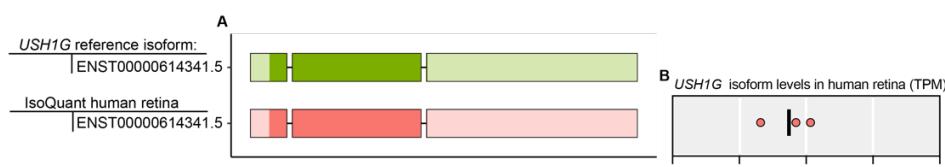
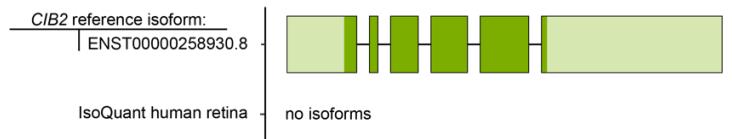
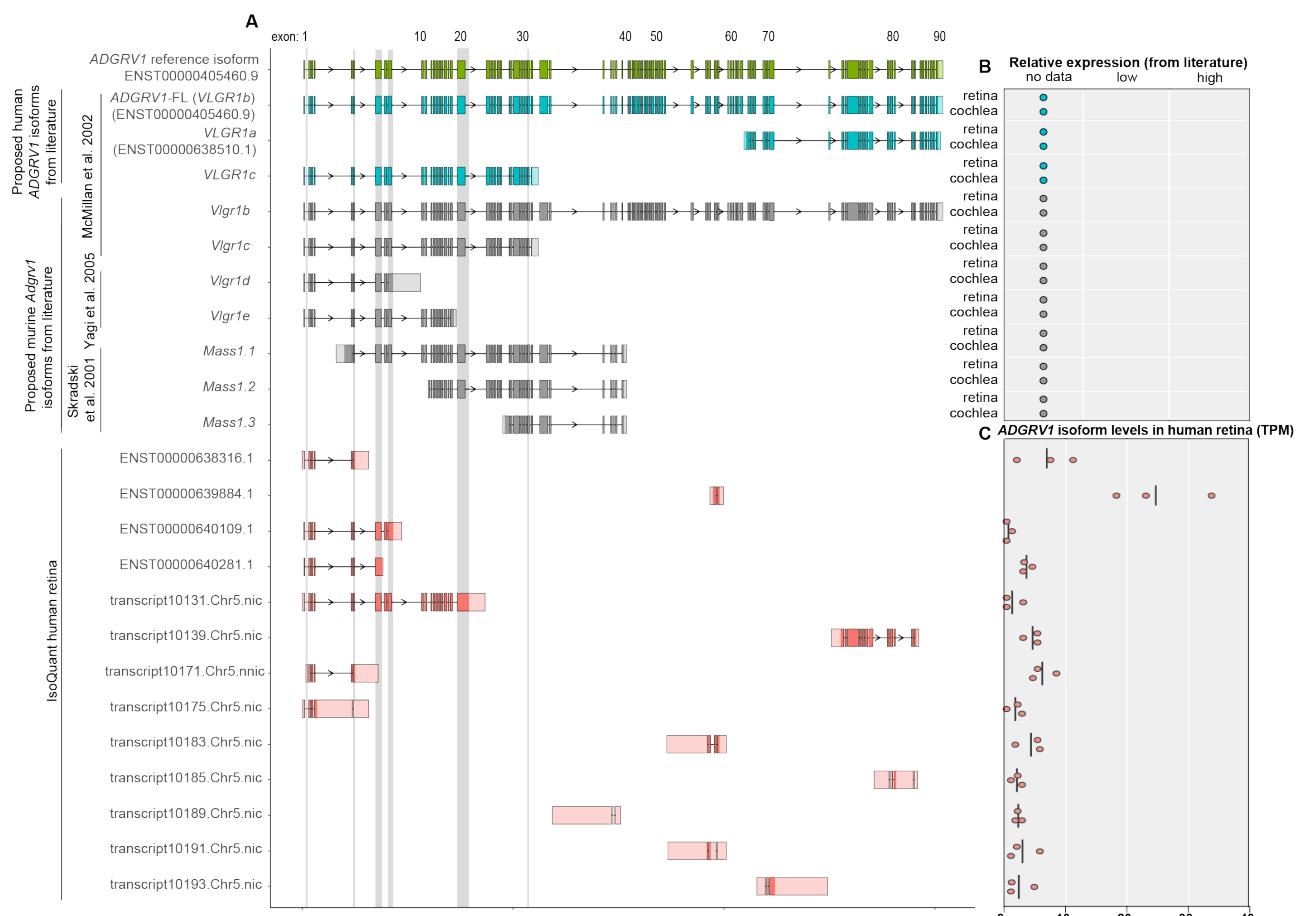

Supplemental Files – Stemerdink et al., Deciphering the largest disease-associated transcript isoforms in the human neural retina with advanced long-read sequencing approaches

