SUPPLEMENTAL METHODS

BIOSURFER FOR SYSTEMATIC TRACKING OF REGULATORY MECHANISMS LEADING
TO PROTEIN ISOFORM DIVERSITY



1. Retrieving information
1.1 Integrating the input data

Biosurfer reads input data from several files: (i) transcript FASTA file for nucleotide sequences, (ii)
protein FASTA file for amino acid sequences, and (iii) GTF file for exon structures, coding regions
(CDS), and transcript coordinates. These input files are required to capture information about transcript
isoforms and their corresponding protein products. Functions from the database modules are used to
manage the SQL.ite3 database and load data from GTF and FASTA files.

1.2 Populating SQL.ite Database

The Biosurfer utilizes SQL.ite database to organize genomic information extracted from input files (GTF,
transcript FASTA, and protein FASTA). Upon loading data using functions like load_gencode_gtf,
load_pacbio_gtf (for GTF files generated from Long-Read Proteogenomics pipeline (1)),
load_transcript_fasta, and load_translation_fasta, the database is populated with tables representing
genomic entities. These tables include Chromosome, Gene, Exon, ORF (Open Reading Frame),
Transcript, and Protein, each designed to store specific attributes such as gene accession IDs, transcript
names, genomic coordinates, sequence information, and feature annotations. Relationships between
entities are established through foreign keys, such that data integrity is ensured.

2. Multi-layered comparison of isoforms

Biosurfer compares pairs of transcript-, ORF-, and protein-level sequences for each gene. For each gene,
one isoform is selected as reference and the other isoforms are denoted as alternative. The designation of
the reference isoform is user-defined. We first align the transcript sequences based on transcript
coordinates and generate t-blocks (see Section 2.1). Then, we align the open reading frames (ORFs) at
codon-centric level (built on t-blocks) and create c-blocks (see Section 2.2). Finally, we align the protein
sequences by grouping c-block information to define p-blocks (see Section 2.3). These three block types
define the alternative splicing events between the reference and alternative isoforms at three different
levels.

2.1 Transcript-centric alignment (t-blocks)

The transcript-centric layer represents the alignment of a pair of transcript isoform sequences. The basic
unit of each sequence in this layer is a nucleotide. The transcripts of the isoform pair are assumed to have
high-quality alignments to a reference genome, so one can use the genome coordinates to align the
reference and alternative isoforms at the transcript level. The aligned nucleotide locations are compared,
so that ranges of contiguous segments of the transcript that are present in one, the other, or both isoforms
are found. These shared or unique contiguous segments are called t-blocks. Note that a t-block can
include several exons that are separated by introns in genomic coordinates. The t-blocks are defined by an
algorithm that models each transcript as a bi-partite graph of matching or partially overlapping introns, as
well as custom functions to classify the patterns (see Supplementary File 1 step 2 for more details).

The t-blocks are categorized into three types. If both, reference and alternative, isoforms have the same t-
block, that t-block is defined a Match t-block. If the t-block is exclusive to the reference isoform and
absent in the alternative isoform, that t-block is defined a Deletion t-block. If the t-block is exclusive to
alternative isoform and absent in reference isoform, that t-block is defined an Insertion t-block. The
variations observed at transcript level include: altTSS, exon skipping, exon alternative donor, exon



alternative acceptor, intron retention, and APA. The code classifies alternative splicing events into two
classes: basic transcript event class and compound transcript event class. A basic transcript event class
includes intron splice events, donor splice events, acceptor splice events, exon splice events, and exon
bypass events. A compound transcript event class includes combination(s) of several basic transcript
events (e.g., exon skipping in addition to alternative donor, see Supplementary File 1 step 3 for more
details).

2.2 Codon-centric alignment (c-blocks)

The codon-centric layer represents an alignment of open reading frames (ORFs) of the reference and
alternative isoforms. The basic unit of each sequence in this layer is a codon. The alignment for this layer
is based on the transcript alignment done in the previous step. Specifically, we first convert the coordinate
of ORF region on each transcript into a 0-based coordinate. The first adenine of the AUG is considered
index 0, and the last index is the last nucleotide of the stop codon (e.g., A of TGA). Therefore, the
coordinates in 5° UTR are negative. The relative position of reference and alternative sequences remains
the same as it was previously aligned at the transcript level.

