SUPPLEMENTAL CODE

BIOSURFER FOR SYSTEMATIC TRACKING OF REGULATORY MECHANISMS LEADING
TO PROTEIN ISOFORM DIVERSITY

This supplementary file contains the source code for Biosurfer (main) and Biosurfer-Analysis,
which accompany the manuscript.

¢ Biosurfer (main) is the core codebase of the tool and is also available on GitHub:
https://github.com/sheynkman-lab/biosurfer

e Biosurfer-Analysis includes analysis scripts utilized in the accompanying manuscript to
demonstrate the application of Biosurfer. Can be found on GitHub:
https://github.com/sheynkman-lab/biosurfer_analysis

e All the input, intermediate, and final output files can be found on Zenodo:
https://zenodo.org/records/13243233

Biosurfer (main) codebase
The directory structure of the Biosurfer codebase is outlined below:

biosurfer/

F—— analysis

F—— genome wide analysis.py
F—— load gencode database.py
L— plot biosurfer.py

core
F—— alignments.py
F—— constants.py
F—— database.py
F—— helpers.py
F—— splice events.py
L— models
F—— base.py

F—— biomolecules.py
F—— features.py
L — nonpersistent.py
plots
L — plotting.py

I

https://github.com/sheynkman-lab/biosurfer
https://github.com/sheynkman-lab/biosurfer_analysis
https://zenodo.org/records/13243233

genome_wide_alignhment_analysis.py
%%

import multiprocessing as mp

import sys

from itertools import chain, starmap
from operator import attrgetter

from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from biosurfer.core.alighments import (CodonAlignment, ProteinAlignment,
SeqAlignCat, TranscriptAlignment)
from biosurfer.core.constants import APPRIS, CTerminalChange, NTerminalChange
from biosurfer.core.database import Database
from biosurfer.core.helpers import ExceptionLogger
from biosurfer.core.models.biomolecules import (ORF, Gencodelranscript, Gene,
PacBioTranscript,
Protein,
Transcript)
from biosurfer.core.splice_events import (BasicTranscriptEvent,
CompoundTranscriptEvent, SpliceEvent,
get_event_code)
from IPython.display import display
from more_itertools import first, one, only
from sglalchemy import func, select, and_
from tgdm import tgdm
import os
import pickle

def run_hybrid_alignment_for_all_genes(db_name, output_dir: 'Path’, gencode: bool =
False, gene_to_anchor_tx: dict[str, str] = None):
""" Runs hybrid alignment on input database and saves tables of p-blocks and c-blocks.
Args:
db_name: User input database name
output_path: Directory to write output to.

Returns:
Nothing

plt.rcParams]['svg.fonttype'] = 'none'

sns.set_style('whitegrid'’)

cblock_dir = output_dir/'cblock-tables'

log_dir = output_dir/'alighment-errors'

for dir in (cblock_dir, log_dir):
dir.mkdir(exist_ok=True)

tgdm.write('Retrieving cblock tables')

cblock_df = get_cblocks(db_name, cblock_dir, log_dir, gencode, gene_to_anchor_tx)
tgdm.write('"Assembling pblock table')

get_pblocks(cblock_df, output_dir)

def process_chr(chr: str, db_name: str, log_file: 'Path’', gencode: bool, gene_to_anchor_tx:
dict[str, str]):

db = Database(db_name)

gene_to_gc_transcripts: dict[str, list[str]] = dict()

gene_to_pb_transcripts: dict[str, list[str]] = dict()

cblock_records =]

with open(log_file, 'w') as flog:
def process_gene(gene_name: str):
out =[]
with db.get_session() as session:
gc_transcripts: dict[str, 'GencodeTranscript'] =
Gencodelranscript.from_names(session, gene_to_gc_transcripts[gene_name])
pb_transcripts: dict[str, 'PacBioTranscript'] = {tx.accession: tx for tx in
PacBioTranscript.from_accessions(session, gene_to_pb_transcripts[gene_name]).values()}

choose anchor isoform for gene
if gene_to_anchor_tx:
anchor_id = gene_to_anchor_tx.get(gene_name, None)
if anchor_id in gc_transcripts:
anchor = gc_transcripts[anchor_id]
elif anchor_id in pb_transcripts:
anchor = pb_transcripts[anchor_id]
else:
anchor = None
elif gc_transcripts: # by default, use APPRIS principal as anchor
anchor = max(gc_transcripts.values(), key=attrgetter(‘appris'))
if anchor.appris is not APPRIS.PRINCIPAL:
anchor = None
else:
anchor = None

if not anchor or not anchor.protein or not anchor.sequence:
return out

principal_length = anchor.protein.length

anchor_start_codon =
anchor.get_genome_coord_from_transcript_coord(anchor.primary_orf.transcript_start - 1)

anchor_stop_codon =
anchor.get_genome_coord_from_transcript_coord(anchor.primary_orf.transcript_stop - 1)

if gencode:
alt_transcripts = [tx for tx in chain(gc_transcripts.values(), pb_transcripts.values())
if tx is not anchor]
else:
alt_transcripts = [tx for tx in pb_transcripts.values() if tx is not anchor]

for alternative in alt_transcripts:
pblocks = ()
with ExceptionLogger(info=f'{anchor}, {alternative}, output=flog):
other_start_codon =
alternative.get_genome_coord_from_transcript_coord(alternative.primary_orf.transcript_st
art-1)
other_stop_codon =
alternative.get_genome_coord_from_transcript_coord(alternative.primary_orf.transcript_st
op-1)
anchor_starts_upstream = anchor_start_codon <= other_start_codon
anchor_stops_upstream = anchor_stop_codon <= other_stop_codon

alternative_length = alternative.protein.length
tx_aln = TranscriptAlignment.from_transcripts(anchor, alternative)
cd_aln = CodonAlignment.from_proteins(anchor.protein, alternative.protein)
pr_aln = ProteinAlignment.from_proteins(anchor.protein, alternative.protein)
pblocks = pr_aln.blocks
anchor_start_cblock = one(cd_aln.anchor_blocks.at(0)).data
other_start_cblock = one(cd_aln.other_blocks.at(0)).data
anchor_stop_cblock = one(cd_aln.anchor_blocks.at(principal_length - 1)).data
other_stop_cblock = one(cd_aln.other_blocks.at(alternative_length - 1)).data
for p, pblock in enumerate(pblock for pblock in pblocks if pblock.category is not
SegAlignCat.MATCH):
for ¢, cblock in enumerate(pr_aln.pblock_to_cblocks[pblock]):
tblock = cd_aln.cblock_to_tblock.get(cblock)
events = tx_aln.block_to_events.get(tblock, ())
row = {
‘anchor': anchor.name,
'other': alternative.name,

'pblock_number': p,

'pblock_category': pblock.category.name,

'pblock_anchor_start': pblock.anchor_range.start,

'pblock_anchor_stop': pblock.anchor_range.stop,

'pblock_other_start': pblock.other_range.start,

'pblock_other_stop': pblock.other_range.stop,

‘cblock_number': c,

'cblock_category': cblock.category.name,

'‘cblock_anchor_start': cblock.anchor_range.start,

'cblock_anchor_stop': cblock.anchor_range.stop,

'‘cblock_other_start': cblock.other_range.start,

'cblock_other_stop': cblock.other_range.stop,

'tblock_category': tblock.category.name if tblock else ",

'tblock_anchor_start': tblock.anchor_range.start if tblock else ",

'tblock_anchor_stop': tblock.anchor_range.stop if thlock else ',

'tblock_other_start': tblock.other_range.start if tblock else ',

'tblock_other_stop': tblock.other_range.stop if thlock else ',

'events': get_event_code(events),

‘compound_splicing':
any(set(events).intersection(compound_event.members) for compound_event in
tx_aln.events if isinstance(compound_event, SpliceEvent) and
len(compound_event.members) > 1),

‘affects_up_start': anchor_starts_upstream and cblock is
anchor_start_cblock or not anchor_starts_upstream and cblock is other_start_cblock,

'‘affects_down_start': anchor_starts_upstream and cblock is
other_start_cblock or not anchor_starts_upstream and cblock is anchor_start_cblock,

'affects_up_stop': anchor_stops_upstream and cblock is
anchor_stop_cblock or not anchor_stops_upstream and cblock is other_stop_cblock,

'affects_down_stop': anchor_stops_upstream and cblock is
other_stop_cblock or not anchor_stops_upstream and cblock is anchor_stop_cblock,

'up_start_events': ',

en

'down_start_events': ",

'up_stop_events'": ",

'down_stop_events': ",

‘anchor_length': principal_length,

'other_length'": alternative_length,

'‘cblock_anchor_seq':
anchor.protein.sequence[cblock.anchor_range.start:cblock.anchor_range.stop],

‘cblock_other_seq':
alternative.protein.sequence[cblock.other_range.start:cblock.other_range.stop],

}

if cblock is anchor_start_cblock:

start_events = get_event_code(i.data foriin
tx_aln.anchor_events.overlap(anchor.primary_orf.transcript_start - 1,
anchor.primary_orf.transcript_start + 2) if isinstance(i.data, BasicTranscriptEvent))
if anchor_starts_upstream:
row['up_start_events'] = start_events
else:
row['down_start_events'] = start_events
elif cblock is other_start_cblock:
start_events = get_event_code(i.data foriin
tx_aln.other_events.overlap(alternative.primary_orf.transcript_start - 1,
alternative.primary_orf.transcript_start + 2) ifisinstance(i.data, BasicTranscriptEvent))
if anchor_starts_upstream:
row['down_start_events'] = start_events
else:
row['up_start_events'] = start_events
if cblock is anchor_stop_cblock:
stop_events = get_event_code(i.data foriin
tx_aln.anchor_events.overlap(anchor.primary_orf.transcript_stop - 3,
anchor.primary_orf.transcript_stop) if isinstance(i.data, BasicTranscriptEvent))
if anchor_stops_upstream:
row['up_stop_events'] = stop_events
else:
row['down_stop_events'] = stop_events
elif cblock is other_stop_cblock:
stop_events = get_event_code(i.data foriin
tx_aln.other_events.overlap(alternative.primary_orf.transcript_stop - 3,
alternative.primary_orf.transcript_stop) if isinstance(i.data, BasicTranscriptEvent))
if anchor_stops_upstream:
row['down_stop_events'] = stop_events
else:
row['up_stop_events'] = stop_events
out.append(row)
return out

tgdm.write(f'Loading gene and transcript names for {chr}...)
with db.get_session() as session:
if gene_to_anchor_tx:
condition = and_((Gene.chromosome_id == chr),
Gene.name.in_(gene_to_anchor_tx))
else:
condition = (Gene.chromosome_id == chr)
rows = session.execute(
select(Gene.name, Transcript.name, Transcript.accession, Transcript.type).
select_from(Protein).

join(Protein.orf).
join(ORF.transcript).
join(Transcript.gene).
where(condition)
)-all()
for gene_name, tx_name, tx_acc, tx_type in rows:
gc_txs = gene_to_gc_transcripts.setdefault(gene_name, [])
pb_txs = gene_to_pb_transcripts.setdefault(gene_name, [])
if tx_type == 'gencodetranscript':
gc_txs.append(tx_name)
elif tx_type == 'pacbiotranscript":
pb_txs.append(tx_acc)

t=tgdm(desc='Processing genes', total=len(gene_to_gc_transcripts), unit='gene,
file=sys.stdout)

for result in map(process_gene, gene_to_gc_transcripts.keys()):
cblock_records.extend(result)
t.update()

chr_df = pd.DataFrame.from_records(cblock_records)
return chr_df

def get_cblocks(db_name: str, output_dir: 'Path’, log_dir: 'Path’, gencode: bool,
gene_to_anchor_tx: dict[str, str]):

chrs =[f'chr{i} foriin list(range(1, 23)) + ['X']]
dfs: dict[str, pd.DataFrame] = dict()

FIXME: should discard old runs if options are different
for chrin chrs:

df_file = output_dir/f'cblocks-{chr}.tsv'
try:
dfs[chr] = pd.read_csv(df_file, sep="\t")
except:
log_file = log_dir/f'{chr}.txt'
dfs[chr] = process_chr(chr, db_name, log_file, gencode, gene_to_anchor_tx)
dfs[chr].to_csv(df_file, sep="\t, index=False)

cblock_df = pd.concat(dfs.values(), keys=dfs.keys(), names=['chr,
'row']).fillna(value=").reset_index().drop(columns="'row")

cblock_df['other_accession'] = cblock_df['other'].str.split('|').str.get(1)
return cblock_df

def get_pblocks(cblock_df: pd.DataFrame, output_dir: 'Path’):

pblock_attrs =['anchor’, 'other’, 'pblock_number']

pblock_groups = cblock_df.groupby(pblock_attrs)

pblocks = pblock_groups|[['pblock_category', 'pblock_anchor_start),
'pblock_anchor_stop!, 'pblock_other_start', 'pblock_other_stop']].first()

pblocks['pblock_category'] = pblocks['pblock_category'].astype('category’)

pblocks['aa_loss'] = pblocks['pblock_anchor_stop'] - pblocks['pblock_anchor_start']

pblocks['aa_gain'] = pblocks['pblock_other_stop'] - pblocks['pblock_other_start']

pblocks['length_change'] = pblocks['aa_gain'] - pblocks['aa_loss']

pblocks[['anchor_length, 'other_length']] = pblock_groups[[‘anchor_length’,
'other_length']].first()

pblocks['anchor_relative_length_change'] = pblocks['length_change'] /
pblocks['anchor_length']

for colin ('up_start!, '"down_start', 'up_stop', 'down_stop'):
indices = pblock_groups['affects_' + col].idxmax()
pblocks[col +'_cblock_category'] =
cblock_df['cblock_category'][indices].where(pblock_groups['affects_' + col].any().array,
other='-').array
pblocks[col +'_cblock_events'] =
cblock_df['events'][indices].where(pblock_groups['affects_' + col].any().array,

other=").array
pblocks[col +'_events'] = pblock_groups[col + '_events'].max()

for colin ('up_start_events', 'down_start_events', 'up_stop_events', 'down_stop_events'):
pblocks[col] = pblock_groups[col].max()

nterm_cat = pd.CategoricalDtype((m.name for m in NTerminalChange), ordered=True)
cterm_cat = pd.CategoricalDtype((m.name for m in CTerminalChange), ordered=True)

def classify_nterm(upcat, downcat):
if downcat in {{UNTRANSLATED', 'TRANSLATED'}:
return NTerminalChange.ALTERNATIVE_ORF.name
if upcat in {'DELETION', 'INSERTION'}:
return NTerminalChange.MUTUALLY_EXCLUSIVE.name if downcat in {'DELETION,
'INSERTION'} else NTerminalChange.DOWNSTREAM_SHARED.name
elif upcat in {{UNTRANSLATED', 'TRANSLATED'}:
return NTerminalChange.UPSTREAM_SHARED.name if downcat in {'DELETION,
'INSERTION'} else NTerminalChange.MUTUALLY_SHARED.name
elif upcat =="-":
return None
else:
return NTerminalChange.UNKNOWN.name

def classify_cterm(upcat, downcat):

if upcat in {'DELETION/, INSERTION'}:
return CTerminalChange.SPLICING.name
elif upcat in {{FRAME_AHEAD', 'FRAME_BEHIND'}:
return CTerminalChange.FRAMESHIFT.name
elif upcat in {{UNTRANSLATED', 'TRANSLATED'}:
return CTerminalChange.ALTERNATIVE_ORF.name
elif downcat =="-":
return None
else:
return CTerminalChange.UNKNOWN.name

pblocks['nterm'] = list(starmap(classify_nterm, zip(pblocks['up_start_cblock_category'],
pblocks['down_start_cblock_category'])))

pblocks['cterm'] = list(starmap(classify_cterm, zip(pblocks['up_stop_cblock_category'],
pblocks['down_stop_cblock_category'])))

pblocks['nterm'] = pblocks['nterm'].astype(nterm_cat)

pblocks['cterm'] = pblocks['cterm'].astype(cterm_cat)

pblocks['internal'] = pblocks['nterm'].isna() & pblocks['cterm'].isna()

pblocks['cblocks'] = pblock_groups['cblock_category'].apply(tuple)

pblocks['tblocks'] = pblock_groups['tblock_category']l.unique().apply(lambda x:
tuple(filter(None, x)))

pblocks['tblock_events'] = pblock_groups['events'].unique().apply(lambda x:
tuple(filter(None, x)))

pblocks['events'] = pblocks['tblock_events'].apply(lambda x:
frozenset(chain.from_iterable(x)))

pblocks['compound_splicing'] = pblock_groups['compound_splicing'l.agg(any)

pblocks['frameshift'] = pblock_groups['cblock_category'].apply(lambda cblocks:
any(cblockin {'FRAME_AHEAD', 'FRAME_BEHIND'} for cblock in cblocks))

pblocks['split_codons'] = pblock_groups['cblock_category'].apply(lambda cblocks:
any(cblockin {'EDGE', 'COMPLEX'}for cblock in cblocks))

for colin ('anchor_seq', 'other_seq'):
pblocks[col] = pblock_groups['cblock_' + col].agg(".join)

pblocks.to_csv(output_dir/'pblocks.tsv', sep="\t')
return pblocks

%%

load_gencode_database.py

#%%

from biosurfer.core.database import Database

from biosurfer.core.helpers import get_ids_from_gencode_fasta, skip_par_y

import os

#%%
def check_database(gencode_gtf, gencode_tx, gencode_tl, gencode_doms,
pfam_dom_info, prosite_patterns, db_name):
"""Sanity check for SQLite3 database whether it already exists.
Args:
gencode_gtf: Gene annotation file (GTF)
gencode_tx: Transcript reference sequence file (FASTA)
gencode_tl: Translation reference sequence file (FASTA)
gencode_doms: grch38 protein feature file (TSV)
pfam_dom_info: Protein Family mapping file (TSV)
prosite_patterns: PROSITE pattern data file
db_name: User input database name