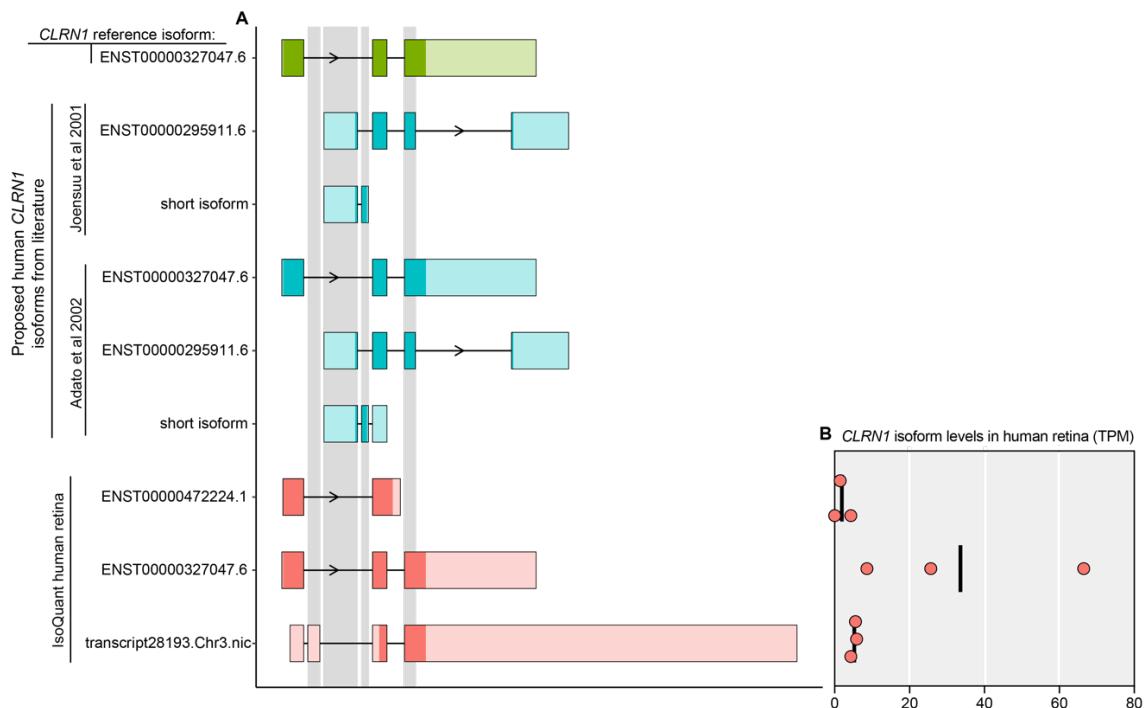
Table of contents

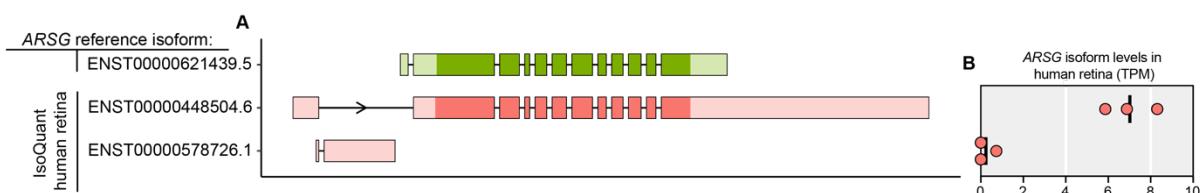
Supplemental Figures	2
Supplemental_Fig_S1	2
Supplemental_Fig_S2	2
Supplemental_Fig_S3	3
Supplemental_Fig_S4	3
Supplemental_Fig_S5	4
Supplemental_Fig_S6	4
Supplemental_Fig_S7	5
Supplemental_Fig_S8	5
Supplemental_Fig_S9	6
Supplemental_Fig_S10	7
Supplemental_Fig_S11	8
Supplemental_Fig_S12	8
Supplemental Tables	9
Supplemental_Table_S1	9
Supplemental_Table_S2	11
Supplemental_Table_S4	12
Supplemental_Table_S5	13
Supplemental_Table_S6	14
Supplemental_Table_S7	15
Supplemental_Table_S8	16

