approach is efficient because it avoids the

need to recompute the suffix array from scratch, instead utilizing the existing

structure of the original sequence's ISA.

 To construct the LCP array, each LCP value requires a range minimum query

(RMQ) on the original LCP sequence. Notably, both the construction of the suffix

array using the ISA and the RMQ-based LCP array construction can be parallelized

using multithreading to enhance performance. We implemented both the sparse

table [9] and the block sparse table and compared their construction times with

that of the enhanced suffix array [10]. We performed tests on data sizes ranging

from 1 million to 20 million, measuring the construction time ten times for each

size and taking the average. The results are presented in the Fig S17, it can be seen

that the construction time of the enhanced suffix array is slightly faster than that

of the sparse table, while the block sparse table is significantly faster than the

enhanced suffix array. For instance, when the data size reaches 20 million, the

construction time for the sparse table is 10.5 seconds, the enhanced suffix array

takes 9.7 seconds, and the block sparse table finishes in just 2.16 seconds. This

demonstrates that the constant factor for the block sparse table is much smaller

than that of the enhanced suffix array.

 Using the same settings, we also compared the query times of the sparse table

and block sparse table across different data sizes with the construction time of the

enhanced suffix array. The results are shown in the Fig S18. For example, when the

data size is 20 million, the query times for the sparse table and block sparse table

are similar, at 5.34 seconds and 5.15 seconds, respectively, both significantly faster

than the 9.74 seconds required to construct the enhanced suffix array for a

11

sequence of the same length. A key advantage of querying, compared to the

construction of the enhanced suffix array, is that it can be parallelized, whereas the

latter cannot. Using a data size of 10 million as an example, the Fig S19 shows how

the total query time changes as the number of threads increases. It clearly

demonstrates that multithreading significantly optimizes the querying process.

 In RaMA, the process recursively searches for rare matches to split the

sequences, followed by constructing enhanced suffix arrays for the subsequences.

However, the length of the subsequences requiring an enhanced suffix array is

unpredictable, as the same segment may be processed multiple times. To analyze

this, we used RaMA to compare the centromeres of different chromosomes from

CHM13 and CHM1, recording the ratio of subsequence length to the original

sequence length. The results, shown in the Fig S20, indicate that the average ratio

is 1.7. We used the 1.7 ratio to compare the time required by three different

strategies for constructing the enhanced suffix array for subsequences. For an

input size of N, all three strategies involve constructing the enhanced suffix array

for a sequence of length N. In the subsequent steps, an enhanced suffix array needs

to be constructed for a subsequence of length 1.7N. The three strategies are as

follows: (1) Strategy 1 directly constructs the suffix array for the subsequence. (2)

Strategy 2 constructs the block sparse table for the input data of size N, performs

1.7N queries to build the LCP array, and uses the ISA to quickly obtain the suffix

array for the subsequence. (3) Strategy 3 is the same as Strategy 2 but utilizes 16

threads to parallelize the queries. The results are shown in the Fig S21. As

observed, the single-threaded block sparse table strategy is slightly faster than the

direct construction of the enhanced suffix array, while the parallelized block

sparse table strategy is significantly faster than both. The speed of strategy 3 is

approximately twice that of strategy 1. This indicates that the block sparse table

optimization effectively utilizes modern processors to accelerate the search for

rare matches.

12

Supplemental Figures

Fig S1 Comparison of alignment paths between RaMA and other methods on real and simulated

centromere sequences. Series A uses a template with region1 removed as the reference and a template

with region2 removed as the query. Series B shows the X chromosome centromere of CHM13 as the

reference and HG002 as the query. Labels 1, 2, and 3 correspond to RaMA compared with different

parameters for WFA. The WFA penalty settings are configured as follows: the match penalty is set to 0,

mismatch penalty to 4, short insertion opening penalty to 6, and long insertion opening penalty to 12.

The extension penalty for long insertions is 1, while the extension penalties for short insertions

labeled as 1, 2, and 3 are 2, 10, and 50, respectively.

13

Fig S2 Statistical analysis of centromere alignment results between CHM13 and CHM1 using UniAligner.

(A) Proportion of identity-based reliable regions across different chromosomes relative to the

reference sequence length. (B) Comparison of the single nucleotide variant (SNV) rates between the

entire reference sequence region and identity-based reliable regions. (C) Proportion of large indels

across the complete reference sequence region.