FH FH oH H H H HF H*

Returns:
Nothing
path = os.getcwd()
db_path = os.path.join(path, "databases")
db_path_list = os.listdir(db_path)

H*+ H oH H H H*

if (db_name + ‘sqlite3') in db_path_list:
print(\n Database already exists. Loading '+ db_name +'...\n")
load_gencode(db_name)
else:
print("\n Creating a new database '+ db_name +'...\n")
create_gencode(gencode_gtf, gencode_tx, gencode_tl, gencode_doms,
pfam_dom_info, prosite_patterns, db_name)

#
#
#
#
#
#

#%%
def create_gencode(gencode_gtf, gencode_tx, gencode_tl, gencode_doms,
pfam_dom_info, prosite_patterns, db_name):
""" Creating new SQLite3 gencode database
Args:
gencode_gtf: Gene annotation file (GTF)
gencode_tx: Transcript reference sequence file (FASTA)
gencode_tl: Translation reference sequence file (FASTA)
gencode_doms: grch38 protein feature file (TSV)
pfam_dom_info: Protein Family mapping file (TSV)
prosite_patterns: PROSITE pattern data file
db_name: User input database name

Returns:

Nothing

db = Database(db_name)

db.recreate_tables()

db.load_gencode_gtf(os.path.abspath(gencode_gtf), overwrite=True)

db.load_transcript_fasta(os.path.abspath(gencode_tx), get_ids_from_gencode_fasta,
skip_par_y)

db.load_translation_fasta(os.path.abspath(gencode_tl), get_ids_from_gencode_fasta,
skip_par_y, overwrite=True)

db.load_domains(os.path.abspath(pfam_dom_info))

db.load_patterns(os.path.abspath(prosite_patterns))

db.load_feature_mappings(os.path.abspath(gencode_doms), overwrite=False)

illustrate_figs.py

%%

from pathlib import Path

import colorsys

import matplotlib as mpl

import matplotlib.colors as mc
import matplotlib.font_manager as fm
import pandas as pd

import seaborn as sns

from scipy.stats import chi2_contingency
from itertools import combinations
from seaborn import color_palette
from re import M

import scipy.stats as stats

import matplotlib.pyplot as plt

import numpy as np

import csv

from matplotlib.patches import Patch

def run_illustrate_analysis(pblock_table:Path, output: Path):
""" Main plot function to invoke plotting for different pipelines/scripts.
Args:
pblock_table (Path): Path to the pblocks.tsv file.
output (Path): Directory to save the illustrations.
Returns:
Nothing

HHHHHHHHHHHHH R
Setting configurations for illustrating figures
B R e R R R R e e e e R R R I S R E R R R R TR R T

font ={
'family': 'sans-serif!,
'sans-serif': ['Arial'],
'weight': 'normal,
'size': 16

}

mpl.rc('font’, **font)

from https://stackoverflow.com/a/49601444
def adjust_lightness(color, amount=0.5):
try:
¢ =mc.cnames|color]
except:
c =color
¢ = colorsys.rgb_to_hls(*mc.to_rgb(c))
chew = colorsys.hls_to_rgb(c[0], max(0, min(1, amount * c[1])), c[2])
return mc.to_hex(cnew)

PBLOCK_COLORS ={
'‘DELETION': '#f800c0/,
'INSERTION': '#00c0f8,
'SUBSTITUTION': '#f8c000),

}

PBLOCK_COLORS['SUBSTITUTION (reference)'] =
adjust_lightness(PBLOCK_COLORS['SUBSTITUTION'], 1)

PBLOCK_COLORS['SUBSTITUTION (alternative)'] =
adjust_lightness(PBLOCK_COLORS['SUBSTITUTION'], 1)

SECTION_COLORS ={
'N-terminal': color_palette('pastel')[2],
'Internal’: color_palette('pastel’)[7],
'C-terminal': color_palette('pastel')[3],
'Full-length': 'none),

}

NTERM_CLASSES ={
'MUTUALLY_EXCLUSIVE': 'Mutually exclusive starts (MSX),
'DOWNSTREAM_SHARED': 'Shared downstream start (SDS)|,
'UPSTREAM_SHARED': 'Shared upstream start (SUS)',
'MUTUALLY_SHARED': 'Mutually shared starts (MSS)'

}
NTERM_COLORS = dict(zip(

NTERM_CLASSES.values(),
color_palette('viridis_r', n_colors=len(NTERM_CLASSES)+1)[:-1]

))

SPLICE_EVENT_COLORS ={
'Intron': '#EBA85F,
'Single exon': '#649FD2,
'Alt. donor': '#86BB6F,
'Alt. acceptor': '#A26FBB),
'‘Compound': '#888888/,
'Frameshift': '#F7D76E],

}

CTERM_CLASSES ={

'SPLICING': 'Splice-driven),

'FRAMESHIFT': 'Frameshift-driven',
}
cterm_splice_palette = color_palette('RdPu_r', n_colors=6)
cterm_frameshift_palette = color_palette('YIOrRd_r', n_colors=5)
CTERM_PALETTE = [cterm_splice_palette[0], cterm_frameshift_palette[0]]

pblocks = pd.read_csv(pblock_table, sep="\t')

HERH R A R R R A
Genome-wide summary illustrations
HERH R A R R R A
gw_output = output / 'gw_summary_plots'
gw_output.mkdir(exist_ok=True)
%% Fig2 panel A: Number of altered isoforms per gene vs number of genes
fig = plt.figure(figsize=(4, 2.4))
bins = list(range(1, 11)) + [100]
ax = sns.histplot(
x=pd.cut(
pblocks.groupby(‘anchor')['other'].nunique(),
bins=bins,
right=False,
labels=[str(x) for x in bins[:-2]] + [f'{bins[-2]}+],
),
shrink=0.75,
color='#888888/,
edgecolor='k|,
alpha=1,
)

ax.set_xlabel('Number of alternative isoforms\nper gene')

ax.set_ylabel('Number of genes')
ax.set_ylim(0, 5000)
output
fig.savefig(gw_output / 'alternative-isoforms-per-gene.png’, dpi=500, facecolor=None,
bbox_inches="tight')
Output source data
pblocks.groupby(‘anchor')['other'].nunique().to_frame(name='count').to_csv(gw_output /
'alternative-isoforms-per-gene-table.tsv', sep="\t')
%% Fig2 panel B: Number of observed pblocks per alternative protein isoforms
fig = plt.figure(figsize=(4, 2.4))
ax = sns.histplot(
x=pd.cut(
pblocks.groupby(['anchor!, 'other']).size(),
bins=[1, 2, 3, 4, 5, 14],
right=False,
labels=["1, '2}, '3}, '4’, '5+']
),
shrink=0.75,
color="'#888888/,
edgecolor='k/,
alpha=1,
)
ax.set_xlabel('Number of altered regions\nper isoform')
ax.set_ylabel('Number of alternative\nprotein isoforms')

output

fig.savefig(gw_output / 'altered-regions-per-isoform.png’, dpi=500, facecolor=None,
bbox_inches="tight')

Output source data

pblocks.groupby(['anchor,
'other']).size().to_frame(name="'num_alt_regions').to_csv(gw_output / 'altered-regions-per-
isoform-table.tsv', sep="\t')

%% Fig2 panel C: Distribution of lengths of the insertion, deletion and substitution
affected regions for proteins

aa_loss = pblocks[pblocks['pblock_category'].isin({'DELETION},
'SUBSTITUTION"})].reset_index()[['anchor!, 'other’, 'pblock_category', 'aa_loss']]

aa_loss['pblock_category'].replace('SUBSTITUTION;, 'SUBSTITUTION (reference)),
inplace=True)

aa_loss.rename(columns={'aa_loss'": 'length'}, inplace=True)

aa_gain = pblocks[pblocks['pblock_category'].isin({'INSERTION,
'SUBSTITUTION'})].reset_index()[['anchor!, 'other!, 'pblock_category', 'aa_gain']]

aa_gain['pblock_category'].replace('SUBSTITUTION', 'SUBSTITUTION (alternative),
inplace=True)

aa_gain.rename(columns={'aa_gain'": 'length'}, inplace=True)

affected_lengths = pd.concat([aa_loss, aa_gain])

binwidth =50
xmax =600
xtick = 200

fig = plt.figure(figsize=(5, 2))
data = affected_lengths[affected_lengths['pblock_category'] = 'SUBSTITUTION
(alternative)']
ax = sns.histplot(
data=data,
x='length’,
binwidth=binwidth,
binrange=(0, xmax),
stat='count),
color='#808080/,
alpha=1,
)
ax.set_xlabel('Length of altered region (amino acids)')
ax.set_ylabel('Number of\naltered regions')
ax.ticklabel_format(axis="y' style='sci' scilimits=(-1, 1))
ax.vlines(data['length'].median(), *ax.get_ylim(), color="#b0b0b0/ linestyle="'-
linewidth=1)

output
fig.savefig(gw_output / 'altered-region-affected-lengths.png', dpi=500, facecolor=None,
bbox_inches="tight'")
Output source data
affected_lengths[affected_lengths['pblock_category'] != 'SUBSTITUTION
(alternative)'].to_csv(gw_output/ 'altered-region-affected-lengths-table.tsv) sep="\t")
%% Fig2 panel D: Distribution of the length of altered protein regions across the
annotated proteome
facets = sns.displot(
data=affected_lengths,
x='length’,
binwidth=binwidth,
binrange=(0, xmax),
stat='count,,
row="'pblock_category,
hue='pblock_category/,
palette=PBLOCK_COLORS,
row_order=('DELETION/, 'INSERTION', 'SUBSTITUTION (reference)’, 'SUBSTITUTION
(alternative)"),
legend=False,

alpha=1,
height=2,
aspect=2.5
)
facets.set_xlabels('Length of altered region (amino acids)')
facets.set_ylabels('Number of\naltered regions')
for category, ax in facets.axes_dict.items():
ax.set_title(category.capitalize())
ax.set_xticks(range(0, xmax + 1, xtick))
ax.ticklabel_format(axis="y' style='sci’, scilimits=(-1, 1))
ax.vlines(affected_lengths[affected_lengths['pblock_category'] ==
category]['length'].median(), *ax.get_ylim(), color="#808080/, linestyle='-' linewidth=1)

output
facets.fig.savefig(gw_output / 'altered-region-affected-lengths-categories.png’, dpi=500,
facecolor=None, bbox_inches='"tight')
Output source data
affected_lengths.to_csv(gw_output / 'altered-region-affected-lengths-categories-
table.tsv', sep="\t')
%% Fig2 panel | =: Substitution scatter plot
plt.figure(figsize=(4.8, 3.6))
ax = sns.histplot(
data=pblocks[pblocks['pblock_category'] == 'SUBSTITUTION'],
x='aa_gain|,
y='aa_loss),
binwidth=binwidth / 2,
stat='count,
color=PBLOCK_COLORS['SUBSTITUTION'],
legend=False,
cbar=True,
cbar_kws={
'label': 'Number of regions’,
2
alpha=1,
)
ax.set_xlim(0, xmax)
ax.set_ylim(0, xmax)
ax.set_xticks(range(0, xmax + 1, xtick))
ax.set_yticks(range(0, xmax + 1, xtick))
ax.set_xlabel('Length of substitution region \nin alternative isoform (AA)")
ax.set_ylabel('Length of substitution region \nin reference isoform (AA)")
output
plt.savefig(gw_output / 'substitution-reference-alternative-lengths.png', dpi=500,
facecolor=None, bbox_inches='"tight')

Rt
¢

Output source data
pblocks.query("pblock_category =='SUBSTITUTION')[['anchor’, 'other!, 'pblock_category,
'aa_gain|, 'aa_loss']].to_csv(gw_output / 'substitution-reference-alternative-lengths-
table.tsv', sep="\t')
%% Fig2 panel D: Pie chart
category_counts = pblocks['pblock_category'].value_counts()
total_pblocks = category_counts.sum()
fig, ax = plt.subplots()
wedges, texts, autotexts = plt.pie(
category_counts,
colors=category_counts.index.map(PBLOCK_COLORS),
wedgeprops={'width': 0.4},
startangle=180,
counterclock=False,
autopct=lambda x: f'{np.round(total_pblocks * x / 100):.0f}\n({x:.0f}%)’,
pctdistance=1.3,
)
for i, wedge in enumerate(wedges):
wedge.set_edgecolor('k")
output
fig.savefig(gw_output / 'altered-region-category-donut.png’, dpi=500, facecolor=None,
bbox_inches="tight')
Output source data
pblocks['pblock_category']l.value_counts().to_csv(gw_output/ 'altered-region-category-
donut-table.tsv, sep="\t")
%%
def get_section(nterm, cterm):
if nterm and cterm:
return 'Full-length’
elif nterm:
return 'N-terminal'
elif cterm:
return 'C-terminal'
else:
return 'Internal’

pblocks['protein_section'] = list(map(get_section, ~pblocks['nterm'].isna(),
~pblocks['cterm'].isna()))
pblock_sections = pblocks['protein_section'].value_counts()

fig, ax = plt.subplots(figsize=(6, 1))

left=0

for section, color in SECTION_COLORS.items():
val = pblock_sections[section]

label = f'{val:g\n({100 * val / pblock_sections.sum():0.1f}%)’
if section =="Full-length':
left += 5000
label_type ="'edge'
padding=5
else:
label_type ='center’
padding=0
bar = plt.barh(
(0],
val,
left=left,
color=color,
edgecolor='k/,
label=section,
)
plt.bar_label(bar, labels=[label], label_type=label_type, padding=padding)
left = left + pblock_sections[section]
ax.legend(loc="upper left!, bbox_to_anchor=(0, 0, 1, -0.1), ncols=2, frameon=False)
plt.axis('off')
output
fig.savefig(gw_output / 'protein-section-counts.png’, dpi=500, facecolor=None,
bbox_inches='"tight'")
Output source data
with open(gw_output / 'protein-section-counts-table.tsv', 'w', newline=") as file:
writer = csv.DictWriter(file, fieldnames=SECTION_COLORS.keys(), delimiter="\t')
writer.writeheader()
writer.writerow(SECTION_COLORS)
%%
HEHHEHH S H A H T
N-term summary illustrations
HEHHEHH AR
nterm_output = output / 'nterm_summary_plots'
nterm_output.mkdir(exist_ok=True)
nterm_pblocks = pblocks[~pblocks['nterm'].isna() & (pblocks['nterm'] !=
'ALTERNATIVE_ORF') & (pblocks['cterm'].isna())].copy()
nterm_pblocks['nterm'].replace(NTERM_CLASSES, inplace=True)
nterm_pblocks['altTSS'] = nterm_pblocks['events'].apply(lambda x:
eval(x).intersection('BbPp')).astype(bool)
%% Fig3 panel A (both Alt TSS and 5' UTR AS)
tss_fig = plt.figure(figsize=(5, 4))
ax = sns.countplot(
data=nterm_pblocks,
y="nterm,,

order=NTERM_COLORS.keys(),
palette=NTERM_COLORS,
edgecolor='k/,
saturation=1,
)
sns.countplot(
ax=ax,
data=nterm_pblocks[nterm_pblocks['altTSS']],
y="nterm,,
order=NTERM_COLORS.keys(),
palette=NTERM_COLORS,
edgecolor='k|,
fill=False,
hatch="//,
)
ax.legend(
loc=(0, 1),
frameon=False,
handles=[Patch(facecolor='w/, edgecolor='k!, hatch='///"), Patch(facecolor='w/
edgecolor="k')],
labels=['Alternative transcription start site, '5\' UTR alternative splicing'],
)
ax.set_xlabel('Number of alternative isoforms')
ax.set_ylabel(None)
plt.savefig(nterm_output / 'nterm-counts-all_mechanism.png', dpi=500, facecolor=None,
bbox_inches='"tight")
Output source data
nterm_pblocks.query("nterm in ['Mutually exclusive starts (MSX), 'Shared downstream
start (SDS)']")[['anchor’, 'other!, 'nterm’, 'altTSS']].to_csv(nterm_output / 'nterm-counts-
all_mechanism.tsv) sep="\t')
%% Fig3 panel C: MXS vs SDS scatterplot
font ={
'family': 'sans-serif!,
'sans-serif': ['Arial'],
'weight': 'normal,
'size': 10
}

mpl.rc('font!, **font)