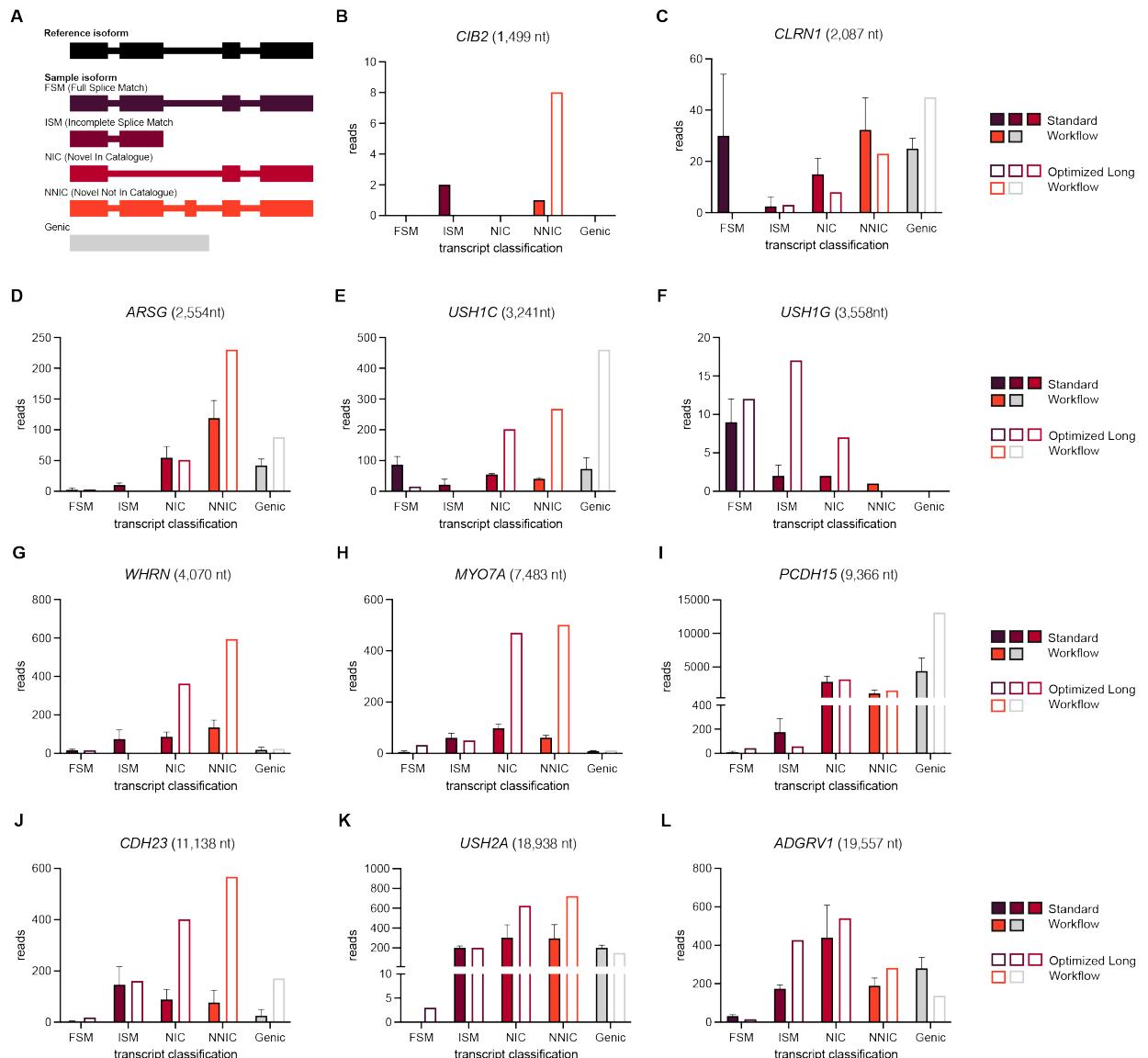

Supplemental_Fig_S1: USH1C isoforms identified by IsoQuant analysis compared to known isoforms from the literature. **A.** The GENCODE reference transcripts are depicted at the top in green, followed by the known human *USH1C* isoforms in blue (Nagel-Wolfrum *et al.*, 2023). The *USH1C* IsoQuant transcripts are depicted in red. The light green, blue and red colors indicate the untranslated regions (UTR) and the dark green, blue and red colors indicate the open reading frame (ORF) of each transcript. Differences between the IsoQuant isoforms and the GENCODE reference transcript are highlighted in grey boxes. IsoQuant predicts the absence of the Harmonin-B isoform in the human retina. **B.** Relative expression of *USH1C* isoforms based on literature in either the retina or the cochlea. **C.** The Transcripts Per Million (based on dataset 1) for each IsoQuant identified isoform are presented for the three individual samples.