To compare reference and alternative sequences at the codon level, each t-block needs to be further sub-
segmented and sub-classified based on the translational status. We created temporary objects called
translation status-annotated t-blocks (TSA t-blocks) using the previously created t-blocks. These TSA t-
blocks are sub-segmented based on the translational status of each nucleotide (see Supplementary File 1
step 6 for more details). Any TSA t-blocks that are not translated are discarded. Each remaining TSA t-
block is converted into a c-block for further classification.

The classification of c-blocks is the most complicated one in Biosurfer, but it carries information from
transcriptional to translational level, therefore it is the most critical in this pipeline. The c-blocks are
classified based on the codon pairs between reference and alternative sequences. Therefore, we first need
to classify each codon pair based on the alignment. The c-blocks are formed by aligning the ORFs based
on overlapping codons in genomic space and systematically comparing codons from the reference and
alternative isoforms.

The classification of codon pairings between the reference and alternative sequences is based on the
following a four-step protocol that analyzes the mutual position of the codon as well as their base
overlaps. First, we detect all pairs of codons that are identical and their positions match (Tablel,
Supplemental Figure S3A). We call them Match codons. Other simple cases include Deletions codon—
those in which the reference codon matches to an empty ‘placeholder’ codon in the alternative isoform,
and Insertion codons — those in which the alternative codon matches to an empty ‘placeholder’ codon in
the reference isoform.

Second, we detect the contiguous codons that are frameshifted and have a 2-base overlap. Third, we
determine the codons that are split and only partially overlapped (1 or 2 bases, see Tablel, Supplementary
Fig S3B and C). When genomically aligning codons from the reference and alternative isoforms, if a
codon is split and only partially overlaps with its counterpart, Biosurfer employs a strategy using
placeholder codons. These placeholders are temporary markers within the code, that help to correctly
position the codon blocks despite partial overlaps.

The pairs of codons that are annotated during the above three steps are referred to as “paired” codons.
Last, we collect all other cases, for which the pairs of codons are referred to as “unpaired” (Tablel,
Supplementary Figure S3B). Overall, the paired and unpaired codons are classified into 9 categories



based on their translation status, frameshift status, and codon topology (Table 1). We will discuss how
Biosurfer treats the split codons in more details in Section 2.2.1.

After full classification of every paired codon across the two isoforms, we classify the c-blocks.
Specifically, we group the paired codons wherein any contiguous stretch of the same category (e.g.,
Match codon, Insertion codon, or Edge codon) into codon alignment blocks or c-blocks. The pseudocode
for codon-centric alignment is provided below:

1. Traversing t-blocks:

For each t-block:

- Determine the corresponding codon alignment category

- Map

-- Codon alignment categories are defined within the
‘CodonAlignment’ class

—-— Within each t-block the corresponding codon alignment category
is determined based on the categorization of that t-block (Match,
Deletion, or Insertion)

the c-block to the appropriate t-block

2. Codon categorizing (Match, Insertion, Deletion, Translated,
Untranslated) :

For each c-block:

Determine its category based on its properties (if the c-blocks are

match

or have same genomics position); the code prioritizes complete 3/3

positional matches when categorizing codons:

Determine ORF boundaries of the isoforms based on the sequences

Match: t-blocks are Match, and both sequences are within ORF
boundaries

Translated: t-blocks are Match, but reference sequence is out of
ORF boundaries

Untranslated: t-blocks are Match, but alternative sequence is out
of ORF boundaries

Insertion: t-blocks are Insertion

Deletion: t-blocks are Deletion

3. Frameshift detection (Frameahead, Framebehind):

For each frameshift block detected:

Determine if it is ahead or behind the reading frame
Overhang calculation

-- Compare overhang of ref and alt to check if it is Frameahead
or Framebehind



-— If the difference results in an overhang of 1 or 2 codons in
ref compared to alt, then it is Frameahead

-—- If the difference results in an overhang of 1 or 2 codons in
alt compared to ref, then it is Framebehind

4. Codon boundary adjustment:

- Calculate protein coordinates and infer codon categories for each
aligned c-block