Filter the dataframe for 'Mutually exclusive starts (MXS)' and 'Shared downstream start
(SDS)'

msx_data = nterm_pblocks[nterm_pblocks['nterm'] == 'Mutually exclusive starts (MSX)']

sds_data = nterm_pblocks[nterm_pblocks['nterm'] == 'Shared downstream start (SDS)']

fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(5.5, 5.5))

msx_color = (0.565498, 0.84243, 0.262877)
sds_color =(0.20803, 0.718701, 0.472873)

sns.scatterplot(data=msx_data, x="aa_loss', y="aa_gain', marker=", ax=axes[0], alpha=0.2,
color=msx_color)

axes[0].set_title('Mutually exclusive starts (MSX)', fontsize=11)

axes[0].set_xlabel('Reference \n(amino acids)’, fontsize=10)

axes[0].set_ylabel('Alternative \n(amino acids)’, fontsize=10)

axes[0].set_xlim(0, 2000)

axes[0].set_ylim(0, 2000)

axes[0].set_aspect('equal’)

axes[0].grid(True, linestyle='--, linewidth=0.5)

sns.scatterplot(data=sds_data, x="aa_loss', y="aa_gain', marker=", ax=axes[1], alpha=0.2,
color=sds_color)
axes[1].set_title('Shared downstream start (SDS)', fontsize=11)
axes[1].set_xlabel('Reference \n(amino acids)’, fontsize=10)
axes[1].set_ylabel('Alternative \n(amino acids)', fontsize=10)
axes[1].set_xlim(0, 2000)
axes[1].set_ylim(0, 2000)
axes[1].set_aspect(‘equal’)
axes[1].grid(True, linestyle='--', linewidth=0.5)
plt.tight_layout()
Save plot
plt.savefig(nterm_output / 'nterm-rel-length-change_scatterplot.png', dpi=500,
facecolor=None, bbox_inches='"tight')
Output source data
nterm_pblocks.query("nterm in ['Mutually exclusive starts (MSX), 'Shared downstream
start (SDS)']")[['anchor’, 'other!, 'aa_loss/, 'aa_gain']].to_csv(nterm_output /
'nterm_mechanism_affected_len.tsv, sep="\t")
%%
HHHHHHH T
Internal region summary illustrations
HHHHHH R HH T
internal_output = output / 'internal_summary_plots'
internal_output.mkdir(exist_ok=True)
internal_pblocks = (
pblocks[pblocks['internal']].
drop(columns=[col for col in pblocks.columns if 'start' in col or 'stop’ in col]).
copy()
)

convert string repr back to Python object
internal_pblocks['tblock_events'] = internal_pblocks['tblock_events'].map(eval)
internal_pblocks['events'] = internal_pblocks['events'].map(eval)

internal_subcats = pd.DataFrame(
{
'Frameshift': internal_pblocks['frameshift'],
'Intron': internal_pblocks['tblock_events'l.isin({('l%), ('i})}),
'Alt. donor': internal_pblocks['tblock_events'].isin({('D",), ('d})}),
'Alt. acceptor': internal_pblocks['tblock_events'].isin({('A}), (‘a')}),
'Single exon': internal_pblocks['tblock_events'].isin({('E"), (‘'e')}),
'‘Compound': [True for _in internal_pblocks.index]
}
)
subcat_order = ('Single exon), 'Alt. acceptor), 'Alt. donor!, 'Intron’, 'Compound),
'Frameshift’)
internal_pblocks['splice_event'] =
internal_subcats.idxmax(axis=1).astype(pd.CategoricalDtype(subcat_order,
ordered=True))
%% Figd panel A: Internal splicing events frequencies
internal_pblocks_fig = plt.figure(figsize=(4.6, 3.8))
ax = sns.countplot(
data=internal_pblocks.sort_values('pblock_category', ascending=True),
y='splice_event,
dodge=True,
hue='pblock_category/
palette=PBLOCK_COLORS,
saturation=1,
edgecolor='k/,
)
plt.legend(loc="center right', labels=['Deletions’, 'Insertions’, 'Substitutions'])
ax.set_xlabel('Number of altered internal regions')
ax.set_ylabel(None)
internal_pblocks_fig.savefig(internal_output / 'internal-events.png’, dpi=500,
facecolor=None, bbox_inches='"tight')
Output source data
internal_pblocks[['splice_event', 'pblock_category']].to_csv(internal_output/ 'internal-
events-table.tsv', sep="\t")
%% Figd panel C: Proportion of each internal protein region that are ragged codons
internal_pblocks_ragged_fig = plt.figure(figsize=(4.6, 3.8))
ax = sns.countplot(
data=internal_pblocks.sort_values('pblock_category', ascending=True),
y="'splice_event,,
palette=SPLICE_EVENT_COLORS,
saturation=1,
edgecolor='k/,
)

sns.countplot(

ax=ax,
data=internal_pblocks[internal_pblocks['split_codons']].sort_values('pblock_category’,
ascending=True),
y="'splice_event,,
fill=False,
edgecolor='k|,
hatch="///,
)
plt.gca()
ax.set_xlabel('Number of altered internal regions')
ax.set_ylabel(None)
internal_pblocks_ragged_fig.savefig(internal_output / 'internal-events-ragged.png),
dpi=500, facecolor=None, bbox_inches="tight')
Output source data

internal_pblocks[['splice_event!, 'split_codons']].to_csv(internal_output / 'internal-
events-ragged-table.tsv!, sep="\t")

alpha=0.01

ragged_contingency = pd.crosstab(internal_pblocks['split_codons'],
internal_pblocks['splice_event'))

chi2, p_all, dof, expected = chi2_contingency(ragged_contingency)

ps = dict()

for event1, event2 in combinations(internal_subcats.columns, 2):
sub_contingency = ragged_contingency[[event1, event2]]
_, ps[event1, event2], _, _=chi2_contingency(sub_contingency)

ps_sig ={k: p for k, p in ps.items() if p < alpha/len(ps)}
ps_insig ={k: p for k, p in ps.items() if k not in ps_sig}

%%
nagnag_pblocks = internal_pblocks[(internal_pblocks['splice_event'] == 'Alt. acceptor') &
(internal_pblocks['length_change'].abs() == 1)]

%% Figd panel B: Frequency of compound splicing events
internal_compound_pblocks = internal_pblocks[internal_pblocks['splice_event'] ==
'‘Compound'].copy()

internal_compound_subcats = pd.DataFrame(
{
'Multi-exon skipping': internal_compound_pblocks['events'] == frozenset('e'),
'Exon skipping + \nalt. donor/acceptor': internal_compound_pblocks['events'].isin({
frozenset(sorted('de")),
frozenset(sorted('De')),

frozenset(sorted('ea')),
frozenset(sorted('eA)),
frozenset(sorted('dea')),

frozenset(sorted('deA)),
frozenset(sorted('DeA')),
1,
'Mutually exclusive exons': internal_compound_pblocks['tblock_events'].isin({('E, 'e"),
(‘e} "B,
'Multi-exon inclusion': internal_compound_pblocks['events'] == frozenset('E'),
'Alt. donor + alt. acceptor': internal_compound_pblocks['events'].isin({
frozenset(sorted('ad")),
frozenset(sorted('Ad"),
frozenset(sorted('aD'
((

((

((

((
frozenset(sorted('Dea')),

((

((

frozenset(sorted('AD
1,
'Exon inclusion + \nalt. donor/acceptor': internal_compound_pblocks['events'].isin({
frozenset(sorted('dE")),
frozenset(sorted('DE")),
frozenset(sorted('Ea'")),
frozenset(sorted('EA")),
frozenset(sorted('dEa')),
((
((
((

)

),
))

frozenset(sorted('DEa')),
frozenset(sorted('dEAY)),
frozenset(sorted('DEA)),
1,
'Other': [True for _in internal_compound_pblocks.index]
}
)

internal_compound_pblocks['compound_subcat'] =
internal_compound_subcats.idxmax(axis=1).astype(pd.CategoricalDtype(internal_compo
und_subcats.columns, ordered=True))

internal_pblocks_compound_fig = plt.figure(figsize=(3, 3))
ax = sns.countplot(
data=internal_compound_pblocks,
y='compound_subcat,
palette='Greys_r’,
saturation=1,
edgecolor='k/,
)
ax.set_xlabel('Number of altered\ninternal regions'),
ax.set_ylabel(None)

internal_pblocks_compound_fig.savefig(internal_output / 'internal-compound-
events.png', dpi=500, facecolor=None, bbox_inches="tight')

Output source data

internal_compound_pblocks[['anchor!, 'other,
'‘compound_subcat']].to_csv(internal_output/ 'internal-compound-events-table.tsv/
sep="\t")

#%%

HHHHHHH T T

C-term summary illustrations

HHHHHHH T T

cterm_output = output / 'cterm_summary_plots'

cterm_output.mkdir(exist_ok=True)

cterm_pblocks = pblocks[~pblocks['cterm'].isna() & (pblocks['nterm'].isha()) &
(pblocks['cterm'] = "ALTERNATIVE_ORF") & (pblocks['cterm'] != "UNKNOWN")].copy()

cterm_pblocks['cterm'] =
cterm_pblocks['cterm'].map(CTERM_CLASSES).astype('category')

Changed string to set for intersection

cterm_pblocks['APA'] = cterm_pblocks['events'].apply(lambda x:
set(x).intersection('BbPp')).astype(bool)

#%% Figh panel A: Frequency of splice-driven and frameshift-driven C-terminal events
cterm_fig = plt.figure(figsize=(3.8, 2))
ax = sns.countplot(
data = cterm_pblocks,
y ='cterm,,
order = CTERM_CLASSES.values(),
palette = CTERM_PALETTE,
saturation=1,
linewidth =1,
edgecolor = 'k,
)
ax.set_xlabel('Number of alternative isoforms')
ax.set_ylabel(")
plt.savefig(cterm_output/'cterm-class-counts.png’, dpi=500, facecolor=None,
bbox_inches="tight'")
#Output source data
cterm_pblocks.query("cterm in ['Splice-driven’, 'Frameshift-
driven']")[['anchor' other' cterm']].to_csv(cterm_output/'cterm-class-counts-table.tsv),
sep="\t")
%% Figh panel B: Frequency of splice-driven patterns
cterm_pblock_events =
cterm_pblocks['up_stop_events'].combine(cterm_pblocks['down_stop_events'], lambda x,
y: (X, y))

single_ATE = (cterm_pblocks['cterm'] == 'Splice-driven') &
cterm_pblocks['tblock_events'].isin({('B, 'b"), ('b', 'B')})
cterm_splice_subcats = pd.DataFrame(
{
'Exon extension introduces termination': cterm_pblocks['up_stop_events'l.isin({'P’, 'l
‘DD,
‘Alternative terminal exon(s)': cterm_pblock_events.isin({('B’, 'b"), ('b’, 'B")}),
'Poison exon inclusion': cterm_pblocks['up_stop_events'] =="E|,
'Other': [True for _in cterm_pblocks.index]
#'Alternative last exon in UTR': cterm_pblocks['cblocks'].apply(lambda x:
'TRANSLATED' in x and 'DELETION' in x and 'UNTRANSLATED' not in x)
}
)

cterm_pblocks['splice_subcat'] =
cterm_splice_subcats.idxmax(axis=1).astype(pd.CategoricalDtype(cterm_splice_subcats.
columns, ordered=True))

cterm_splice_palette_dict = dict(zip(
cterm_splice_subcats.columns,
cterm_splice_palette[0:1] + cterm_splice_palette[1:2] + cterm_splice_palette[2:3] +
['#bbbbbb']
)

splice_subcat_order = tuple(cterm_splice_subcats.keys())

cterm_pblock_events =
cterm_pblocks['up_stop_events'].combine(cterm_pblocks['down_stop_events'], lambda x,
y: (X, y))

single_ATE = (cterm_pblocks['cterm'] == 'Splice-driven') &
cterm_pblocks['tblock_events'].isin({('B, 'b"), ('b', 'B')})

cterm_splice_subcats = pd.DataFrame(
{
'Exon extension introduces \n termination (EXIT)":
cterm_pblocks['up_stop_events'l.isin({'P} 'l', 'D'}),

'Alternative terminal \n exon(s) (ATE)": cterm_pblock_events.isin({('B) 'b"), ('b’, 'B")}),
'Alternative last exon \n in UTR (ALE in UTR)': cterm_pblocks.apply(lambda row:
'TRANSLATED' in row['cblocks'] and 'DELETION' in row['cblocks'] and 'UNTRANSLATED' not

in row['cblocks'] if row['cterm'] == 'Splice-driven' and row['splice_subcat'] == 'Other’ else
False, axis=1),

'Poison exon inclusion': cterm_pblocks['up_stop_events'] =="'E/,

'Cut-out splice terminal \n exon (COSTE)': cterm_pblocks.apply(lambda row:
'DELETION' in row['cblocks'] and 'INSERTION' in row['cblocks'] and 'TRANSLATED' not in
row['cblocks'] and 'UNTRANSLATED' not in row['cblocks'] and 'FRAME' not in row['cblocks']

and 'p' in row['tblock_events'] and row['tblock_events'].count('B') == 1 if row['cterm'] ==
'Splice-driven' and row['splice_subcat'] == 'Other’ else False, axis=1),
'Other': [True for _ in cterm_pblocks.index]
}

)

cterm_pblocks['splice_subcat'] =
cterm_splice_subcats.idxmax(axis=1).astype(pd.CategoricalDtype(cterm_splice_subcats.
columns, ordered=True))

cterm_splice_palette_dict = dict(zip(
cterm_splice_subcats.columns,
cterm_splice_palette[0:1] + cterm_splice_palette[1:2] + cterm_splice_palette[2:3] +
cterm_splice_palette[3:4] + cterm_splice_palette[4:5] + ['‘#bbbbbb']
)

splice_subcat_order = tuple(cterm_splice_subcats.keys())

cterm_splice_fig, axs = plt.subplots(1, 2, figsize=(9, 4))
sns.countplot(
ax = axs[0],
data = cterm_pblocks[cterm_pblocks['cterm'] == 'Splice-driven'],
y = 'splice_subcat),
order = splice_subcat_order,
palette = cterm_splice_palette_dict,
saturation =1,
edgecolor = 'k,
linewidth =1,
)
axs[0].set_xlabel('Number of alternative isoforms')
axs[0].set_ylabel(None)

plt.savefig(cterm_output/'cterm-splicing-subcats.png', dpi=500, facecolor=None,
bbox_inches="tight')

#Qutput source data

cterm_pblocks.assign(anchor_relative_length_change =
cterm_pblocks['anchor_relative_length_change'].abs())[['anchor other’,
'splice_subcat'anchor_relative_length_change']].to_csv(cterm_output/'cterm-splicing-
subcats-table.tsv), sep="\t")

cterm_pblocks.to_csv(cterm_output / 'cterm_pblocks.tsv', sep="\t|, index=False)