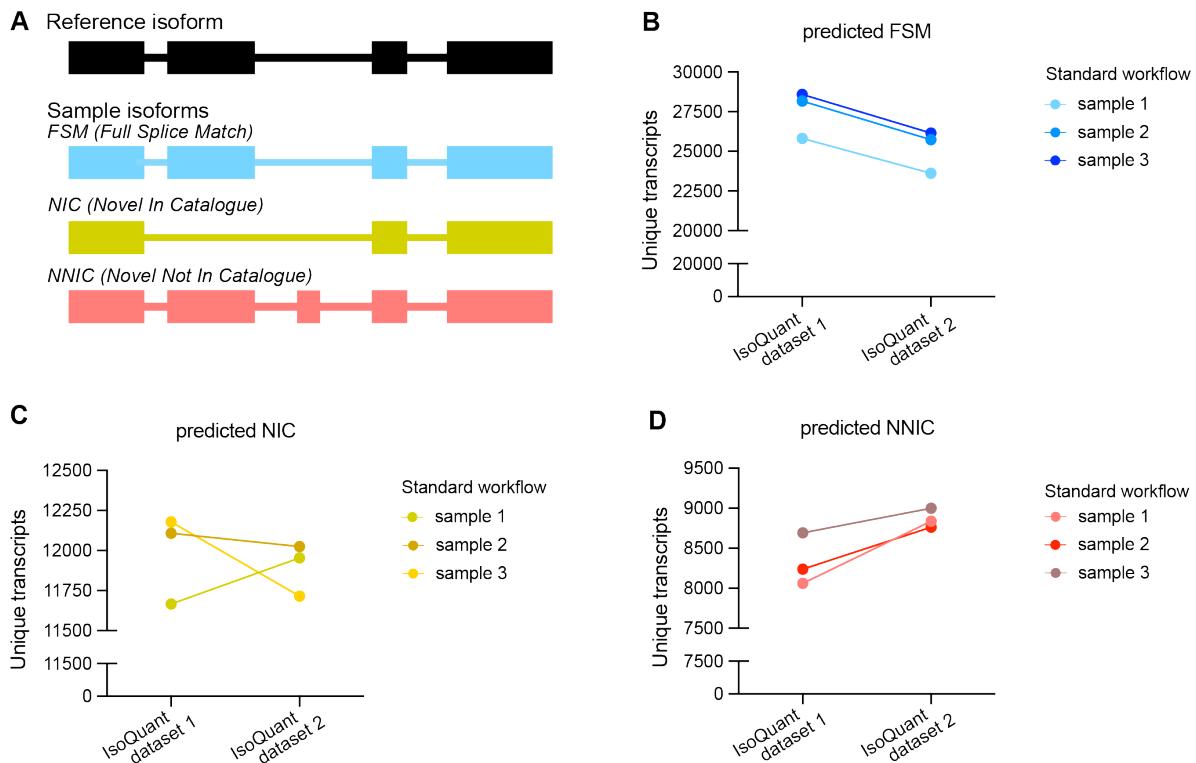

Supplemental_Fig_S2: CDH23 isoforms identified by IsoQuant analysis. **A.** The GENCODE reference transcript is depicted at the top in green, followed by *CDH23* IsoQuant transcripts depicted in red. The light green and red colors indicate the untranslated regions (UTR) and the dark green and red colors indicate the open reading frame (ORF) of each transcript. Differences between the IsoQuant isoforms and the GENCODE reference transcript are highlighted in grey boxes. IsoQuant analysis indicates skipping of exon 69, which is in line with findings of Siemens *et al.* (2002) that indicate the presence of this penultimate exon in inner ear transcripts, and its absence in other tissues such as the retina. **B** The Transcripts Per Million (based on dataset 1) for each IsoQuant identified isoform are presented for the three individual samples.

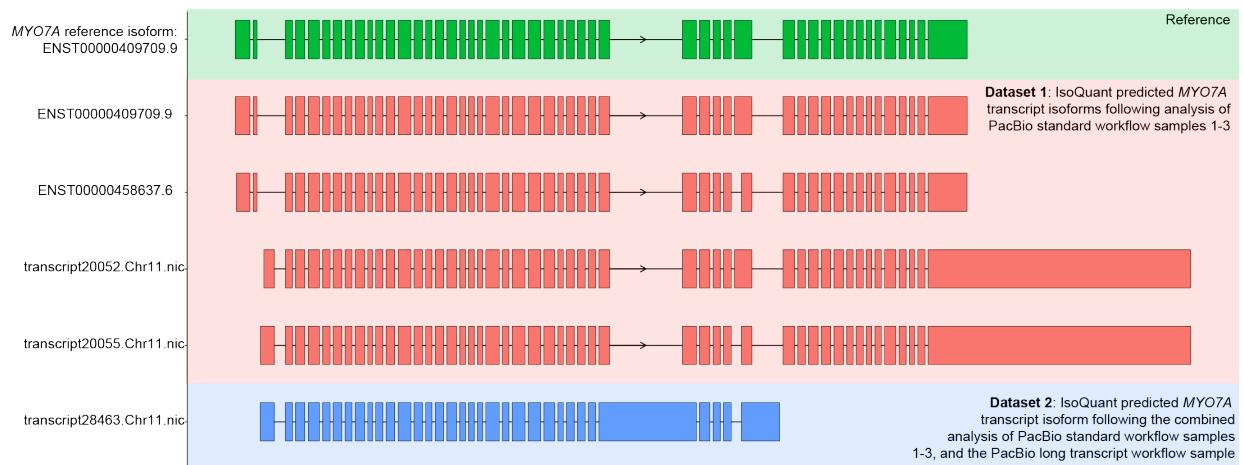

Supplemental_Fig_S3: *PCDH15* isoforms identified by IsoQuant analysis compared to known isoforms from the literature. **A.** The GENCODE reference transcripts are depicted at the top in green, followed by the known human *PCDH15* isoforms in blue (Ahmed et al., 2008). The *PCDH15* IsoQuant transcripts are depicted in red. The light green, blue and red colors indicate the untranslated regions (UTR) and the dark green, blue and red colors indicate the open reading frame (ORF) of each transcript. Differences between the IsoQuant isoforms and the GENCODE reference transcript are highlighted in grey boxes. **B.** Relative expression of *PCDH15* isoforms based on literature in either the retina or the cochlea. **C.** The Transcripts Per Million (based on dataset 1) for the IsoQuant identified isoforms are presented for the three individual samples.