14

Fig S3 Statistical analysis of centromere alignment results between CHM1 and CHM13 using RaMA. (A)

Proportion of two types of reliable regions, based on identity and rare matches, across different

chromosomes relative to the reference sequence length. (B) Comparison of the single nucleotide

variant (SNV) rates between the entire reference sequence region and identity-based reliable regions.

(C) Proportion of large indels across the complete reference sequence region versus within rare-

match-based reliable regions.

15

Fig S4 Statistical analysis of centromere alignment results between CHM1 and CHM13 using UniAligner.

(A) Proportion of identity-based reliable regions across different chromosomes relative to the

reference sequence length. (B) Comparison of the single nucleotide variant (SNV) rates between the

entire reference sequence region and identity-based reliable regions. (C) Proportion of large indels

across the complete reference sequence region.

16

Fig S5 Comparison of runtime across three sequence alignment methods on different chromosomes.

This figure shows the real runtime of three pairwise sequence alignment methods—RaMA, minimap2,

and wfmash with 32 threads —on different chromosomes from CHM13 and CHM1 genomes. Each

method is represented by different colors and shapes: green circles for RaMA, red squares for

minimap2, and blue triangles for wfmash. The y-axis represents the runtime in seconds, while the x-

axis shows the chromosome numbers. It can be observed that RaMA exhibits higher runtimes on

several chromosomes, especially on larger ones like chr1 and chr3, while minimap2 and wfmash have

relatively shorter runtimes, with wfmash being particularly fast on smaller chromosomes.

Fig S6 Comparison of memory usage across three sequence alignment methods on different

chromosomes. This figure shows the memory usage of three pairwise sequence alignment methods

with 32 threads—RaMA, minimap2, and wfmash—on different chromosomes from CHM13 and CHM1

genomes. Each method is represented by different colors and shapes: green circles for RaMA, red

squares for minimap2, and blue triangles for wfmash. The y-axis represents the memory usage in

gigabytes (GB), while the x-axis shows the chromosome numbers. It can be observed that RaMA

generally consumes more memory on most chromosomes, while minimap2 and wfmash show lower

memory usage, with wfmash being the most memory-efficient method across most chromosomes.

17

Fig S7 Alignment Time of RaMA and UniAligner on Datasets with Different Similarities

Fig S8 Alignment Max Memory of RaMA and UniAligner on Datasets with Different Similarities

18

Fig S9 Anchor Filtering: Initially, the sequence contains two types of rare matches: A and B, each with

three matches, resulting in four pairs of anchors: A1A2, A1A3, B1B2 and B1B3. Following dynamic

programming, only A1A2 and B1B2 are saved. A1A3 were removed because they did not meet the

requirement for colinearity, and B1B3 were removed due to their excessive gap cost.

Fig S10 Q-score comparison of alignment results for simulated non-repetitive sequences with

different similarities using RaMA, UniAligner and WFA.

19

Fig S11 Statistical analysis of bases count for gaps and mismatches in alignment results for sequences

with 80% similarity using three methods.

20

Fig S12 Number of rare match anchors identified by RaMA for non-repetitive sequences at different

similarity levels

Fig S13 Total length of rare match anchors identified by RaMA in 1-million-length non-repetitive

sequences at different similarity levels.

21

Fig S14 Coverage of rare match anchors identified by RaMA in 1-million-length non-repetitive

sequences at different similarity levels. Coverage is defined as the ratio of the total length of rare

match anchors to the total sequence length.

22

Fig S15 Comparison of alignment paths between RaMA and UniAligner on hybrid sequences composed

of tandem repeat and non-tandem repeat regions. We simulated two non-repetitive sequences of

length 1,000,000 with 95% similarity, then inserted the centromeres from chromosomes 16 and 20 of

CHM13 and CHM1 into them. This figure demonstrates that both RaMA and UniAligner have the ability

to distinguish the boundaries of different regions.

23

Fig S16 Workflow of the Range Minimal Query algorithm using Block Sparse Table. The input array

A[1…N] is divided into blocks of length log2N), with each block's maximum value precomputed, and

inter-block minimal values handled by sparse table. For range minimum queries across blocks, it

compares the edge parts with the full blocks in between. The sparse table quickly provides the

minimum for the full blocks in the middle. For the incomplete head and tail blocks, we precompute

the Pre and Sub arrays. Pre[i] stores the minimum from A[0] to the block's start, with Sub following

the same logic, allowing the minimum value of the incomplete blocks to be obtained with a single

query. For query within block, we precompute an F array, where F[i] stores the minimum value from

A[0] to A[i] using a monotonic stack. The monotonic stack is compressed into a single integer, and

bitwise operations allow us to retrieve the stack for different ranges to obtain the minimum value

within that range. A detailed example of an intra-block query can be seen in the green box on the right

side of the figure.