%% Alternative Last Exon in 3' UTR case from Splice-driven 'Other' category.

cterm_pblock_splice = cterm_pblocks[cterm_pblocks['cterm'] == 'Splice-driven']

cterm_splice_other = cterm_pblock_splice[cterm_pblock_splice['splice_subcat'] ==
'Other']

condition1 = cterm_splice_other['cblocks'].apply(lambda x: 'DELETION' in x and
'TRANSLATED' in x)

condition2 = cterm_splice_other['cblocks'].apply(lambda x: 'UNTRANSLATED' not in x)

cterm_aleutr = cterm_splice_other[condition1 & condition2].copy()

cterm_aleutr.to_csv(cterm_output/ 'cterm-splice-driven-ALEinUTR.tsv', sep="\t')

%% Cut-out splice terminal exon case from Splice-driven 'Other' category.
condition3 = cterm_splice_other['cblocks'].apply(lambda x: 'DELETION' in x and
'INSERTION' in x)
condition4 = cterm_splice_other['cblocks'].apply(lambda x: 'TRANSLATED' not in x and
'UNTRANSLATED' not in x and 'FRAME' not in x)
condition5 = cterm_splice_other['tblock_events'].apply(lambda x: x.count('B') == 1 and 'p'
in x)
cterm_other_new = cterm_splice_other[condition3 & condition4 & condition5].copy()
cterm_other_new.to_csv(cterm_output / 'cterm-splice-driven-other-NEW.tsv/, sep="\t")
%% Figh panel C & D: 2D scatter plot v2 splice-driven vs frameshift-driven
font ={
'family': 'sans-serif!,
'sans-serif': ['Arial'],
'weight': 'normal,
'size': 10
}
mpl.rc('font’, **font)
msx_data = cterm_pblocks[cterm_pblocks['cterm'] == 'Splice-driven']
sds_data = cterm_pblocks[cterm_pblocks['cterm'] == 'Frameshift-driven']
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(6, 6))
msx_color = (0.5048212226066897, 0.00392156862745098, 0.47021914648212226)
sds_color =(0.7885121107266436, 0.03238754325259515, 0.13656286043829297)

sns.scatterplot(data=msx_data, x="aa_loss', y="aa_gain', marker='0', ax=axes[0],
alpha=0.2,
color=msx_color)
axes[0].set_title('Splice-driven’, fontsize=13)
axes[0].set_xlabel('Reference \n(amino acids)’, fontsize=12)
axes[0].set_ylabel('Alternative \n(amino acids)', fontsize=12)
axes[0].set_xlim(0, 3000)
axes[0].set_ylim(0, 3000)
axes[0].set_aspect(‘equal’)
axes[0].grid(True, linestyle='--', linewidth=0.5)

sns.scatterplot(data=sds_data, x="aa_loss/, y='aa_gain', marker='0', ax=axes[1],
alpha=0.2, color=sds_color)

axes[1].set_title('Frameshift-driven’, fontsize=13)

axes[1].set_xlabel('Reference \n(amino acids)’, fontsize=12)

axes[1].set_ylabel('Alternative \n(amino acids)', fontsize=12)
axes[1].set_xlim(0, 3000)

axes[1].set_ylim(0, 3000)

axes[1].set_aspect(‘equal’)

axes[1].grid(True, linestyle='--', linewidth=0.5)

plt.tight_layout()

plt.savefig(cterm_output / 'cterm-rel-length-change_scatterplot.png', dpi=800,
facecolor=None, bbox_inches='"tight')

Output source data

cterm_pblocks.query("cterm in ['Splice-driven’, 'Frameshift-driven']")[['anchor’, 'other’,
'aa_loss', 'aa_gain']].to_csv(cterm_output / 'cterm_mechanism_affected_len.tsv', sep="\t")

%% Supplementary Figure S5: 2D scatter plot v2 frameshift-driven subcats

d1 = cterm_pblocks[cterm_pblocks['splice_subcat'] == '"Exon extension introduces \n
termination (EXIT)']

d2 = cterm_pblocks[cterm_pblocks['splice_subcat'] == 'Alternative terminal \n exon(s)
(ATE)']

d3 = cterm_pblocks[cterm_pblocks['splice_subcat'] == 'Alternative last exon \n in UTR
(ALE in UTR)"]

d4 = cterm_pblocks[cterm_pblocks['splice_subcat'] == 'Poison exon inclusion']

d5 = cterm_pblocks[cterm_pblocks['splice_subcat'] == "'Cut-out splice terminal \n exon
(COSTE)']

fig, axes = plt.subplots(nrows=5, ncols=1, figsize=(6, 15))

colors =[(0.5048212226066897, 0.00392156862745098, 0.47021914648212226),
(0.735840061514802, 0.061960784313725495, 0.5225682429834679),
(0.9094502114571319, 0.2894886582083814, 0.6086120722798923),
(0.9754555940023067, 0.56330257593233372, 0.6768935024990388),
(0.9859592464436755, 0.7293041138023837, 0.7404229142637447)]

sns.scatterplot(data=d1, x="aa_loss', y="aa_gain', marker='0', ax=axes[0], alpha=0.2,
color=colors[0])

axes[0].set_title('Exon extension introduces termination’, fontsize=30, pad=20)

axes[0].set_xlabel('Reference \n(amino acids)’, fontsize=25)

axes[0].set_ylabel('Alternative \n(amino acids)', fontsize=25)

axes[0].set_xlim(0, 3000)

axes[0].set_ylim(0, 3000)

axes[0].grid(True, linestyle="--', linewidth=0.5)

sns.scatterplot(data=d2, x="aa_loss', y="aa_gain', marker='0', ax=axes[1], alpha=0.2,
color=colors[1])
axes[1].set_title('Alternative terminal exon(s)', fontsize=30, pad=20)

axes[1].set_xlabel('Reference \n(amino acids)', fontsize=25)
axes[1].set_ylabel('Alternative \n(amino acids)', fontsize=25)
axes[1].set_xlim(0, 3000)

axes[1].set_ylim(0, 3000)

axes[1].grid(True, linestyle='--', linewidth=0.5)

sns.scatterplot(data=d3, x="aa_loss', y="aa_gain', marker='0', ax=axes[2], alpha=0.2,
color=colors[2])

axes[2].set_title('Alternative last exon in UTR/, fontsize=30, pad=20)

axes[2].set_xlabel('Reference \n(amino acids)’, fontsize=25)

axes[2].set_ylabel('Alternative \n(amino acids)', fontsize=25)

axes[2].set_xlim(0, 3000)

axes[2].set_ylim(0, 3000)

axes[2].grid(True, linestyle="--', linewidth=0.5)

sns.scatterplot(data=d4, x="aa_loss', y="aa_gain', marker='0', ax=axes[3], alpha=0.2,
color=colors[3])

axes[3].set_title('Poison exon inclusion’, fontsize=30, pad=20)

axes[3].set_xlabel('Reference \n(amino acids)’, fontsize=25)

axes[3].set_ylabel('Alternative \n(amino acids)', fontsize=25)

axes[3].set_xlim(0, 3000)

axes|[3].set_ylim(0, 3000)

axes[3].grid(True, linestyle='--', linewidth=0.5)

sns.scatterplot(data=d5, x="aa_loss', y="aa_gain', marker='0', ax=axes[4], alpha=0.2,
color=colors[4])

axes[4].set_title('Cut-out splice terminal exon', fontsize=30, pad=20)

axes[4].set_xlabel('Reference \n(amino acids)’, fontsize=25)

axes[4].set_ylabel('Alternative \n(amino acids)', fontsize=25)

axes[4].set_xlim(0, 3000)

axes[4].set_ylim(0, 3000)

axes[4].grid(True, linestyle='--', linewidth=0.5)

plt.tight_layout()

plt.savefig(cterm_output / 'cterm-rel-splice-driven-subcat-length-
change_scatterplot.png’, dpi=500, facecolor=None, bbox_inches='"tight')
if _name__=="_main__":

run_illustrate_analysis(pblock_table, output)

plot_biosurfer.py

%%

from pathlib import Path

from more_itertools import partition

from biosurfer.core.alighments import ProteinAlignment

from biosurfer.core.constants import APPRIS

from biosurfer.core.database import Database

from biosurfer.core.helpers import (get_ids_from_gencode_fasta,
get_ids_from_lrp_fasta,
get_ids_from_pacbio_fasta, skip_gencode,
skip_par_y)

from biosurfer.core.models.biomolecules import Gene, Transcript

from biosurfer.plots.plotting import IsoformPlot

#%%
def run_plot(output: Path, gene: str, db_name: str, transcript_ids: tuple[str]):
""" Main plot function to invoke plotting for different pipelines/scripts.
Args:
Nothing
Returns:
Nothing
if not output:
output = Path(")
db = Database(db_name)
with db.get_session() as s:
print(f'Loading transcripts from database...)

if gene:
gene_obj = Gene.from_name(s, gene)
if gene_obj is None:
print(f'Gene "{gene}" not found in database')
transcripts = dict()
anchor = None
else:
transcripts = {tx.accession: tx for tx in gene_obj.transcripts}
anchor = max(transcripts.values(), key=lambda tx: getattr(tx, 'appris
APPRIS.NONE))
others = [tx for tx in transcripts.values() if tx is not anchor]
else:
transcripts: dict[str, Transcript] = {tx.accession: tx for tx in
Transcript.from_accessions(s, transcript_ids).values()}
not_found, found = partition(lambda tx_id: tx_id in transcripts, transcript_ids)

for tx_id in not_found:
print(f'Transcript ID "{tx_id}" not found in database')
if transcript_ids:
anchor = transcripts.get(transcript_ids[0], None)
else:
print(‘No isoforms provided')
anchor = None
others = [tx for tx in map(transcripts.get, found) if tx is not anchor]

if anchor:
print(f'Reference isoform: {anchor}')
gene = anchor.gene.name

alns: dict[Transcript, ProteinAlignment] = dict()
for other in others:
if anchor.protein is None or other.protein is None:
alns[other] = None

else:
try:
alns[other] = ProteinAlignment.from_proteins(anchor.protein, other.protein)
except ValueError:

print(f'Could not plot isoform {other}')

filename = f'{db_name}-{gene}.png'
plot = IsoformPlot([anchor] + list(alns.keys()))
plot.draw_all_isoforms()
plot.draw_frameshifts()
for other, aln in alns.items():

if aln:

plot.draw_protein_alignment_blocks(aln.blocks, anchor.protein, other.protein)

plot.draw_legend()
filepath = str(output/filename)
plot.savefig(filepath)
print(f'Saved {filepath}')

if _name__=="__main__":
run_plot(output, gene, db_name, transcript_ids)

alignments.py

from abc import ABC, abstractmethod

from collections import deque

from functools import cached_property, lru_cache

from itertools import chain, groupby, tee

from operator import attrgetter, itemgetter

from typing import TYPE_CHECKING

import os

from attrs import define, evolve, field, frozen

from biosurfer.core.constants import ANCHOR_EXCLUSIVE, FRAMESHIFT, CD_DEL_INS,

OTHER_EXCLUSIVE, SEQ_DEL_INS, SPLIT_CODON, CodonAlignhmentCategory as

CodonAlignCat

from biosurfer.core.constants import SequenceAlighmentCategory as SeqAlignCat

from biosurfer.core.helpers import Interval, IntervalTree

from biosurfer.core.models.biomolecules import Protein, Transcript

from biosurfer.core.models.features import ProjectedFeature, ProteinFeature

from biosurfer.core.splice_events import (BasicTranscriptEvent, TranscriptEvent,
call_transcript_events, sort_events)

from more_itertools import first, last, one, only, partition, windowed

if TYPE_CHECKING:
from biosurfer.core.constants import AlignmentCategory
from biosurfer.core.splice_events import CompoundTranscriptEvent

CACHE_SIZE = 2**8

def check_block_ranges(instance, attribute, value: 'IntervalTree'):
starts = sorted(i.begin foriin value)
stops = sorted(i.end foriin value)
if starts[0] < O:
raise ValueError(f'Block ranges cannot be negative')
if starts[0] > O:
raise ValueError(f'Block ranges do not cover (0, {starts[0]})")
fori, (start, stop) in enumerate(zip(starts[1:], stops[:-1])):
if start != stop:
raise ValueError(f'Gap or overlap between block ranges ({starts]i]}, {stop}) and ({start},
{stops[il})")

@frozen(order=True)
class AlignmentBlock(ABC):
anchor_range: range = field(factory=range, order=attrgetter('start’, 'stop'))

other_range: range = field(factory=range, order=attrgetter('start’, 'stop'))
category: 'AlignmentCategory' = field(default=None, order=False)

def __attrs_post_init__(self):
A, O = len(self.anchor_range), len(self.other_range)
if A==0==0:
raise ValueError(f'Invalid ranges {self.anchor_range} and {self.other_range}')

def __repr__(self):
return

f'{self.category}({self.anchor_range.start}:{self.anchor_range.stop}|{self.other_range.start}:{
self.other_range.stop})'

@property
def delta_length(self):
return len(self.other_range) - len(self.anchor_range)

def project_coordinate(self, coord: int, *, from_anchor: bool = True):
source, target = (self.anchor_range, self.other_range) if from_anchor else
(self.other_range, self.anchor_range)
index = source.index(coord)
try:
return target[index]
except IndexError:
return None

@frozen(order=True, repr=False)
class TranscriptAlignmentBlock(AlignmentBlock):
category: 'SegAlignCat' = field(init=False)

def __attrs_post_init__(self):
A, O = len(self.anchor_range), len(self.other_range)

ifA==0>0:

object.__setattr__(self, 'category’, SeqAlignCat.MATCH)
elif O>A==0:

object.__setattr__(self, 'category’, SeqAlignCat.INSERTION)
elif A>0==0:

object.__setattr__(self, 'category’, SeqAlignCat.DELETION)
else:

raise ValueError(f'Invalid ranges {self.anchor_range} and {self.other_range}')

@frozen(repr=False)

class CodonAlignmentBlock(AlignmentBlock):
category: 'CodonAlignCat' = field(kw_only=True)

@frozen(order=True, repr=False)

class ProteinAlignmentBlock(AlignmentBlock):
category: 'SegAlignCat' = field(kw_only=True)
ragged5: bool = field(default=False, order=False)
ragged3: bool = field(default=False, order=False)

def __attrs_post_init__(self):
super().__attrs_post_init__()
if self.ragged and self.category is SeqgAlignCat.MATCH:
raise ValueError(f'Match protein alignment blocks cannot be ragged')

@property
def ragged(self):
return self.ragged5 or self.ragged3

class ProjectionMixin:
def range_to_blocks(self, start: int, stop: int, *, from_anchor: bool = True):
mapper: 'IntervalTree' = self.anchor_blocks if from_anchor else self.other_blocks
blocks: list['AlignmentBlock'] = [interval.data for intervalin
sorted(mapper.overlap(start, stop))]
if not blocks:
raise ValueError(f'Could not locate mapping in {self.anchor if from_anchor else
self.other} for range({start}, {stop})')
first_block = blocks[0]
last_block = blocks[-1]
first_block_source = first_block.anchor_range if from_anchor else
first_block.other_range
last_block_source = last_block.anchor_range if from_anchor else
last_block.other_range
first_block_offset = start - first_block_source.start
last_block_offset = stop - last_block_source.start
if first_block is last_block:
blocks[0] = evolve(
first_block,
anchor_range = first_block.anchor_range[first_block_offset:last_block_offset],
other_range = first_block.other_range[first_block_offset:last_block_offset]
)
else:
blocks[0] = evolve(

first_block,
anchor_range = first_block.anchor_range[first_block_offset:],
other_range = first_block.other_range[first_block_offset:]

)

blocks[-1] = evolve(
last_block,
anchor_range = last_block.anchor_range[:last_block_offset],
other_range = last_block.other_range[:last_block_offset]

)

return blocks

def project_range(self, start: int, stop: int, *, from_anchor: bool = True) -> range:
blocks = self.range_to_blocks(start, stop, from_anchor=from_anchor)
if from_anchor:
return range(blocks[0].other_range.start, blocks[-1].other_range.stop)
else:
return range(blocks[0].anchor_range.start, blocks[-1].anchor_range.stop)

def project_coordinate(self, coord: int, *, from_anchor: bool = True):
mapper: 'IntervalTree’ = self.anchor_blocks if from_anchor else self.other_blocks
block: 'AlignmentBlock' = one(mapper.at(coord)).data
return block.project_coordinate(coord, from_anchor=from_anchor)