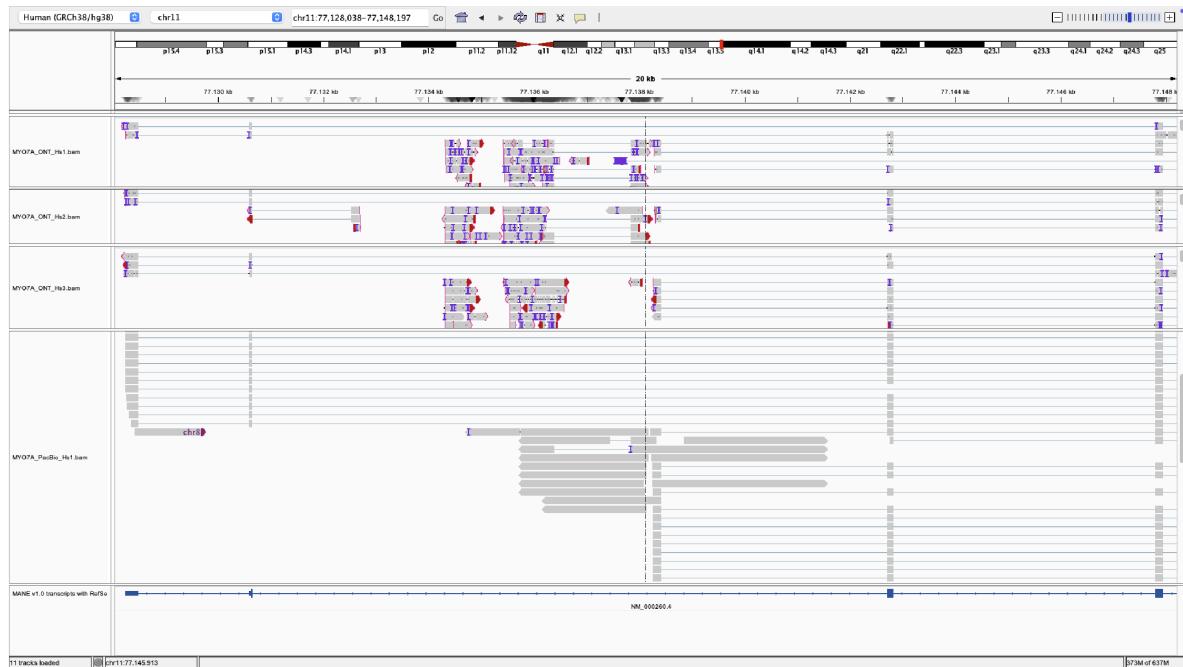

Supplemental_Fig_S4: *SANS* isoform identified by IsoQuant analysis. **A.** The GENCODE reference transcript is depicted at the top in green, followed by the *SANS* IsoQuant transcript depicted in red. The light green and red colors indicate the untranslated regions (UTR) and the dark green and red colors indicate the open reading frame (ORF) of each transcript. **B.** The Transcripts Per Million (based on dataset 1) for the IsoQuant identified isoform are presented for the three individual samples.


Supplemental_Fig_S5: No IsoQuant isoforms are identified for *CIB2* The GENCODE reference transcript is depicted at the top in green with light green colors indicating the untranslated regions (UTR) and the dark green colors indicating the open reading frame (ORF) the reference isoform. No IsoQuant isoforms are identified for *CIB2*.


Supplemental_Fig_S6: ADGRV1 transcript isoforms identified by IsoQuant analysis compared to known isoforms from the literature. **A.** The GENCODE reference transcript is depicted at the top in green, followed by the known human *ADGRV1* isoforms in blue (McMillan *et al.*, 2002), and the murine isoforms in grey (McMillan *et al.*, 2002; Skradski *et al.*, 2001; Yagi *et al.*, 2005). The *ADGRV1* IsoQuant transcripts are depicted in red. The light green, blue, grey and red colors indicate the untranslated regions (UTR) and the dark green, blue, grey and red colors indicate the open reading frame (ORF) of each transcript. Differences between the IsoQuant transcript isoforms and the GENCODE reference transcript are highlighted in grey boxes. **B.** Relative expression of *ADGRV1* isoforms based on literature in either the retina or the cochlea. **C.** The Transcripts Per Million (based on dataset 1) for each IsoQuant isoform are presented for the three individual samples.


Supplemental_Fig_S7: *CLRN1* isoforms identified by IsoQuant analysis compared to known isoforms from the literature. **A.** The GENCODE reference transcript is depicted at the top in green, followed by the known human *CLRN1* isoforms in blue (Adato *et al.*, 2002; Joensuu *et al.*, 2001). The *CLRN1* IsoQuant transcripts are depicted in red. The light green, blue and red colors indicate the untranslated regions (UTR) and the dark green, blue and red colors indicate the open reading frame (ORF) of each transcript. Differences between the IsoQuant isoforms and the GENCODE reference transcript are highlighted in grey boxes. **B.** The Transcripts Per Million (based on dataset 1) for the IsoQuant identified isoforms are presented for the three individual samples.


Supplemental_Fig_S8: *ARSG* isoforms identified by IsoQuant analysis. **A.** The GENCODE reference transcript is depicted at the top in green, followed by the *ARSG* IsoQuant transcripts depicted in red. The light green and red colors indicate the untranslated regions (UTR) and the dark green and red colors indicate the open reading frame (ORF) of each transcript. **B.** The Transcripts Per Million (based on dataset 1) for the IsoQuant identified isoforms are presented for the three individual samples.


Supplemental_Fig_S9: Comparison between Usher syndrome isoform transcripts obtained from PacBio standard workflow and optimized long workflow datasets. **A:** Schematic representation that compares retinal transcripts to the GENCODE reference transcriptome: Full Splice Matches (FSMs), Incomplete Splice Matches (ISM), Novel In Catalog (NIC) and Novel Not In Catalog (NNIC). Genomic contamination is indicated in grey. **B-L:** Number of reads for each USH gene distributed per isoform category. Filled boxes are depicting the mean (\pm SD) for human neural retina samples 1-3 prepared according to the PacBio standard workflow. The empty boxes indicate the number of reads identified in the sample prepared following an optimized PacBio long transcript workflow.