- Store boundaries, overhangs, and categories for adjustments
- Iterate to adjust block boundaries based on overhangs and categories
- Merge consecutive c-blocks of the same category

5. Edge case handling:

- Incomplete codons are determined by the overhang, mostly near ORF
boundaries or in case of frameshifts

- Use placeholders to accurately align the c-blocks

- This is done in such a manner that it maintains the mapping between
the c-block and corresponding t-block

2.2.1. Identification and characterization of split codons in Biosurfer

Junctions divide exons that code for a protein. Three bases that form a codon (the emphasis is on the
codon, since it gets translated to an amino acid residue) can be distributed differently by the junction site.
Furthermore, at the junction, there can be different combinations of nucleotides from a codon that overlap
between the reference and the alternative. The junctions with the offset phase 0 coincide perfectly with
codon boundaries, which we refer to as ‘contiguous codons’. The junction with phases 1 or 2 lies in
between the codons which we refer to as ‘split codons’.

2.3 Protein-centric Alignment (p-blocks)

The last data structure, p-block, represents a protein-centric layer defined through t- and c-block guided
comparisons of two protein isoforms. The basic unit of each sequence in this layer is an amino acid
residue. We first classify p-blocks based on the changes happening between the reference and alternative
protein products as Match, Insertion, Deletion, or Substitution. Note that the Substitution p-blocks must
arise from a combination of insertion/deletion/frameshift events found at the c-block level. Overall, the
changes in p-blocks are agnostic to the upstream mechanism; however, at the same time, the upstream
mechanisms can be retrieved and analyzed within Biosurfer, unlike traditional protein aligners, which
lack such context. This tracking ability is due to the fact that c-blocks are grouped into p-blocks in a
“bottom-up” manner, from the algorithmic perspective, thus maintaining precise links between the protein
layer and the underlying codon and transcript layers.

However, at a more granular level, these affected regions are typically the flanked paired codons, which
are interposed between the transition of any two p-block types. Such c-blocks, which comprise a single
paired codon, must be further examined to determine if the identity of the paired AA residues at such
boundaries is the same or different. Therefore, for such flanking codons, which we term Edge Codons, we



must determine their AA identity. If the AA identities match, then the c-block is grouped with the
adjacent Match p-block. If the AA identities differ, then the c-block is grouped with the adjacent non-
Match p-block, which now has a tag as containing a “ragged” codon.

In particular, the Insertion and Deletion p-blocks that contain one or more “ragged” Edge Codons are not
polypeptide insertions/deletions, strictly defined, per say, but practically speaking, we still classify them
as Insertions/Deletions at the broad p-block category level with a “ragged” codon attribute (see Table 1).

3. Information analysis and visualization

Biosurfer generates summary tables for c-blocks and p-blocks derived from open reading frames (ORFs) ,
representing codons and amino acids from regions that differ between each pair of query isoforms. These
tables, which include annotations such as associated splicing mechanisms (see Figure 1, bottom panel),
are a result of a multi-layered isoform alignment process. The data structures used for isoform comparison
at the t-block, c-block, and p-block layers are used in creating these summary tables. The c-block
summary table incorporates information on obtained t-blocks, listing respective blocks with annotations
across different categories for a pair of reference and alternative isoforms. Additionally, Biosurfer
annotates events such as alternative transcription, splicing, and polyadenylation events, elucidating the
transcriptional processing events leading to transcript variation. The example summary table outputs for
GENCODE v42 and WTC11 can be found in Supplementary Tables S3, S4, S11, S12.

Biosurfer's plotting module, leveraging Python's Matplotlib library, enables the simultaneous
visualization of transcript structure, ORF boundaries, and altered protein regions across isoforms of a
gene (Figure 1, bottom panel). The APPRIS principal isoform serves as the reference for comparison via
the multi-layered isoform comparison. This module incorporates customizable features for track spacing,
exon-intron visualization, and legend annotations, allowing it to represent intron-exon boundaries,
start/stop codons, splice events, frameshifts, and codon/protein alignment blocks in a clear and
informative manner.

4. References
1) https://github.com/sheynkman-lab/Long-Read-Proteogenomics



	SUPPLEMENTAL METHODS