@define(eg=False)
class TranscriptAlignment(ProjectionMixin):

anchor: 'Transcript'

other: "Transcript' = field()

events: tuple['CompoundTranscriptEvent, ...] =field(converter=sort_events, repr=False)

anchor_events: 'IntervalTree’ = field(factory=IntervalTree, repr=False)

anchor_blocks: 'IntervalTree’ = field(factory=IntervalTree, repr=False,
validator=check_block_ranges)

other_events: 'IntervalTree' = field(factory=IntervalTree, repr=False)

other_blocks: 'IntervalTree' = field(factory=IntervalTree, repr=False,
validator=check_block_ranges)

event_to_block: dict['BasicTranscriptEvent!, 'TranscriptAlignmentBlock'] =
field(factory=dict, repr=False)

block_to_events: dict['TranscriptAlignmentBlock, tuple['BasicTranscriptEvent), ...]] =
field(factory=dict, repr=False)

@other.validator
def _check_transcripts(self, attribute, value):
if value.gene_id != self.anchor.gene_id:
raise ValueError(f'{self.anchor} and {value} are from different genes')

def __attrs_post_init__(self):
if any(i.data.is_insertion foriin self.anchor_events if isinstance(i.data,
BasicTranscriptEvent)):
raise ValueError
if any(i.data.is_deletion for i in self.other_events if isinstance(i.data,
BasicTranscriptEvent)):
raise ValueError
anchor_matches = {i.data for i in self.anchor_blocks if i.data.category is
SeqAlignCat.MATCH}
other_matches = {i.data for i in self.other_blocks if i.data.category is
SeqAlignCat.MATCH}
if anchor_matches != other_matches:
raise ValueError(f'{anchor_matches} != {other_matches})
total_delta_nt = sum(event.delta_nt for event in self.events)
tx_length_diff = self.other.length - self.anchor.length
if total_delta_nt != tx_length_diff:
raise ValueError(f'TranscriptEvent lengths add up to {total_delta_nt}; expected
{tx_length_diff}")
for event in self.basic_events:
block = self.event_to_block.get(event, None)
if event not in self.block_to_events.get(block, ()):
raise ValueError(f'Broken event-to-block mapping for {event}')

@property
def basic_events(self) -> tuple['BasicTranscriptEvent; ...]:
return tuple(chain.from_iterable(event.members for event in self.events))

@property
def blocks(self) -> tuple['TranscriptAlignmentBlock, ...]:
return tuple(sorted({i.data for i in chain(self.anchor_blocks, self.other_blocks)}))

@classmethod
@lru_cache(maxsize=CACHE_SIZE)
def from_transcripts(cls, anchor: 'Transcript’, other: 'Transcript'):
splice_events, tss_event, apa_event = call_transcript_events(anchor, other)
events = splice_events.copy()
if tss_event:
events.append(tss_event)
if apa_event:
events.append(apa_event)

map all events to transcript coordinates
def get_transcript_interval(event: 'BasicTranscriptEvent'):

transcript = anchor if event.is_deletion else other

start = transcript.get_transcript_coord_from_genome_coord(event.start)
stop = transcript.get_transcript_coord_from_genome_coord(event.stop) + 1
return Interval(start, stop, event)

event_to_interval: dict['BasicTranscriptEvent!, 'Interval'] = dict()
basic_to_compound: dict['BasicTranscriptEvent, 'CompoundTranscriptEvent'] = dict()
for compound_event in events:
for event in compound_event.members:
event_to_interval[event] = get_transcript_interval(event)
basic_to_compound[event] = compound_event

def get_compound_map(basic_map: 'IntervalTree'):
compound_map = IntervalTree()
for compound_event, intervals in groupby(sorted(basic_map.all_intervals),
key=lambda i: basic_to_compound[i.data]):
if len(compound_event.members) ==
continue
compound_interval = IntervalTree(intervals)
compound_interval.merge_neighbors()
compound_map.update(i._replace(data=compound_event) foriin
compound_interval.all_intervals)
return compound_map

insertions, deletions = partition(attrgetter('is_deletion'), event_to_interval.keys())
anchor_basic = IntervalTree(event_to_interval[event] for event in deletions)
other_basic = IntervalTree(event_to_interval[event] for event in insertions)
anchor_compound = get_compound_map(anchor_basic)

other_compound = get_compound_map(other_basic)

anchor_events = anchor_compound.union(anchor_basic)

other_events = other_compound.union(other_basic)

determine deletion and insertion block ranges

del_ranges = anchor_basic.copy()
del_ranges.merge_neighbors(data_reducer=lambda a, b: a + (b,), data_initializer=())
ins_ranges = other_basic.copy()
ins_ranges.merge_neighbors(data_reducer=lambda a, b: a + (b,), data_initializer=())

determine match block ranges

blocks =]

block_to_events = dict()

event_to_block = dict()

position ={'anchor': 0, 'other': 0}

sorted_del_ranges = deque(sorted(map(tuple, del_ranges)))

sorted_ins_ranges = deque(sorted(map(tuple, ins_ranges)))

def add_match_block(length: int):
if length > 0:
match_block = TranscriptAlignmentBlock(
range(position['anchor'], position['anchor'] + length),
range(position['other'], position['other'] + length)
)
blocks.append(match_block)
position['anchor'] += length
position['other'] += length

def add_del_block():
del_start, del_stop, events = sorted_del_ranges.popleft()
del_block = TranscriptAlignmentBlock(
range(del_start, del_stop),
range(position['other'], position['other'])
)
blocks.append(del_block)
block_to_events[del_block] = events
for event in events:
event_to_block[event] = del_block
position['anchor'] = del_stop

def add_ins_block():

ins_start, ins_stop, events = sorted_ins_ranges.popleft()

ins_block = TranscriptAlignmentBlock(
range(position[‘anchor'], position['anchor']),
range(ins_start, ins_stop)

)

blocks.append(ins_block)

block_to_events[ins_block] = events

for event in events:
event_to_block[event] = ins_block

position['other'] =ins_stop

while sorted_del_ranges or sorted_ins_ranges:

to_next_del_block = (sorted_del_ranges[0][0] - position['anchor']) if
sorted_del_ranges else float('inf')

to_next_ins_block = (sorted_ins_ranges[0][0] - position['other']) if sorted_ins_ranges
else float('inf")

add_match_block(min(to_next_del_block, to_next_ins_block))

if to_next_del_block < to_next_ins_block:

add_del_block()

elif to_next_ins_block <to_next_del block:
add_ins_block()
else:
anchor_pos_genomic =
anchor.get_genome_coord_from_transcript_coord(position['anchor'])
other_pos_genomic =
other.get_genome_coord_from_transcript_coord(position['other'])
if anchor_pos_genomic < other_pos_genomic:
add_del_block()
add_ins_block()
else:
add_ins_block()
add_del_block()
assert anchor.length - position['anchor'] == other.length - position['other'], f'{position=},
{anchor.length=}, {other.length=}, {anchor=}'
add_match_block(anchor.length - position[‘anchor'])

anchor_blocks = IntervalTree.from_tuples((block.anchor_range.start,
block.anchor_range.stop, block) for block in blocks if block.anchor_range)

other_blocks = IntervalTree.from_tuples((block.other_range.start,
block.other_range.stop, block) for block in blocks if block.other_range)

return cls(anchor, other, events, anchor_events, anchor_blocks, other_events,
other_blocks, event_to_block, block_to_events)

@define(eg=False)
class CodonAlignment(ProjectionMixin):

anchor: 'Protein’

other: 'Protein’

anchor_blocks: 'IntervalTree’ = field(factory=IntervalTree, repr=False,
validator=check_block_ranges)

other_blocks: 'IntervalTree' = field(factory=IntervalTree, repr=False,
validator=check_block_ranges)

tblock_to_cblocks: dict['TranscriptAlignmentBlock!, tuple['CodonAlignmentBlock, ...]] =
field(factory=dict, repr=False)

cblock_to_tblock: dict['CodonAlignmentBlock!, 'TranscriptAlignmentBlock'] =
field(factory=dict, repr=False)

def __attrs_post_init__(self):
anchor_shared = {i.data for i in self.anchor_blocks if i.data.category not in
ANCHOR_EXCLUSIVE}
other_shared = {i.data for i in self.other_blocks if i.data.category not in
OTHER_EXCLUSIVE}

if anchor_shared != other_shared:
raise ValueError(f'{anchor_shared} != {other_shared})
for cblock in filter(lambda cblock: cblock.category is not CodonAlignCat.MATCH,
self.blocks):
tblock = self.cblock_to_tblock.get(cblock, None)
if tblock and cblock not in self.tblock_to_cblocks.get(tblock, ()):
raise ValueError(f'Broken tblock-to-cblock mapping for {cblock}')

@property
def blocks(self) -> tuple['CodonAlignmentBlock], ...]:
return tuple(sorted({i.data for i in chain(self.anchor_blocks, self.other_blocks)}))

def project_feature(self, anchor_feature: 'ProteinFeature'):
if anchor_feature.protein is not self.anchor:
raise ValueError(f'{anchor_feature} is not a feature of {self.anchor})
other_range = self.project_range(anchor_feature.protein_start - 1,
anchor_feature.protein_stop)
if not other_range:
return None
other_blocks = self.range_to_blocks(other_range.start, other_range.stop,
from_anchor=False)
differences = [
((len(block.anchor_range) if block.anchor_range else len(block.other_range)),
block.category)
for block in other_blocks
]
proj_feat = ProjectedFeature(
feature = anchor_feature.feature,
protein = self.other,
protein_start = other_range.start + 1,
protein_stop = other_range.stop,
reference = False,
anchor = anchor_feature,
_differences = ".join(f'{t[OJ{t[1]} for t in differences)
)

return proj_feat

@classmethod

@lru_cache(maxsize=CACHE_SIZE)

def from_proteins(cls, anchor: 'Protein’, other: 'Protein'):
tx_aln = TranscriptAlignment.from_transcripts(anchor.transcript, other.transcript)
anchor_orf_range = range(anchor.orf.transcript_start - 1, anchor.orf.transcript_stop)
other_orf_range = range(other.orf.transcript_start - 1, other.orf.transcript_stop)
anchor_orf_len = len(anchor_orf_range)

other_orf_len = len(other_orf_range)
anchor_pr_len = anchor.length
other_pr_len = other.length

def compare_ranges(a: range, b: range):
if a.start < b.stop and b.start < a.stop:
return 0
elif a.stop <= b.start:
return -1
else:
return 1

convert transcript-relative coords to ORF-relative coords
tx_blocks = deque(
(
block.category,
range(block.anchor_range.start - anchor_orf_range.start, block.anchor_range.stop
- anchor_orf_range.start),
range(block.other_range.start - other_orf_range.start, block.other_range.stop -
other_orf_range.start)
) for block in tx_aln.blocks

)

def split_paired_ranges(a: range, b: range, a_split: int):
asserta_splitina
a_left, a_right =range(a.start, a_split), range(a_split, a.stop)
if b:
b_split = b.start + len(a_Lleft)
b_left, b_right = range(b.start, b_split), range(b_split, b.stop)
else:
b_left, b_right=b, b
return a_left, a_right, b_left, b_right

boundaries =]
overhangs =[]
categories =[]
frame_to_category =
0: CodonAlignCat.MATCH,
1: CodonAlignCat.FRAME_AHEAD,
2: CodonAlignCat.FRAME_BEHIND
}
while tx_blocks:
tx_category, anchor_tx_range, other_tx_range = tx_blocks.popleft()

if block overlaps an ORF boundary, split it up
if anchor_tx_range.start < 0 <anchor_tx_range.stop:
anchor_tx_range, next_anchor_range, other_tx_range, next_other_range =
split_paired_ranges(anchor_tx_range, other_tx_range, 0)
tx_blocks.appendleft((tx_category, next_anchor_range, next_other_range))
if other_tx_range.start <0 < other_tx_range.stop:
other_tx_range, next_other_range, anchor_tx_range, next_anchor_range =
split_paired_ranges(other_tx_range, anchor_tx_range, 0)
tx_blocks.appendleft((tx_category, next_anchor_range, next_other_range))
if anchor_tx_range.start < anchor_orf_len < anchor_tx_range.stop:
anchor_tx_range, next_anchor_range, other_tx_range, next_other_range =
split_paired_ranges(anchor_tx_range, other_tx_range, anchor_orf_len)
tx_blocks.appendleft((tx_category, next_anchor_range, next_other_range))
if other_tx_range.start < other_orf_len < other_tx_range.stop:
other_tx_range, next_other_range, anchor_tx_range, next_anchor_range =
split_paired_ranges(other_tx_range, anchor_tx_range, other_orf_len)
tx_blocks.appendleft((tx_category, next_anchor_range, next_other_range))

skip blocks that are outside both ORF ranges

outside_anchor_orf = compare_ranges(anchor_tx_range, range(0,
len(anchor_orf_range)))

outside_other_orf = compare_ranges(other_tx_range, range(0, len(other_orf_range)))

if (outside_anchor_orf and outside_other_orf

or outside_anchor_orf and tx_category is SeqAlignCat.DELETION

or outside_other_orf and tx_category is SeqAlignCat.INSERTION):

continue

convert block range to protein coords
if outside_anchor_orf<0:
anchor_pr_start, anchor_start_overhang, anchor_pr_stop, anchor_stop_overhang =
0,0,0,0
elif outside_anchor_orf> 0:
anchor_pr_start, anchor_start_overhang, anchor_pr_stop, anchor_stop_overhang =
(anchor_pr_len, 0, anchor_pr_len, 0)
else:
anchor_pr_start, anchor_start_overhang = divmod(anchor_tx_range.start, 3)
anchor_pr_stop, anchor_stop_overhang = divmod(anchor_tx_range.stop, 3)
if outside_other_orf < 0:
other_pr_start, other_start_overhang, other_pr_stop, other_stop_overhang =0, 0, O,

elif outside_other_orf>0:
other_pr_start, other_start_overhang, other_pr_stop, other_stop_overhang =
(other_pr_len, 0, other_pr_len, 0)
else:

other_pr_start, other_start_overhang = divmod(other_tx_range.start, 3)
other_pr_stop, other_stop_overhang = divmod(other_tx_range.stop, 3)

infer codon block category
if tx_category is SeqAlignCat.MATCH:
if outside_anchor_orf:
cd_category = CodonAlignCat.TRANSLATED
elif outside_other_orf:
cd_category = CodonAlignCat.UNTRANSLATED
else:
frameshift = (other_start_overhang - anchor_start_overhang) % 3
cd_category = frame_to_category[frameshift]
elif tx_category is SeqAlignCat.DELETION:
cd_category = CodonAlignCat.DELETION
elif tx_category is SegAlignCat.INSERTION:
cd_category = CodonAlignCat.INSERTION
else:
raise RuntimeError
boundaries.append((anchor_pr_stop, other_pr_stop))
overhangs.append((anchor_stop_overhang, other_stop_overhang))
categories.append(cd_category)

second pass to adjust edges
assert overhangs[-1] == (0, 0)
anchor_boundary_shifts, other_boundary_shifts = dict(), dict()

i=0

while i < len(boundaries) - 1:
curr_category, next_category = categories[i:i+2]
overhang = overhangsli]

try:
anchor_boundary = anchor_boundary_shifts[boundariesJi][0]]
except KeyError:
anchor_boundary = boundaries[i][0]
shift_anchor_boundary = (
overhang[0] == 2 and (
next_category in {CodonAlignCat.MATCH, CodonAlignCat.FRAME_AHEAD}
or curr_category is CodonAlignCat.FRAME_AHEAD
or curr_category in {CodonAlignCat.DELETION,
CodonAlignCat.UNTRANSLATED} and next_category is CodonAlignCat.INSERTION
) or overhang[0] == 1 and curr_category is CodonAlignCat.DELETION and
next_category is CodonAlignCat.FRAME_AHEAD