Supplemental_Fig_S10: Number of unique transcripts associated with each transcript class, as predicted by IsoQuant for each standard workflow sample. **A.** Schematic representation that compares IsoQuant transcript classifications to the GENCODE reference isoform. Transcript isoforms that fully match the reference are classified as Full Splice Matches (FSMs). Novel transcripts are those that either align to the reference splice junctions, in which case they are designated as Novel In Catalog (NIC), or contain novel splice junctions and are termed Novel Not In Catalog (NNIC). **B, C, D.** Number of unique transcripts associated with each transcript class, as predicted by IsoQuant for each standard workflow sample. Based on the input per dataset, classifications differ for IsoQuant dataset 1 (analysis of 3 Standard Workflow samples) or IsoQuant dataset 2 (combined analysis of 3 standard workflow samples with the optimized long transcript workflow sample). **B.** Number of unique FSM predicted transcripts per dataset, **C.** Number of unique NIC predicted transcripts per dataset, **D.** Number of unique NNIC predicted transcripts per dataset.

Supplemental_Fig_S11: Examination of IsoQuant algorithm outputs across different datasets, highlighting the influence of including or excluding the PacBio long transcript workflow sample on the IsoQuant-predicted MYO7A isoforms. The *MYO7A* gene serves as an example to illustrate the divergence in identified isoforms by the IsoQuant algorithm. The green annotation represents the *MYO7A* reference isoform. In red are the *MYO7A* isoforms resulting from the IsoQuant analysis of standard workflow samples 1-3, as identified in dataset 1 (Riepe *et al.*, 2024). This includes both Full Splice Matches (FSMs) to the reference isoform, as well as Novel In Catalogue (NICs) and Novel Not In Catalogue (NNICs) isoforms. In blue is the *MYO7A* isoform following the IsoQuant analysis of the combined standard and long transcript workflow samples in dataset 2. Despite the increased input data, this analysis only yielded a single NNIC isoform, with no FSMs or NICs detected.

Supplemental_Fig_S12: Oxford Nanopore Technologies (ONT) long-read sequencing dataset of three independent human retina samples confirmed the use of alternative 5' transcription start site in *MYO7A* transcripts. Snapshot of Integrative Genomics Viewer (IGV), zoomed in on the canonical and alternative start site region of *MYO7A* (exons 1 – 4). Sequencing reads of ONT long-read sequencing of three independent human neural retina samples (MYO7A_ONT_Hs1.bam - MYO7A_ONT_Hs3.bam) confirm the usage of both the known start site (starting at canonical exon 1) and the usages of an alternative start exon located in intron 2. The usage of both the canonical- and the alternative start site has also been observed across the sequencing reads of all PacBio long-read sequencing samples, as exemplified by reads shown for the human neural retina sample prepared following the standard PacBio workflow (MYO7A_PacBio_Hs1.bam).

Supplemental_Table_S1: Overview of observed events following manual curation of reads in BAM-files of Samples 1-4.

Gene	Curated transcripts*	Novel exons** (in-frame)	Novel exon** (out of frame)	In-frame skipping events	Out of frame skipping events	Alternative/novel splice junctions	Intron retentions
<i>MYO7A</i>	ENST00000409709.9	Alternative transcription start site 5' of canonical exon 3, Exon 30A, 31A, 31B	Exon 2A, 2B, 2C, 2D, 4A, 15A, 27A, 44A, 46B	Exon 3, 11, 26	Exon 9, (9+10 combined), 14	5' extension of exon 8, 12, 17, 28, 42, 44 3' extension of exon 12 5' truncation of exon 35, 40, 44, 16	Intron 8, 9, 11, 28, 30 (observed in ~25% of reads), 33, 37 (observed in ~25% of reads), 38, 40, 41, 42, 43, 44
<i>USH1C</i>	ENST0000005226.12	Exon 15A, 20A	Exon 15B, 18A, alternative penultimate exon	Exon 2, 11, 15	Exon 19, 20	5' extension of exons 6, 12, 16 3' extension of exon 5 3' truncation of exon 14	Intron 3, 4, 7, 10, (10 + 11 combined), (22+23 combined), 23, 23 (with internal fragment spliced out), 24 (with internal fragment spliced out)
<i>CDH23</i>	ENST0000224721.12	Exon 11A, 31A, 66A	Exon 1A, 25A, 26A, 44A, 44B, 44C, 45A, 48A, 48B, 48C, 48D	Exon 12, 34, 46, (56-57 combined skip), exon 69 skip observed in ~80% of reads	-	5' extension of exons 6, 12, 46, 49, 55, 60, 65, 70 3' extension of exons 16, 55, 60, 63 5' truncation of exons 58, 60 3' truncation of exons 58, 59, 60	Intron 7, 23 (45-46 combined), 46, 50, 64, 65, (65-66 combined)
<i>PCDH15</i>	ENST000064397	Exon 1A, 2A, 5A, 9A, 9B, 18A, 18B	Exon 1B, 9C, 9D, 9E, 13A, 13B, 15A, 16A, 17A, 18C, 26A, 26B, 26C, 32A, 32B, 36A	Exon 19, 21, 22 27, 31, 33 (exon 33, 34, 35, 36 combined skip)	Exon 10, 14, 16, 17, 23, 26	5' truncation of exon 11 3' truncation of exon 36	-
<i>SANS</i>	ENST0000614341.5	-	-	-	-	-	-
<i>CIB2</i>	ENST0000258930.8	-	-	-	-	-	-
<i>USH2A</i>	ENST0000307340.8	Exon 3A	Exons 4A, 5A, 8A, 9A, 9B, 9C, 11A, 11B, 11C, 12A, 13A, 13B, 13C,	Exon 8, (exon 6,7,8 combined skip) 28, (exon 33-37 combined skip)	Exon 3, (exon 5, 6, 7, 8, 9 combined skip) exon 6, 9, 12, (exon 12-13 combined)	5' extension of exon 65, 70 3' extension of exon 14, 15	Intron 5, 6