24

Fig S17 Comparison of construction time for Block sparse Table, Regular Sparse Table, and Enhanced

Suffix Array across different array sizes, averaged over ten experiments.

Fig S18 Comparison of construction time for Suffix Array and query times for Regular Sparse Table

and Block sparse Table across different array sizes or query counts, averaged over ten experiments.

25

Fig S19 Variation in parallel query time for the Block sparse Table with respect to the number of

threads, for N=1,000,000 queries, averaged over ten experiments.

Fig S20 Ratio of sub suffix array length to the original sequence length across different chromosomes,

based on the alignment results of CHM13 and CHM1 centromeres using RaMA.

26

Fig S21 Time comparison of three RaMA strategies across different array sizes averaged over ten

experiments. For input data size N, all three strategies require constructing an enhanced suffix array

for a sequence of length N. For subsequent steps, an enhanced suffix array needs to be constructed for

a sub-sequence of length 1.7N. The three strategies differ in their approach: (1) Strategy 1 directly

constructs the suffix array for the sub-sequence. (2) Strategy 2 constructs the Block sparse Table for

the input data of size N and performs 1.7N queries. (3) Strategy 3 is the same as Strategy 2, but uses

16 threads for parallel querying.

Supplemental Tables

Table S1 Indel Statistics for RaMA Alignment Results of HOR Arrays Across Chromosomes in CHM13

and CHM1

Chro

moso

me

Total

Indels

Insert

ions

Deletio

ns

Short

Indels

Long

Indels

Short

Insert

ions

Short

Deleti

ons

Long

Insert

ions

Long

Deleti

ons

Total

Short

Indel

Lengt

h

chr1 787 364 423 162 625 73 89 291 334 278

chr2 571 288 283 163 408 82 81 206 202 289

chr3 8802 4630 4172 6827 1975 3592 3235 1038 937
1317

3

chr4 648 286 362 115 533 55 60 231 302 179

chr5 2593 1423 1170 899 1694 477 422 946 748 1560

chr6 324 175 149 62 262 33 29 142 120 112

27

chr7 33529 17035 16494 16984 16545 8364 8620 8671 7874
3830

2

chr8 1274 684 590 505 769 263 242 421 348 982

chr9 405 199 206 75 330 36 39 163 167 124

chr10 1955 1119 836 831 1124 477 354 642 482 1502

chr11 2421 1377 1044 494 1927 237 257 1140 787 785

chr12 2193 1095 1098 790 1403 424 366 671 732 1403

chr13 347 177 170 73 274 38 35 139 135 131

chr14 598 287 311 130 468 69 61 218 250 241

chr15 256 168 88 47 209 27 20 141 68 75

chr16 533 274 259 113 420 67 46 207 213 221

chr17 594 309 285 78 516 37 41 272 244 119

chr18 934 486 448 185 749 93 92 393 356 302

chr19 635 301 334 109 526 53 56 248 278 169

chr20 373 198 175 65 308 35 30 163 145 106

chr21 103 45 58 16 87 7 9 38 49 29

chr22 678 292 386 184 494 97 87 195 299 324

chrX 530 314 216 124 406 65 59 249 157 195

Table S2 Indel Statistics for RaMA Alignment Results of HOR Arrays Across Chromosomes in CHM13