)

if shift_anchor_boundary:
anchor_boundary_shifts[anchor_boundary] = anchor_boundary + 1
anchor_boundary +=1
try:
other_boundary = other_boundary_shifts[boundaries[i][1]]
except KeyError:
other_boundary = boundaries[i][1]
shift_other_boundary = (
overhang[1]==2and (
next_category in {CodonAlignCat.MATCH, CodonAlignCat.FRAME_BEHIND}
or curr_category is CodonAlignCat.FRAME_BEHIND
or curr_category in {CodonAlignCat.INSERTION, CodonAlignCat.TRANSLATED}
and next_category is CodonAlignCat.DELETION
) or overhang[1] == 1 and curr_category is CodonAlignCat.INSERTION and
next_category is CodonAlignCat.FRAME_BEHIND
)
if shift_other_boundary:
other_boundary_shifts[other_boundary] = other_boundary + 1
other_boundary +=1
boundaries[i] = anchor_boundary, other_boundary

insert a single-codon block if necessary
category_to_insert = None
if (curr_category is CodonAlignCat.MATCH and overhang == (2, 2) or next_category is
CodonAlignCat.MATCH and overhang == (1, 1)):
category_to_insert = CodonAlignCat.EDGE
if (curr_category is CodonAlignCat.FRAME_AHEAD and next_category is
CodonAlignCat.DELETION and overhang == (1, 2)
or curr_category is CodonAlignCat.INSERTION and next_category is
CodonAlignCat.FRAME_AHEAD and overhang == (1, 2)
or curr_category is CodonAlignCat.FRAME_BEHIND and next_category is
CodonAlignCat.INSERTION and overhang == (2, 1)
or curr_category is CodonAlignCat.DELETION and next_category is
CodonAlignCat.FRAME_BEHIND and overhang == (2, 1)):
category_to_insert = CodonAlignCat.COMPLEX

if category_to_insert:
boundaries.insert(i+1, (anchor_boundary + 1, other_boundary + 1))
overhangs.insert(i+1, overhang)
categories.insert(i+1, category_to_insert)
anchor_boundary_shifts[anchor_boundary] = anchor_boundary + 1
other_boundary_shifts[other_boundary] = other_boundary + 1
i+=1

i+=1

#endregion

merge consecutive codon blocks w/ same category
assert len(boundaries) == len(categories)
cd_blocks: list['CodonAlignmentBlock'] =[]
prev_boundary = (0, 0)
for category, group in groupby(range(len(categories)), key=categories.__getitem__):
anchor_start, other_start = prev_boundary
idx = last(group)
anchor_stop, other_stop = boundaries[idx]
prev_boundary = anchor_stop, other_stop
cblock = CodonAlignmentBlock(range(anchor_start, anchor_stop), range(other_start,
other_stop), category=category)
cd_blocks.append(cblock)

anchor_blocks = IntervalTree.from_tuples(
(block.anchor_range.start, block.anchor_range.stop, block)
for block in cd_blocks if block.anchor_range

)

other_blocks = IntervalTree.from_tuples(
(block.other_range.start, block.other_range.stop, block)
for block in cd_blocks if block.other_range

)

map each cblock to one or more tblocks

tblock_to_cblocks: dict['TranscriptAlignmentBlock!, tuple['CodonAlignmentBlock, ...]]
= dict()

cblock_to_tblock: dict['CodonAlignmentBlock!, 'TranscriptAlignmentBlock'] = dict()

def link_cblock_and_tblock(cblock, tblock):
cblock_to_tblock[cblock] = tblock
tblock_to_cblocks.setdefault(tblock, []).append(cblock)

nt_shared, nt_exclusive = partition(lambda t: t[1].category in CD_DEL_INS,
enumerate(cd_blocks))
non_frameshift, frameshift = partition(lambda t: t[1].category in FRAMESHIFT,
nt_shared)
fori, cblock in nt_exclusive:
if cblock.anchor_range:
tx_start, tx_stop = map(anchor.get_transcript_coord_from_protein_coord,
(cblock.anchor_range.start, cblock.anchor_range.stop))
mapper = tx_aln.anchor_blocks
else:

tx_start, tx_stop = map(other.get_transcript_coord_from_protein_coord,
(cblock.other_range.start, cblock.other_range.stop))

mapper = tx_aln.other_blocks

intervals = mapper.overlap(tx_start + 1, tx_stop + 1) # use coord of the nucleotide in
the middle of the codon to avoid edge cases

tblock = one(interval.data for interval in intervals if interval.data.category in
SEQ_DEL_INS)

link_cblock_and_tblock(cblock, tblock)

map frameshifts to closest preceding del/ins tblock with length indivisible by 3
match_tblock_to_nonsymmetric_tblock = dict()
latest_nonsymmetric_tblock = None
for tblock in tx_aln.blocks:
if tblock.category is SeqAlignCat.MATCH:
if latest_nonsymmetric_tblock:

match_tblock_to_nonsymmetric_tblock[tblock] = latest_nonsymmetric_tblock
else:
if (len(tblock.other_range) - len(tblock.anchor_range)) % 3:
latest_nonsymmetric_tblock = tblock
for i, cblock in frameshift:
tx_start, tx_stop = map(anchor.get_transcript_coord_from_protein_coord,
(cblock.anchor_range.start, cblock.anchor_range.stop))
intervals = tx_aln.anchor_blocks.overlap(tx_start + 1, tx_stop + 1)

match_tblock = one(interval.data for interval in intervals if interval.data.category is
SeqAlignCat.MATCH)

try:

tblock = match_tblock_to_nonsymmetric_tblock[match_tblock]
except KeyError:

pass
else:

link_cblock_and_tblock(cblock, tblock)

for i, cblock in non_frameshift:
tblock = None

if cblock.category in {CodonAlignCat.UNTRANSLATED,
CodonAlignCat.TRANSLATED}:

if not cblock.other_range:

nterminal = cblock.other_range.start ==
else:

nterminal = cblock.anchor_range.start ==
if nterminal:

mapper = anchor_blocks if cblock.category is CodonAlignCat.UNTRANSLATED
else other_blocks

start_codon_cblock = only(

interval.data for interval in mapper.at(0)
if interval.data.category in CD_DEL_INS
)
tblock = cblock_to_tblock.get(start_codon_cblock)
else:
if cblock.category is CodonAlignCat.UNTRANSLATED:
mapper = other_blocks
stop_codon_pos = other.length - 1
else:
mapper = anchor_blocks
stop_codon_pos = anchor.length - 1
stop_codon_cblock = one(interval.data for interval in
mapper.at(stop_codon_pos))
tblock = cblock_to_tblock.get(stop_codon_cblock)
elif cblock.category in SPLIT_CODON:
del_ins_cblock = cd_blocksJi-1] if cd_blocksJi-1].category in CD_DEL_INS else
cd_blocks[i+1]
tblock = cblock_to_tblock.get(del_ins_cblock)
if tblock:
link_cblock_and_tblock(cblock, tblock)

tblock_to_cblocks = dict((k, tuple(v)) for (k, v) in sorted(tblock_to_cblocks.items()))
cblock_to_tblock = dict(sorted(cblock_to_tblock.items()))

return cls(anchor, other, anchor_blocks, other_blocks, tblock_to_cblocks,
cblock_to_tblock)

@define(eq=False)
class ProteinAlignment:

anchor: 'Protein’

other: 'Protein’

anchor_blocks: 'IntervalTree’ = field(factory=IntervalTree, repr=False,
validator=check_block_ranges)

other_blocks: 'IntervalTree' = field(factory=IntervalTree, repr=False,
validator=check_block_ranges)

cblock_to_pblock: dict['CodonAlignmentBlock!, 'ProteinAlignmentBlock'] =
field(factory=dict, repr=False)

pblock_to_cblocks: dict['ProteinAlignmentBlock!, tuple['CodonAlignmentBlock,, ...]] =
field(factory=dict, repr=False)

def __attrs_post_init__(self):
for pblock in self.blocks:
cblocks = self.pblock_to_cblocks.get(pblock, ())

if any(pblock is not self.cblock_to_pblock.get(cblock) for cblock in cblocks):
raise ValueError(f'Broken pblock-to-cblock mapping for {pblock}')

@property
def blocks(self) -> tuple['ProteinAlignmentBlock, ...]:
return tuple(sorted({i.data for i in chain(self.anchor_blocks, self.other_blocks)}))

@classmethod

@lru_cache(maxsize=CACHE_SIZE)

def from_proteins(cls, anchor: 'Protein’, other: 'Protein'):
cd_aln = CodonAlignment.from_proteins(anchor, other)

pblock_to_cblocks: dict['ProteinAlignmentBlock!, tuple['CodonAlignmentBlock, ...]] =
dict()
cblock_to_pblock: dict['CodonAlignmentBlock), 'ProteinAlignmentBlock'] = dict()

pblock_bounds: list[int] = [
last(cblock_indices) + 1
for _, cblock_indices in groupby(
range(len(cd_aln.blocks)),
key = lambda i: cd_aln.blocks[i].category is CodonAlignCat.MATCH
)
]

pblock_categories =]
pblock_split5 = [False for pblock in pblock_bounds]
pblock_split3 = [False for pblock in pblock_bounds]
pblock_ragged5 = [False for pblock in pblock_bounds]
pblock_ragged3 = [False for pblock in pblock_bounds]
for p, (c0, c1) in enumerate(windowed([0] + pblock_bounds, 2)):
cblocks = cd_aln.blocks[c0:c1]
anchor_start, anchor_stop = cblocks[0].anchor_range.start, cblocks[-
1].anchor_range.stop
other_start, other_stop = cblocks[0].other_range.start, cblocks[-1].other_range.stop
reduced_cblock_categories = {cblock.category for cblock in cblocks} - SPLIT_CODON
anchor_sequence = anchor.sequence[anchor_start:anchor_stop]
other_sequence = other.sequence[other_start:other_stop]
if anchor_sequence == other_sequence:
category = SeqAlignCat.MATCH
elif reduced_cblock_categories <= ANCHOR_EXCLUSIVE:
category = SeqAlignCat.DELETION
pblock_split5[p] = cblocks[0].category in SPLIT_CODON
pblock_split3[p] = cblocks[-1].category in SPLIT_CODON
elif reduced_cblock_categories <= OTHER_EXCLUSIVE:
category = SegAlignCat.INSERTION

pblock_split5[p] = cblocks[0].category in SPLIT_CODON
pblock_split3[p] = cblocks[-1].category in SPLIT_CODON
else:
category = SeqAlignCat.SUBSTITUTION
pblock_categories.append(category)
pblock_ragged5[p] = pblock_split5[p] and anchor_sequence[0] != other_sequence[0]
pblock_ragged3[p] = pblock_split3[p] and anchor_sequence[-1] !|= other_sequencel-
1]

assert len(pblock_bounds) == len(pblock_categories)

second pass to move synonymous split codons into match pblocks
for p, (split5, split3, ragged5, ragged3) in enumerate(zip(pblock_splits, pblock_split3,
pblock_ragged5, pblock_ragged3)):
if splits and not ragged>5:
pblock_bounds[p-1] +=1
if split3 and not ragged3:
pblock_bounds[p] -=1

for p, (c0, c1) in enumerate(windowed([0] + pblock_bounds, 2)):
cblocks = cd_aln.blocks[c0:c1]
anchor_range = range(cblocks[0].anchor_range.start, cblocks[-1].anchor_range.stop)
other_range = range(cblocks[0].other_range.start, cblocks[-1].other_range.stop)
pblock = ProteinAlignmentBlock(
anchor_range,
other_range,
category = pblock_categories[p],
raggedb = pblock_ragged5[p],
ragged3 = pblock_ragged3[p]
)
pblock_to_cblocks[pblock] = cblocks
for cblockin cblocks:
cblock_to_pblock[cblock] = pblock
#TODO: second pass to merge match pblocks

anchor_blocks = IntervalTree.from_tuples((block.anchor_range.start,
block.anchor_range.stop, block) for block in pblock_to_cblocks if block.anchor_range)

other_blocks = IntervalTree.from_tuples((block.other_range.start,
block.other_range.stop, block) for block in pblock_to_cblocks if block.other_range)

return cls(anchor, other, anchor_blocks, other_blocks, cblock_to_pblock,
pblock_to_cblocks)

constants.py

from enum import Flag, auto, Enum
from typing import Union

from biosurfer.core.helpers import OrderedEnum, StringEnum

class Strand(OrderedEnum):
PLUS = auto()
MINUS = auto()
UNKNOWN = auto()

def __str__(self):
if self is Strand.PLUS:
return '+'
elif self is Strand.MINUS:
return'-'
else:
return'?'

@classmethod
def from_symbol(cls, symbol: str) -> 'Strand":
if symbol =="+'":
return Strand.PLUS
elif symbol =="-";
return Strand.MINUS
else:
raise ValueError(f'\'{symbol}\' is not a valid strand')

class Nucleobase(StringEnum):

ADENINE ='A
CYTOSINE ='C'
GUANINE ='G'
THYMINE = 'T'
URACIL="U"'
GAP ="-'

class AminoAcid(StringEnum):
ALANINE ="A'
ALA="A
ISOLEUCINE ="I'

ILE="I'

LEUCINE ="L"

LEU ="L"
METHIONINE ='M'
MET ='M'

VALINE ="'V’
VAL ="V
PHENYLALANINE ="F'
PHE ="F'
TRYPTOPHAN ='W
TRP ='W
TYROSINE ="'Y'
TYR="Y'
ASPARAGINE ='N'
ASN ='N'
CYSTEINE ='C'
CYs='C'
GLUTAMINE ='Q'
GLN="Q'

SERINE ='S'
SER="S'
THREONINE ='T'
THR="T'
ASPARTATE ="D'
ASP ='D'
GLUTAMATE ="'E'
GLU="E'
ARGININE = 'R
ARG ="R'
HISTIDINE ="'H'
HIS ="'H'

LYSINE ="K’

LYS =K'

GLYCINE ='G'
GLY ='G'
PROLINE ="P"
PRO ="P'
SELENOCYSTEINE ="'U'
SEC="U'

STOP ="*' #included for ease of use
UNKNOWN ='X'
GAP ="~

class SequenceAlignmentCategory(StringEnum):
MATCH ="'M'
INSERTION ="I'
DELETION ="D'
SUBSTITUTION ='S'
UNKNOWN ="'

SEQ_DEL_INS = {SequenceAlignmentCategory.DELETION,
SequenceAlignmentCategory.INSERTION}

class CodonAlignmentCategory(StringEnum):
MATCH ="m'
INSERTION ="'
DELETION ='d'
TRANSLATED ="'t'
UNTRANSLATED = "u’
FRAME_AHEAD ="'a'
FRAME_BEHIND ="b'
EDGE ="¢'
COMPLEX =X’
UNKNOWN ="?'