			14A, 15A, 16A, 20A, 20B, 20C, 20D, 22A, 32A, 32B, 35A, 37A, 41A, 43A, 44A, 44B, 45A, 49A, 50A, 58A, 61A, 64A, 64B, 65A, 67A, 70A, 71A	skip), exon 14, (exon 15-19 combined skip), (exon 15-22 combined skip) exon 26, (exon 33-34 combined skip) , exon 42, 52, 55, (exon 65- 67 combined skip),	5' truncation of exon 8, 19, 46, 64		
<i>ADGRV1</i>	ENST00000405460.9	Exon 1A, 39A inclusion observed in ~50% of reads, 86A	Exon 77A, 77B, 77C, 79A, 79B, 86A	Exon 4	Exon 67, 76, (exon 76-77 combined skip), (exon 88-89 combined skip)	5' extension of exon 28, 58, 89 3' extension of exon 2, 25, 43, 58, 69, 88	Intron 4, 39, 52, 56, 64, 88
						5' truncation of exon 26, 42, 52	
<i>WHRN</i>	ENST00000362057.4	Exon 2A, 7B inclusion observed in ~80% of reads (7B + 7G combined)	(Exon 7A + 7B combined), 7C, 7D 7E, 7F, 7G, 7H	Exon 3, 7	Exon 4, (exon 5+6 combined skip)	3' truncation of exon 6, 49 5' extension of exon 5 3' extension of exon 4	Intron 4 retention observed in ~50% of reads
<i>CLRN1</i>	ENST00000327047.6	-	-	-	-	5' truncation of exon 7, 10 3' truncation of exon 9	Intron 6, (combined intron 4 + 9 retention)
<i>ARSG</i>	ENST00000621439.5	Exon 8A, 10A, alternative terminal exon	Alternative transcription start site 5' of canonical exon 1, Exon 2A, 10B, 10C, 10D	-	(Exon 7+8 combined skip), (exon 9+10 combined skip)	5' extension exon 9 3' extension exon 2, 3, 5, 6, 11,	-

*Curated MANE select transcripts that were used to annotate observed events.

** Novel identified exons are designated with alphabetical labels (e.g., 'A', 'B') to denote their relative positioning. For instance, '30A' indicates a novel exon observed downstream of the canonical exon 30.

Supplemental_Table_S2: Descriptive sample statistics.

Sequencing sample	S1	S2	S3	S4
	(m64167e_210819_0120 15)	(m64167e_210902_1210 11)	(m64167e_210903_1210 24)	(m64037e_211216_1609 15)
Retina sample	Sample 1	Sample 2	Sample 3	Sample 2
Library preparation method	Standard	Standard	Standard	Long transcript enrichment
<i>Sequel II output</i>				
Polymerase reads	5,063,614	7,011,790	6,942,704	6,354,053
Mean subread length	3,060	1,848	2,113	4,514
CCS3 reads	3,353,662	4,216,550	4,044,519	4,017,245
CCS0 reads				5,573,627
Reads with intron retention (%)*	28.45	26.16	20.37	42.9 (CCS3) 42.8 (CCS0)
<i>Isoquant dataset 1</i>				
Total unique transcripts#	45,539	48,514	49,456	
FSM	25,809	28,166	28,583	
NNIC	8,063	8,240	8,694	
NIC	11,667	12,109	12,109	
<i>Isoquant dataset 2</i>				
Total unique transcripts#	44,411	46,525	46,877	41,019
FSM	23,619	25,733	26,161	21,880
NNIC	8,838	8,766	9,000	7,866
NIC	11,954	12,026	11,716	11,273
<i>Isoquant dataset 3</i>				
Total unique transcripts#			44,646	
FSM			23,070	
NNIC			9,226	
NIC			12,350	

* Percentage of intron retention calculated from the read assignment file produced by isoquant.

Counts of total transcripts calculated from the isoquant transcript model grouped counts file. FSM = Full Splice Match, NNIC = Novel Not In Catalog, NIC = Novel In Catalog.

Supplemental_Table_S4: Mean qPCR CT values of cDNA samples before and after Samplix Xdrop Sort

Target	Mean CT value unenriched sample	Mean CT value enriched sample
<i>USH2A</i> 5' Front	25.8	13.4
<i>USH2A</i> Middle	25.7	15.7
<i>USH2A</i> 3' End	23.7	17.9
<i>ADGRV1</i> 5' Front	26.4	16.3
<i>ADGRV1</i> Middle	24.5	16.5
<i>ADGRV1</i> 3' End	26.1	12.2

Supplemental_Table_S5: Details of human neural retina samples used for PacBio Iso-Seq

Sample ID	Sex	Age	Time until enucleation	RIN value
Sample 1	Male	59	2 hours 35 minutes	8.2
Sample 2	Male	63	9 hours 5 minutes	7.3
Sample 3	Female	58	11 hours 55 minutes	7.5

Supplemental_Table_S6: Composition of *USH2A* and *ADGRV1* detection sequence and validation sequence primers.