and CHM1

Chro

moso

me

Total

Indels

Insertio

ns

Deleti

ons

Short

Indels

Long

Indels

Short

Inserti

ons

Short

Deleti

ons

Long

Inserti

ons

Long

Deleti

ons

Total

Short

Indel

Length

chr1 1154 545 609 344 810 167 177 378 432 613

chr2 745 371 374 278 467 146 132 225 242 446

chr3 1120

8

5770 5438 5996 5212

3018 2978 2752 2460 12327

chr4 1108 536 572 359 749 192 167 344 405 660

chr5 4819 2487 2332 2409 2410 1164 1245 1323 1087 4359

chr6 481 234 247 147 334 76 71 158 176 280

28

chr7 1138

07

58563 55244 64723 49084

31270 33453 27293 21791
13531

1

chr8 2665 1332 1333 1174 1491 589 585 743 748 2250

chr9 582 281 301 195 387 92 103 189 198 321

chr10 7027 3658 3369 3712 3315 1964 1748 1694 1621 6839

chr11 5206 2793 2413 1878 3328 887 991 1906 1422 3506

chr12 4179 2093 2086 1905 2274 993 912 1100 1174 3659

chr13 866 487 379 383 483 194 189 293 190 751

chr14 2272 1085 1187 1063 1209 536 527 549 660 2013

chr15 520 271 249 198 322 105 93 166 156 316

chr16 791 375 416 224 567 115 109 260 307 387

chr17 1020 525 495 300 720 157 143 368 352 489

chr18 1183 603 580 359 824 177 182 426 398 537

chr19 881 438 443 264 617 129 135 309 308 432

chr20 634 306 328 209 425 102 107 204 221 363

chr21 223 107 116 90 133 48 42 59 74 179

chr22 1190 599 591 512 678 262 250 337 341 902

chrX 879 466 413 315 564 153 162 313 251 578

Table S3 Coordinates of centromeres on each chromosome in CHM13 assembly v2.0

Chromosome Centromere Start Centromere End

chr1 121796048 126300487

chr2 92333543 94673023

chr3 91738002 96415026

chr4 49705154 55199795

chr5 47039134 49596625

chr6 58286706 61058390

chr7 60414372 63714499

chr8 44215832 46325080

chr9 44951775 47582595

29

chr10 39633793 41664589

chr11 51061948 54413484

chr12 34620838 37202490

chr13 15547593 17498291

chr14 10092112 12708411

chr15 16678794 17694466

chr16 35854528 37793352

chr17 23892419 27486939

chr18 15971633 20740248

chr19 25832447 29749519

chr20 26925852 29099655

chr21 10962853 11303831

chr22 12788180 15711065

chrX 57819763 60927195

Table S4 Coordinates of centromeres on each chromosome in CHM1 assembly v1.0

Chromosome Centromere Start Centromere End

chr1 69846251 74163648

chr2 2280725 3823209

chr3 90996577 98681590

chr4 49812514 54001726

chr5 29395586 32818667

chr6 58497481 61307082

chr7 58944638 62985385

chr8 41216354 44037473

chr9 45051953 47583457

chr10 39520501 41948392

chr11 50937313 56228467

chr12 34592723 37694387

chr13 6192909 8741416

30

chr14 5595461 7351743

chr15 6497612 8371049

chr16 35822802 37690820

chr17 23728691 28020815

chr18 16002565 21365394

chr19 25770284 29452617

chr20 26344814 29108504

chr21 5735844 6964260

chr22 6404040 8403387

chrX 9013916 12333297

Table S5 Coordinates of centromeres on each chromosome in HG002 assembly v1.0 for maternal and

paternal

Chromosome Centromere Start Centromere End

chr1_MATERNAL 122027438 125955688

chr2_MATERNAL 92151246 94103074

chr3_MATERNAL 91302525 96202269

chr4_MATERNAL 50067869 53484024

chr5_MATERNAL 46798262 50386372

chr6_MATERNAL 58406826 63810043

chr7_MATERNAL 60365620 63823418

chr8_MATERNAL 43874099 46711122

chr9_MATERNAL 45056210 47410738

chr10_MATERNAL 39744707 42316517

chr11_MATERNAL 50999815 54520890

chr12_MATERNAL 34645712 37413891

chr13_MATERNAL 15945009 17237358

chr14_MATERNAL 16333134 18227245

chr15_MATERNAL 17565932 18803961

chr16_MATERNAL 36084593 38030775

31

chr17_MATERNAL 23434616 26974283

chr18_MATERNAL 15892634 19438086

chr19_MATERNAL 25955163 29401419

chr20_MATERNAL 26800597 29114249

chr21_MATERNAL 12802086 13492624

chr22_MATERNAL 15170886 17537395

chrX_MATERNAL 57866532 60979089

chr1_PATERNAL 122098079 127818069

chr2_PATERNAL 91976043 93860057

chr3_PATERNAL 91752227 96708256

chr4_PATERNAL 49905202 54056008

chr5_PATERNAL 46811597 56296672

chr6_PATERNAL 58484688 63416222

chr7_PATERNAL 60475720 62980001

chr8_PATERNAL 44141137 46832173

chr9_PATERNAL 43149766 45356409

chr10_PATERNAL 39736349 42039460

chr11_PATERNAL 50977296 53400916

chr12_PATERNAL 34645797 37414611

chr13_PATERNAL 11766683 13098132

chr14_PATERNAL 14415236 16746986

chr15_PATERNAL 14196988 15332200

chr16_PATERNAL 34883482 37233542

chr17_PATERNAL 23369094 27776826

chr18_PATERNAL 15911083 21158049

chr19_PATERNAL 25478659 29550562

chr20_PATERNAL 27138158 29974389

chr21_PATERNAL 9212650 10459921

chr22_PATERNAL 11150940 13678387

32

chrY_PATERNAL 10561582 10878917

Table S6 The positions and lengths of the five segments in the hybrid sequence.