ANCHOR_EXCLUSIVE = {CodonAlignmentCategory.DELETION,
CodonAlignmentCategory. UNTRANSLATED}

OTHER_EXCLUSIVE = {CodonAlignmentCategory.INSERTION,
CodonAlignmentCategory.TRANSLATED}

CD_DEL_INS = {CodonAlignmentCategory.DELETION,
CodonAlignmentCategory.INSERTION}

FRAMESHIFT = {CodonAlignmentCategory.FRAME_AHEAD,
CodonAlignmentCategory.FRAME_BEHIND}

SPLIT_CODON ={CodonAlignmentCategory.EDGE, CodonAlighmentCategory. COMPLEX}

AlignmentCategory = Union[SequenceAlignmentCategory, CodonAlignmentCategory]

class AnnotationFlag(Flag):
NONE=0
SE = auto()
IE = auto()
A5SS = auto()

A3SS = auto()
IR = auto()
IX=auto()
SIF = auto()

MXIC = auto()

UIC = auto()

DIC = auto()

TIS = auto()
UP_TIS=UIC|TIS
DN_TIS=DIC|TIS
TSS = auto()

ACTE = auto()
UTC = auto()
DTC = auto()
EXITC = auto()

def __str__ (self):
raw = super().__str_ ()
return raw.split(")[1]

class ProteinRegion(OrderedEnum):
NTERMINUS = auto()
INTERNAL = auto()
CTERMINUS = auto()

def __str__(self):
if self is ProteinRegion.NTERMINUS:
return 'Nterm'
elif self is ProteinRegion.INTERNAL:
return 'internal’
elif self is ProteinRegion.CTERMINUS:
return 'Cterm’

class NTerminalChange(OrderedEnum):
MUTUALLY_EXCLUSIVE = auto()
DOWNSTREAM_SHARED = auto()
UPSTREAM_SHARED = auto()
MUTUALLY_SHARED = auto()
ALTERNATIVE_ORF = auto()
UNKNOWN = auto()

class CTerminalChange(OrderedEnum):
SPLICING = auto()
FRAMESHIFT = auto()
ALTERNATIVE_ORF = auto()
UNKNOWN = auto()

class FeatureType(Enum):
DOMAIN = auto()
IDR = auto()
COILED = auto()
LCR = auto()
PTM = auto()
SIGNALP = auto()
TRANSMEMBRANE = auto()
NONE = auto()
#TODO: add more types

class APPRIS(OrderedEnum):
NONE = auto()
ALTERNATIVE = auto()
PRINCIPAL = auto()

class SQANTI(OrderedEnum):
FSM = auto()
ISM = auto()
NIC = auto()
NNC = auto()
OTHER = auto()

def __str__ (self):

return self.name

START_CODON ="ATG'
STOP_CODONS = {'TGA, 'TAA, 'TAG'}

database.py

import csv

import os

import re

from itertools import chain, groupby

from operator import attrgetter, itemgetter

from pathlib import Path

from sqlite3 import Connection as SQLite3Connection

from typing import TYPE_CHECKING, Callable, Dict, Iterable
from warnings import warn

from Bio import SeqlO
from biosurfer.core.alignments import CodonAlighment
from biosurfer.core.constants import (APPRIS, SQANTI, STOP_CODONS, AminoAcid,
Featurelype, Strand)
from biosurfer.core.helpers import (ExceptionLogger, FastaHeaderFields,
bulk_upsert, count_lines, read_gtf_line)
from biosurfer.core.models.base import Base
from biosurfer.core.models.biomolecules import (ORF, Chromosome, Exon,
GencodeTlranscript, Gene,
PacBioTlranscript, Protein,
Transcript)
from biosurfer.core.models.features import (Domain, Feature, ProjectedFeature,
ProteinFeature)
from more_itertools import chunked
from sglalchemy import create_engine, delete, event, select
from sqlalchemy.dialects.sqlite import insert
from sqglalchemy.engine import Engine
from sqlalchemy.orm import contains_eager, joinedload, raiseload, scoped_session,
sessionmaker
from sqlalchemy.sql.expression import desc
from sglalchemy.sql.functions import func
from tgdm import tgdm

CHUNK_SIZE = 5000

SQANTI_DICT =¢{
'full-splice_match': SQANTI.FSM,
'incomplete-splice_match': SQANTI.ISM,
'novel_in_catalog': SQANTI.NIC,
'novel_not_in_catalog': SQANTI.NNC

}

class Database:

_databases_dir = Path(__file__).parent.parent.parent/'databases'
registry: Dict[str, 'Database'] ={}

@staticmethod
def _get_db_url_from_name(name: str):
if name:
db_file = f'{name}.sqlite3’
return f'sqlite:///{Database._databases_dir/db_file}'
else:
return 'sqlite://!

def __new__(cls, name: str= None, *, url: str = None, **kwargs):
if urlis None:
url = Database._get_db_url_from_name(name)
if urlin Database.registry:
return Database.registry[url]
else:
obj = super().__new__(cls)
Database.registry[url] = obj
return obj

def __init__(self, name: str = None, *, url: str = None, sessionfactory=None):
if urlis None:
url=Database._get_db_url_from_name(name)
self.url = url
self._engine = create_engine(self.url)
Base.metadata.create_all(self._engine)
if sessionfactory is None:
self._sessionmaker = scoped_session(sessionmaker(autocommit=False,
autoflush=False, bind=self.engine, future=True))
else:
self._sessionmaker = sessionfactory

def __repr__(self):
return f'Database(url=\'{self.url}\')’

@property
def engine(self):
return self._engine

def get_session(self, **kwargs):
return self._sessionmaker(**kwargs)

def recreate_tables(self):

print(f'Recreating tables in {self.url}...")
Base.metadata.drop_all(bind=self._engine)
Base.metadata.create_all(bind=self._engine)

def load_gencode_gtf(self, gtf_file: str, overwrite=False) -> None:
with self.get_session() as session:
if overwrite:
with session.begin():
for model in (Chromosome, Gene, Exon, ORF):
print(f'Clearing table \'{model.__tablename__}\'..)
session.execute(delete(model.__table_))
print(f'Clearing GENCODE transcripts from \'{Transcript.__tablename__}\'..)
session.execute(delete(Transcript.__table_).where(Transcript.type ==
'gencodetranscript'))

#
#
#
#

chromosomes = {}
genes_to_upsert =[]
transcripts_to_upsert =]
exons_to_upsert =]
orfs_to_upsert =[]

minus_transcripts = set()
transcripts_to_exons = {}
transcripts_to_cdss ={}

with open(gtf_file) as gtf:
lines = count_lines(gtf)
t =tqdm(gtf, desc=f'Reading GENCODE annotations/, total=lines, unit='lines')
for i, line in enumerate(t, start=1):
if line.startswith("#"):
continue
chr, _, feature, start, stop, _, strand, _, attributes, tags = read_gtf_line(line)
if any('_NF'in tag for tag in tags): # biosurfer does not handle start_NF and
end_NF transcripts very well
continue
gene_id = attributes['gene_id']
gene_name = attributes['gene_name']
if attributes['gene_type'] |="protein_coding':
continue

if feature == 'gene':
if chr notin chromosomes:
with session.begin():
chromosome = session.merge(Chromosome(name=chr))

chromosomes|[chr] = chromosome
else:

chromosome = chromosomes|[chr]
gene ={

'accession': gene_id,

'name’': gene_name,

'strand': Strand.from_symbol(strand),

‘chromosome_id': chr

}

genes_to_upsert.append(gene)

elif feature == "transcript":
transcript_id = attributes['transcript_id']
transcript_name = attributes['transcript_name']
appris = APPRIS.NONE
start_nf, end_nf = False, False
for tag in tags:
if '‘appris_principal' in tag:
appris = APPRIS.PRINCIPAL
if ‘appris_alternative' in tag:
appris = APPRIS.ALTERNATIVE
start_nf, end_nf = False, False
start_nf = start_nf or 'start_NF' in tag
end_nf=end_nfor'end_NF'in tag
transcript ={
'accession': transcript_id,
'name': transcript_name,
'type': 'gencodetranscript),
'gene_id'": gene_id,
'strand': Strand.from_symbol(strand),
'appris': appris,
'start_nf'": start_nf,
'end_nf'": end_nf
}
transcripts_to_upsert.append(transcript)
if Strand.from_symbol(strand) is Strand.MINUS:
minus_transcripts.add(transcript_id)

elif feature =='exon":
transcript_id = attributes['transcript_id']
exon_id = attributes['exon_id']
exon ={
'accession': exon_id,
'start': start,

'stop': stop,
'transcript_id': transcript_id
}
if transcript_id in transcripts_to_exons:
transcripts_to_exons[transcript_id].append(exon)
else:
transcripts_to_exons[transcript_id] = [exon,]
exons_to_upsert.append(exon)

elif feature == 'CDS":
transcript_id = attributes['transcript_id']
protein_id = attributes['protein_id']
cds = (start, stop, protein_id)
if transcript_id in transcripts_to_cdss:
transcripts_to_cdss[transcript_id].append(cds)
else:
transcripts_to_cdss[transcript_id] = [cds,]

if i % CHUNK_SIZE == 0:
bulk_upsert(session, Gene.__table__, genes_to_upsert)
bulk_upsert(session, GencodeTranscript, transcripts_to_upsert)
bulk_upsert(session, Gene.__table_ , genes_to_upsert)
bulk_upsert(session, GencodeTranscript, transcripts_to_upsert)

calculate the coordinates of each exon relative to the sequence of its parent
transcript

_process_exons(transcripts_to_exons, minus_transcripts)
t=tqgdm(
exons_to_upsert,
desc ='Upserting exons),
total = len(exons_to_upsert),
unit = 'exons’
)
for exons in chunked(t, CHUNK_SIZE):

bulk_upsert(session, Exon.__table__, exons, primary_keys=(‘accession’,
'transcript_id'))

assemble CDS intervals into ORFs

orfs_to_upsert = _process_orfs(transcripts_to_cdss, transcripts_to_exons,
minus_transcripts)
t=tqgdm(
orfs_to_upsert,
desc ="'Upserting ORFs/,
total = len(orfs_to_upsert),

unit ='ORFs'
)
for orfs in chunked(t, CHUNK_SIZE):
bulk_upsert(session, ORF.__table__, orfs, primary_keys=('transcript_id’, 'position'))

def load_pacbio_gtf(self, gtf_file: str, overwrite=False) -> None:
with self.get_session() as session:

if overwrite:

existing_genes ={}

with session.begin():

for model in (Chromosome, Gene, Exon, ORF):

print(f'Clearing table \'{model.__tablename__}\'..)

session.execute(delete(model.__table_))

print(f'Clearing PacBio transcripts from \'{Transcript.__tablename__}\'..)

session.execute(delete(Transcript.__table_).where(Transcript.type ==
'pacbiotranscript'))

else:

with session.begin():

existing_genes = {row.name: row.accession for row in session.query(Gene.name,

Gene.accession).all()}

chromosomes ={}
genes_to_insert =]
transcripts_to_upsert =]
exons_to_upsert =]
orfs_to_upsert =[]

minus_transcripts = set()
transcripts_to_exons = {}
transcripts_to_cdss ={}

with open(gtf_file) as gtf:
lines = count_lines(gtf)
t = tqdm(gtf, desc=f'Reading PacBio annotations', total=lines, unit='lines')
fori, line in enumerate(t, start=1):
if line.startswith("#"):
continue
chr, _, feature, start, stop, _, strand, _, attributes, _ = read_gtf_line(line)
if chr not in chromosomes:
with session.begin():
chromosome = session.merge(Chromosome(name=chr))
chromosomes[chr] = chromosome
gene_name = attributes['gene_id']
if gene_name not in existing_genes:

tgdm.write(f'Could not find Ensembl accession for gene \'{gene_name}\")
existing_genes[gene_name] = gene_name
gene = {
'accession': gene_name,
'name': gene_name,
'strand': Strand.from_symbol(strand),
'‘chromosome_id'": chr
}
genes_to_insert.append(gene)
gene_id = existing_genes[gene_name]

if feature == "transcript":
transcript_id = attributes['transcript_id'].split(‘'|')[1]
transcript_name = gene_name +'|' + transcript_id
transcript ={
'accession': transcript_id,
'name': transcript_name,
'type': 'pacbiotranscript),
'gene_id'": gene_id,
'strand': Strand.from_symbol(strand),
}
transcripts_to_upsert.append(transcript)
if Strand.from_symbol(strand) is Strand.MINUS:
minus_transcripts.add(transcript_id)

elif feature == 'exon":
transcript_id = attributes['transcript_id'].split('|')[1]
exon = {
'start': start,
'stop': stop,
'transcript_id': transcript_id
}
if transcript_id in transcripts_to_exons:
transcripts_to_exons[transcript_id].append(exon)
else:
transcripts_to_exons[transcript_id] = [exon,]
exons_to_upsert.append(exon)

elif feature =="'CDS":
transcript_id = attributes['transcript_id'].split('|')[1]
cds = (start, stop)
if transcript_id in transcripts_to_cdss:
transcripts_to_cdss[transcript_id].append(cds)
else:

transcripts_to_cdss[transcript_id] = [cds,]

if i % CHUNK_SIZE == 0:
bulk_upsert(session, Gene.__table__, genes_to_insert)
bulk_upsert(session, PacBioTranscript, transcripts_to_upsert)
bulk_upsert(session, Gene.__table__, genes_to_insert)
bulk_upsert(session, PacBioTranscript, transcripts_to_upsert)

calculate the coordinates of each exon relative to the sequence of its parent
transcript
_process_exons(transcripts_to_exons, minus_transcripts)
t=tgqdm(
exons_to_upsert,
desc ='Upserting exons),
total = len(exons_to_upsert),
unit = 'exons’
)
for exons in chunked(t, CHUNK_SIZE):
bulk_upsert(session, Exon.__table__, exons, primary_keys=('accession/,
'transcript_id'))

assemble CDS intervals into ORFs
orfs_to_upsert = _process_orfs(transcripts_to_cdss, transcripts_to_exons,
minus_transcripts)
t=tgdm(
orfs_to_upsert,
desc ="'Upserting ORFs|,
total = len(orfs_to_upsert),
unit = 'ORFs'
)
for orfs in chunked(t, CHUNK_SIZE):
bulk_upsert(session, ORF.__table__, orfs, primary_keys=('transcript_id’, 'position'))

def load_transcript_fasta(self, transcript_fasta: str, id_extractor: Callable[[str],
'FastaHeaderFields'], id_filter: Callable[[str], bool] = lambda x: False):
with self.get_session() as session:
with session.begin():
existing_transcripts = {row.accession for row in
session.query(Transcript.accession)}
existing_orfs ={
row.transcript_id: (row.position, row.transcript_start, row.transcript_stop)
for row in session.execute(select(ORF.position, ORF.transcript_id,
ORF.transcript_start, ORF.transcript_stop))
}

transcripts_to_update =[]
orfs_to_update =[]
with open(transcript_fasta) as f:
records = count_lines(f, only=lambda line: line.startswith(">"))
t=tqdm(SeqlO.parse(transcript_fasta, 'fasta'), desc='Reading transcripts fasta,
total=records, unit='seqs')
forrecord in t:
if id_filter(record.id):
continue
ids = id_extractor(record.id)
transcript_id = ids.transcript_id
sequence = str(record.seq)
if transcript_id in existing_transcripts:
transcript = {'accession': transcript_id, 'sequence': sequence}
transcripts_to_update.append(transcript)
if transcript_id in existing_orfs:
position, tx_start, tx_stop = existing_orfs[transcript_id]
if orf is followed by a stop codon in transcript sequence, modify tx_stop to
include the stop codon
if sequence[tx_stop:tx_stop+3] in STOP_CODONS:
orfs_to_update.append({
'transcript_id'": transcript_id,
'position': position,
'transcript_start': tx_start,
'transcript_stop': tx_stop + 3,
'has_stop_codon': True

)

if len(transcripts_to_update) == CHUNK_SIZE:
bulk_upsert(session, Transcript.__table__, transcripts_to_update)
bulk_upsert(session, ORF.__table__, orfs_to_update,
primary_keys=('transcript_id', 'position'))
bulk_upsert(session, Transcript.__table__, transcripts_to_update)
bulk_upsert(session, ORF.__table__, orfs_to_update, primary_keys=('transcript_id
'position’))

def load_translation_fasta(self, translation_fasta: str, id_extractor: Callable[[str],
'FastaHeaderFields'], id_filter: Callable[[str], bool] = lambda x: False, overwrite: bool =
False):
with self.get_session() as session:

if overwrite:

with session.begin():

print(f'Clearing table \'{Protein.__tablename__}\'.))