Primer ID	Forward sequence	Reverse Sequence	Targeted exons
<i>USH2A</i> Front dPCR	ACAACTGAGACTGCTGTTAAC	GACCATGGCACTGACATCTC	8-9
<i>USH2A</i> Front qPCR	GCAAAGCAAACGTTATTGGGCT	TACACTGGCAGGGCTCACAT	12-13
<i>USH2A</i> Middle dPCR	GAAAGCCTATAGTGAGGACAGCA	TCTCAGTACAGGCCAGCCAAA	30-31
<i>USH2A</i> Middle qPCR	TGTTTCGGTTGGTTGCCTCC	GGTCCAGGTTGTCCCTCTGC	40-41
<i>USH2A</i> End dPCR	TGGAGTGACACCTCCTCC	CCTTCGTCAAGTCGTGCAGAT	68-69
<i>USH2A</i> End qPCR	ACTGTGGGAAGCCATCATGG	TGTCTGTGAATGTGGTGCCT	71-72
<i>ADGRV1</i> Front dPCR	ACTGAATGGCACTGGAGGAG	AGTTGGCAGTCTCACCTTCC	13-14
<i>ADGRV1</i> Front qPCR	TGCTAGCAAGATTGGATGGGA	ACAATGGTGGCACTTCCCAA	16-17
<i>ADGRV1</i> Middle dPCR	GGCTTGTCTTCAGCCAATG	GCTGGTGTGAAGGAGTGGAT	50-51
<i>ADGRV1</i> Middle qPCR	CTCCTTCACACCAGCCTCAG	CGCTCCGAATTCCAGCAGTA	49-50
<i>ADGRV1</i> End dPCR	ATAAAGTGGACGTGGTGCCA	AAACGTCCACCGACAAGCAT	70-71
<i>ADGRV1</i> End qPCR	GCAACATGACCCCAACACTG	CAACCAGGGCTAGGAAACGT	72-73

Supplemental_Table_S7: Details of human neural retina samples used for Oxford Nanopore Technology sequencing.

Sample ID	Time until enucleation	RIN value	Reads (passed)
Sample 1	< 20 hours	> 8	10,206,706
Sample 2	< 20 hours	> 8	18,463,865
Sample 3	< 20 hours	> 8	11,388,116

Supplemental_Table_S8: *MYO7A* and *WHRN* qPCR primer sequences

Primer ID	Forward sequence	Reverse Sequence	Targeted exons
<i>MYO7A</i> 5' canonical start	CTTCCTGAGTCCTCCGTGC	CACATGGTCCCCCTGCTG	1-2
<i>MYO7A</i> 5' alternative start	ACCAGGCGTTCAAGACCTAC	CATCATCCACCACCTGGACC	Alt.1-2
<i>MYO7A</i> 3' end	ACGTCACTGGGCTACAAGATG	CTCCCCGTGACTGTTCACTT	48-49
<i>GUSB</i>	AGAGTGGTGTGAGGATTGG	CCCTCATGCTCTAGCGTGTC	2-3
<i>WHRN</i> exon 7B	GACCTGATGGAGAACACTCTG	GATCTGACATCATCCACGGAC	7B - 9
<i>WHRN</i> intron 4 retention	CTGGAGATGTGTCTTCCC	CCCTTGAAAATCCTGGCTTG	Intron 4 – exon 5-6
<i>WHRN</i> exon 8-9	TCTGGACCTGGAGGAACTG	GGAGGTGGATCTGACATCATC	8-9

Reference list:

Adato A, Vreugde S, Joensuu T, Avidan N, Hamalainen R, Belenkiy O, Olender T, Bonne-Tamir B, Ben-Asher E, Espinosa C et al. . 2002. USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. *Eur J Hum Genet* 10(6):339-50.

Ahmed ZM, Riazuddin S, Aye S, Ali RA, Venselaar H, Anwar S, Belyantseva PP, Qasim M, Riazuddin S, Friedman TB. 2008. Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome. *Hum Genet* 124(3):215-23.

Joensuu T, Hamalainen R, Yuan B, Johnson C, Tegelberg S, Gasparini P, Zelante L, Pirvola U, Pakarinen L, Lehesjoki AE et al. . 2001. Mutations in a novel gene with transmembrane domains underlie Usher syndrome type 3. *Am J Hum Genet* 69(4):673-84.

McMillan DR, Kayes-Wandover KM, Richardson JA, White PC. 2002. Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. *J Biol Chem* 277(1):785-92.

Nagel-Wolfrum K, Fadl BR, Becker MM, Wunderlich KA, Schafer J, Sturm D, Fritze J, Gur B, Kaplan L, Andreani T et al. . 2023. Expression and subcellular localization of USH1C/harmonin in human retina provides insights into pathomechanisms and therapy. *Hum Mol Genet* 32(3):431-449.

Riepe TV, Stemerding M, Salz R, Rey AD, de Brujin SE, Boonen E, Tomkiewicz TZ, Kwint M, Gloerich J, Wessels H et al. . 2024. A proteogenomic atlas of the human neural retina. *Front Genet* 15:1451024.

Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Muller U. 2002. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. *Proc Natl Acad Sci U S A* 99(23):14946-51.

Skradski SL, Clark AM, Jiang H, White HS, Fu YH, Ptacek LJ. 2001. A novel gene causing a mendelian audiogenic mouse epilepsy. *Neuron* 31(4):537-44.

Yagi H, Takamura Y, Yoneda T, Konno D, Akagi Y, Yoshida K, Sato M. 2005. Vlgr1 knockout mice show audiogenic seizure susceptibility. *J Neurochem* 92(1):191-202.