Segment Seq1 Start index Length in Seq1 Seq2 Start index Length in Seq2

Segment 1 0 300000 0 299983

Centromere 1 300000 1938824 299983 1868018

Segment 2 2238824 500000 2168001 500035

Centromere 2 2738824 2173803 2668036 2763690

Segment 3 4912627 193870 5431726 193913

Table S7 Statistics of total anchor length, anchor count, and coverage in RaMA alignment results for

different chromosomes of CHM13 and CHM1. Coverage is defined as the ratio of the total anchor length

to the total sequence length. This table summarizes the total length of anchors, the number of anchors,

and the coverage across various chromosomes in CHM13 and CHM1.

Chromosome Anchor Length Sum Anchor Count Coverage

chr1 2839728 3146 0.630428784

chr2 856477 1922 0.366097167

chr3 2460704 3006 0.526126015

chr4 2164858 2708 0.393994439

chr5 252468 6248 0.098717063

chr6 1231592 902 0.444347913

chr7 99035 25362 0.030009451

chr8 228398 3007 0.10828409

chr9 1611356 1897 0.612491923

chr10 91294 3811 0.044954786

chr11 364467 5687 0.108746258

chr12 269378 4928 0.104343265

chr13 41923 537 0.021491282

chr14 97974 1513 0.037447555

chr15 153407 554 0.151039903

chr16 515491 1283 0.265878182

chr17 1937038 2423 0.538886416

33

chr18 2823736 3304 0.592150132

chr19 2999472 2451 0.765743392

chr20 982130 1452 0.45180267

chr21 162450 244 0.476423699

chr22 378753 2431 0.129581903

chrX 1979063 2526 0.63688055

Table S8 The number of correct matches and the coverage of correct matches in the five regions of the

hybrid sequence for RaMA and UniAligner. For a given region pair, the match bases refer to the number

of bases in the query region that align to the reference in the alignment result. Coverage is defined as

the ratio of match bases to the length of the reference.

Region

Start

Region

End

Region

Length

RaMA Matched

Bases

RaMA

Coverage

UniAligner

Matched Bases

UniAligner

Coverage

0 299999 300000 293885 0.979617 290206 0.967353

300000 2238823 1938824 639272 0.329722 563272 0.290523

223882

4

2738823 500000 482241 0.964482 473135 0.94627

273882

4

4912626 2173803 1099443 0.505769 1004062 0.461892

491262

7

5102181 189555 129310 0.682177 138254 0.729361

Reference

1. Li, H., Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018. 34(18): p. 3094-3100.

2. Marco-Sola, S., et al., Fast gap-affine pairwise alignment using the wavefront algorithm. Bioinformatics, 2021. 37(4):

p. 456-463.

3. Bzikadze, A.V. and P.A. Pevzner, UniAligner: a parameter-free framework for fast sequence alignment. Nature Methods,

2023. 20(9): p. 1346-1354.

4. Logsdon, G.A., et al., The variation and evolution of complete human centromeres. Nature, 2024: p. 1-10.

5. Li, H., et al., The sequence alignment/map format and SAMtools. bioinformatics, 2009. 25(16): p. 2078-2079.

6. Guarracino, A., et al. wfmash: a pangenome-scale aligner. 2021; Available from:

https://github.com/waveygang/wfmash.

7. Kunyavskaya, O., et al., Automated annotation of human centromeres with HORmon. Genome Research, 2022. 32(6):

p. 1137-1151.

https://github.com/waveygang/wfmash

34

8. Fletcher, W. and Z. Yang, INDELible: A Flexible Simulator of Biological Sequence Evolution. Molecular Biology and

Evolution, 2009. 26(8): p. 1879-1888.

9. Bender, M.A. and M. Farach-Colton. The LCA problem revisited. in LATIN 2000: Theoretical Informatics: 4th Latin

American Symposium, Punta del Este, Uruguay, April 10-14, 2000 Proceedings 4. 2000. Springer.

10. Louza, F.A., et al., gsufsort: constructing suffix arrays, LCP arrays and BWTs for string collections. Algorithms for

Molecular Biology, 2020. 15: p. 1-5.