session.execute(delete(Protein.__table_))

with session.begin():
existing_orfs ={}
for transcript_id, position, start, stop, has_stop_codon in
session.query(ORF.transcript_id, ORF.position, ORF.transcript_start, ORF.transcript_stop,
ORF.has_stop_codon):
existing_orfs.setdefault(transcript_id, []).append((position, start, stop,
has_stop_codon))

orfs_to_update =[]
proteins_to_upsert =[]
with open(translation_fasta) as f:

records = count_lines(f, only=lambda line: line.startswith(">"))
t=tqgdm(SeqlO.parse(translation_fasta, 'fasta’), desc='Reading translations fasta,

total=records, unit='seqs')

for i, record in enumerate(t, start=1):

if id_filter(record.id):

continue

ids = id_extractor(record.id)

transcript_id = ids.transcript_id

protein_id = ids.protein_id

sequence = str(record.seq)

seq_length = len(sequence)

protein = {'accession': protein_id, 'sequence': sequence}
proteins_to_upsert.append(protein)
if transcript_id in existing_orfs:
orfs = existing_orfs[transcript_id]
for position, start, stop, has_stop_codon in orfs:
orf_nt_length = stop - start + 1
orf_aa_length = seqg_length + int(has_stop_codon)
if orf_nt_length == orf_aa_length*3:
orfs_to_update.append({
'transcript_id': transcript_id,
'position': position,
'transcript_start': start,
'transcript_stop': stop,
'protein_id'": protein_id
)
if has_stop_codon:
protein['sequence'] = protein['sequence'] + AminoAcid.STOPvalue
break

if i % CHUNK_SIZE == 0:

bulk_upsert(session, Protein.__table__, proteins_to_upsert)
bulk_upsert(session, ORF.__table__, orfs_to_update,
primary_keys=('transcript_id', ‘position'))
bulk_upsert(session, Protein.__table__, proteins_to_upsert)
bulk_upsert(session, ORF.__table__, orfs_to_update, primary_keys=('transcript_id',
'position’'))

def load_sqanti_classifications(self, sqanti_file: str):
with self.get_session() as session:
with session.begin():
existing_gencode_transcripts = {row.accession for row in
session.query(GencodeTlranscript.accession)}
existing_pacbio_transcripts = {row.accession for row in
session.query(PacBioTranscript.accession)}
transcripts_to_update =[]
with open(sqganti_file) as f:
f.readline() # skip header
lines = count_lines(f)
reader = csv.DictReader(f, delimiter="\t')
for row in tqdm(reader, desc='"Reading SQANTI classifications', total=lines,
unit='lines'):
if row['isoform'] in existing_pacbio_transcripts:
tx={
'‘accession': row['isoform'],
'sganti': SQANTI_DICT.get(row['structural_category'], SQANTI.OTHER)
}
associated_tx = row['associated_transcript']
if tx['sqanti'] in {SQANTI.FSM, SQANTI.ISM} and associated_tx in
existing_gencode_transcripts:
tx['gencode_id'] = associated_tx
else:
tx['gencode_id'] = None
transcripts_to_update.append(tx)
if len(transcripts_to_update) == CHUNK_SIZE:
bulk_upsert(session, PacBioTranscript.__table__, transcripts_to_update)
bulk_upsert(session, PacBioTranscript.__table__, transcripts_to_update)

def load_domains(self, domain_file: str, overwrite: bool = False):
if overwrite:
print(f'Clearing domains from table \'{Feature.__tablename__}\'..)
with self.get_session() as session:
with session.begin():
session.execute(delete(Feature.__table_).where(Feature.type ==
FeatureType.DOMAIN))

with open(domain_file) as f:
lines = count_lines(f)
reader = csv.reader(f, delimiter="\t")
t =tgdm(reader, desc='Reading domain info', total=lines, unit='domains')
domains_to_upsert = (
{
'type': FeatureType.DOMAIN,
'accession': acc,
'name': name,
'description': desc
} for acc, name, _, desc, *_int
)
domains_to_upsert = list(domains_to_upsert)
with self.get_session() as session:
bulk_upsert(session, Domain.__table_ , domains_to_upsert)

def load_patterns(self, pattern_file: str):
with open(pattern_file) as f:
name_getter = re.compile(r'(ID)(\S+)(; PATTERN.)")
acc_getter = re.compile(r'(AC)(\S+)(;)")
desc_getter = re.compile(r'(DE)(.+)")

lines = count_lines(f, only=lambda s: name_getter.match(s))
t=tgdm(None, desc="Reading pattern info', total=lines, unit="'patterns')
patterns_to_upsert =]
forlineinf:
if (name := name_getter.match(line)):
pattern ={'name': name.group(2), 'type': FeatureType.NONE}
t.update()
elif (acc := acc_getter.match(line)):
pattern['accession'] = acc.group(2)
elif (desc := desc_getter.match(line)):
pattern['description'] = desc.group(2)
patterns_to_upsert.append(pattern)
with self.get_session() as session:
bulk_upsert(session, Feature.__table__, patterns_to_upsert)

def load_feature_mappings(self, domain_mapping_file: str, appris_only: bool =True,
overwrite: bool = False):
with self.get_session() as session:
feature_types =

{
'type': Featurelype.IDR,

'accession': 'mobidb-lite’,
'name': 'MobiDB),
'description': 'intrinsically disordered region (MobiDB)'
}
]

bulk_upsert(session, Feature.__table__, feature_types)

with session.begin():
if overwrite:
print(f'Clearing table \'{ProteinFeature.__tablename__}\'...)
session.execute(delete(ProteinFeature.__table_))
if appris_only:
protein_length = func.length(Protein.sequence)
subqg = (
select(GencodeTranscript.gene_id, Protein.accession,
Gencodelranscript.appris, protein_length).
select_from(Protein).
join(Protein.orf).
join(ORF.transcript).
order_by(GencodeTranscript.gene_id).
order_by(desc(Gencodelranscript.appris)).
order_by(desc(protein_length)).
order_by(GencodeTranscript.name).
subquery()
)
proteins_to_map = set(
session.execute(
select(subq.c.accession).select_from(subq).group_by(subqg.c.gene_id)
).scalars()
)
else:
proteins_to_map = set(session.execute(select(Protein.accession)).scalars())
existing_features = set(session.execute(select(Feature.accession)).scalars())
with open(domain_mapping_file) as f:
f.readline() # skip header
lines = count_lines(f)
reader = csv.DictReader(f, delimiter="\t')
t =tqdm(reader, desc='Reading reference domain mappings', total=lines,
unit="'mappings')
domains_to_insert = (
{
'feature_id": row['feature id'],
'protein_id': row['Protein stable ID version'],
'protein_start': row['start'],

'protein_stop': row['end'],
'reference’': True
}
for row in t if row['feature id'] in existing_features and row['Protein stable ID
version'] in proteins_to_map
)
domains_to_insert = list(domains_to_insert)
with session.begin():
session.execute(insert(ProteinFeature.__table_).on_conflict_do_nothing(),
domains_to_insert)

def project_feature_mappings(self, gene_ids: Iterable[str] = None, overwrite: bool =
False):
with self.get_session() as session:
if overwrite:
with session.begin():
print(f'Clearing non-reference mappings from table
\'{ProteinFeature.__tablename__}\'.))
#
session.execute(delete(ProteinFeature.__table__).where(~ProteinFeature.reference))
protein_tx = contains_eager(Protein.orf).contains_eager(ORF.transcript)
q=(
select(Protein, Transcript.gene_id).
join(Protein.orf).
join(ORF.transcript).
order_by(Transcript.gene_id).
order_by(desc(Transcript.__table__.c.appris)).
order_by(desc(ORF.length)).
order_by(Transcript.name).
options(
protein_tx.joinedload(Transcript.orfs),
protein_tx.joinedload(Transcript.exons).joinedload(Exon.transcript),
protein_tx.joinedload(Transcript.gene),
contains_eager(Protein.orf).joinedload(ORF.protein),
joinedload(Protein.features).joinedload(ProteinFeature.protein),
joinedload(Protein.features).joinedload(ProteinFeature.feature),
raiseload('*")
)

)
tqdm.write(str(q))

if not gene_ids:
gene_ids = list(session.execute(
select(Transcript.gene_id).distinct().
select_from(ORF).

join(ORF.transcript).
order_by(Transcript.gene_id)
).scalars())
nrows = session.execute(
select(func.count(Transcript.accession)).
select_from(ORF).
join(ORF.transcript).
where(Transcript.gene_id.in_(gene_ids))
).scalars().first()
rows = chain.from_iterable(
session.execute(
g.where(Transcript.gene_id.in_(gene_chunk))
).unique()
for gene_chunk in chunked(gene_ids, 200)
)
t=tgdm(None, desc='Projecting domain mappings', total=nrows, unit='proteins),
mininterval=0.2)
domains_to_insert =]
for gene_chunk in chunked(gene_ids, 200):
rows = session.execute(
g.where(Transcript.gene_id.in_(gene_chunk))
).unique()
rows_by_gene = groupby(rows, key=itemgetter(1))
for gene, group in rows_by_gene:
proteins = [row[0] for row in group]
anchor = proteins[0]
for other in proteins[1:]:
if not anchor.features:
continue
try:
aln = CodonAlignment.from_proteins(anchor, other)
except Exception as e:
tgdm.write(f'{anchor}|{otheri\t{e}")
continue
for feat in anchor.features:
proj_feat = aln.project_feature(feat)
if proj_feat:
record ={
k: getattr(proj_feat, k)
forkin (
'protein_start),
'protein_stop),
'reference’,
' differences'

)
}
record['feature_id'] = proj_feat.feature.accession
record['protein_id'] = other.accession
record['anchor_id'] = proj_feat.anchor.id
domains_to_insert.append(record)
t.update(len(proteins))
if len(domains_to_insert) > CHUNK_SIZE:
if domains_to_insert:
session.execute(insert(ProteinFeature.__table__).on_conflict_do_nothing(),
domains_to_insert)
session.commit()
domains_to_insert[:] =]
if domains_to_insert:
session.execute(insert(ProteinFeature.__table_).on_conflict_do_nothing(),
domains_to_insert)
session.commit()
Alignment.__new__.cache_clear()

def _process_exons(transcripts_to_exons, minus_transcripts):
calculate the coordinates of each exon relative to the sequence of its parent transcript
t=tgdm(
transcripts_to_exons.items(),
desc ='Calculating transcript-relative exon coords/,
total = len(transcripts_to_exons),
unit = 'transcripts'
)
for transcript_id, exon_list in t:
exon_list.sort(key=itemgetter('start'), reverse=transcript_id in minus_transcripts)
tx_idx=1
for i, exon in enumerate(exon_list, start=1):
exon['position'] =i
if 'accession' not in exon:
exon['accession'] = transcript_id + f':EXON({i}'
exon_length = exon['stop'] - exon['start'] + 1
exon['transcript_start'] = tx_idx
exon['transcript_stop'] = tx_idx + exon_length - 1
tx_idx += exon_length

def _process_orfs(transcripts_to_cdss, transcripts_to_exons, minus_transcripts):
assemble CDS intervals into ORFs
orfs_to_upsert =]

t=tgdm(
transcripts_to_cdss.items(),
desc ="'Calculating transcript-relative ORF coords),
total = len(transcripts_to_cdss),
unit = 'transcripts'
)
for transcript_id, cds_listin t:
exon_list = transcripts_to_exons[transcript_id]
cds_list.sort(key=itemgetter(0), reverse=transcript_id in minus_transcripts)
first_cds, last_cds = cds_list[0], cds_list[-1]
assuming that the first and last CDSs are the ORF boundaries -- won't work when
dealing with multiple ORFs
orf_start = first_cds[0]
orf_stop = last_cds[1]
if transcript_id in minus_transcripts:
orf_start, orf_stop = orf_stop, orf_start
first_exon = next((exon for exon in exon_list if exon['start'] <= first_cds[0] and first_cds[1]
<= exon['stop']), None)
last_exon = next((exon for exon in reversed(exon_list) if exon['start'] <= last_cds[0] and
last_cds[1] <= exon['stop']), None)
find ORF start/end relative to exons
if transcript_id not in minus_transcripts:
first_offset = first_cds[0] - first_exon['start']
last_offset = last_exon['stop'] - last_cds[1]
else:
first_offset = first_exon['stop'] - first_cds[1]
last_offset = last_cds[0] - last_exon['start’]
convert to transcript-relative coords
orf_tx_start = first_exon['transcript_start'] + first_offset
orf_tx_stop = last_exon['transcript_stop'] - last_offset
orf_length = orf_tx_stop - orf_tx_start + 1
if orf_length % 3 !=0:
continue # ORFs with nt lengths indivisible by 3 should not be considered
orfs_to_upsert.append({
'transcript_id': transcript_id,
'position': 1,
'transcript_start': orf_tx_start,
'transcript_stop': orf_tx_stop,
'has_stop_codon': False,

b

return orfs_to_upsert

Create databases folder if it doesn't exist

if not Database._databases_dir.exists():
Database._databases_dir.mkdir()

Make sure SQLite enforces foreign key constraints
https://www.scrygroup.com/tutorial/2018-05-07/SQLite-foreign-keys/
@event.listens_for(Engine, "connect")
def _set_sqlite_pragma(dbapi_connection, connection_record):
if isinstance(dbapi_connection, SQLite3Connection):

cursor = dbapi_connection.cursor()

cursor.execute("PRAGMA foreign_keys=0N;")

cursor.close()

helpers.py

utility functions that don't fit in other modules
import sys

import traceback

from bisect import bisect

from collections.abc import Mapping

from contextlib import AbstractContextManager
from copy import copy

from dataclasses import dataclass, field, fields
from enum import Enum

from itertools import chain, count

from operator import itemgetter

from typing import TYPE_CHECKING, Callable, Generic, Iterable, Iterator, List, Optional,
TextlO, Tuple, TypeVar

from graph_tool import Graph
from intervaltree import Interval, IntervalTree
from sqlalchemy.dialects.sqlite.dmlimport insert

if TYPE_CHECKING:
from io import TextlOBase

T =TypeVar('T")

class OrderedEnum(Enum):
https://docs.python.org/3/library/enum.html#orderedenum
def __ge_ (self, other):
if self.__class__is other.__class__:
return self.value >= othervalue

return Notimplemented
def gt (self, other):
if self.__class__isother._ _class_:
return self.value > othervalue
return NotImplemented
def __le_ (self, other):
if self. _class__isother._ _class_:
return self.value <= other.value
return NotImplemented
def __lt__ (self, other):
if self.__class__isother._ _class_ :
return self.value < other.value
return Notimplemented

class StringEnum(Enum):
def __str__ (self):
return self.value

class BisectDict(Mapping, Generic[T]):
def __init__(self, items: lterable[Tuple[int, T]]):
self.breakpoints, self._values = zip(*sorted(items, key=itemgetter(0)))

def __getitem__(self, key: int) ->T:
if key < 0:
raise KeyError('Key must be non-negative')
i = bisect(self.breakpoints, key)
try:
return self._valuesi]
except IndexError as e:
raise KeyError(key) from e

def __iter__(self) -> Iterator[int]:
yield from (0,) + self.breakpoints[:-1]

def __len__(self):
return len(self.breakpoints)

def frozendataclass(cls):
frozencls = dataclass(cls, frozen=True)
field_names = {field.name for field in fields(frozencls)}
def replace(self, **kwargs):

""Return new instance of frozendataclass with updated values.
new_field_values = {name: kwargs.get(name, getattr(self, name)) for name in
field_names}
return frozencls(**new_field_values)
frozencls.replace = replace
return frozencls

class ExceptionLogger(AbstractContextManager):
def __init__(self, info=None, output: TextlO = None, callback=None):
self.info = info
self.callback = callback if callable(callback) else None
self.output = output if output is not None else sys.stderr

def __exit__ (self, exc_type, exc_val, exc_tb):
if exc_type is not None:

self.output.write('--------- \n")
if self.info:

self.output.write(str(self.info) + '\n')
traceback.print_exc(file=self.output)
self.output.write('--------- \n'")
if self.callback:

self.callback(exc_type, exc_val, exc_tb)
return True

def run_length_encode(text: str) -> str:
if not text:
return "
encoding =[]
run_length =1
prev_char = text[0]
for charin text[1:]:
if char == prev_char:
run_length +=1
else:
encoding.append(f'{run_length{prev_char})
prev_char =char
run_length =1
encoding.append(f'{run_lengthKprev_char})
return '.join(encoding)

def run_length_decode(encoding: str) -> str:

return ".join(int(token[:-1]) * token[-1] for token in encoding.split(})) if encoding else "

def get_interval_overlap_graph(intervals: Iterable[Tuple[int, int]], labels: Optional[lterable]
= None, label_type: str = 'string') -> 'Graph':
inspired by https://stackoverflow.com/a/19088519
build graph of labels where labels are adjacent if their intervals overlap
if not labels:
labels = count()
g = Graph(directed=False)
g.vp.label = g.new_vertex_property(label_type)
label_to_vertex = dict()
active_labels = set()
boundaries = sorted(
chain.from_iterable(
[(a, True, label), (b, False, label)]
for (a, b), label in zip(intervals, labels)
)s
key = itemgetter(0, 1)
)
for _, start_of _interval, label in boundaries:
if start_of_interval:
if label not in label_to_vertex:
v = g.add_vertex()
g.vp.label[v] = label
label_to_vertex[label]=v
for other_label in active_labels:
i = label_to_vertex[label]
j =label_to_vertex[other_label]
g.add_edge(i, j)
active_labels.add(label)
else:
active_labels.discard(label)
return g, label_to_vertex

Helper functions/classes for loading into database
@dataclass
class FastaHeaderFields:

transcript_id: str=None

protein_id: str = None

def count_lines(file_handle: 'TextlOBase/, only: Optional[Callable[..., bool]] = None):

lines = sum(1 for _in filter(only, file_handle))
file_handle.seek(0)
return lines

def bulk_upsert(session, table, records, primary_keys=('accession))):
if records:
fields = [field for field in records[0] if field not in primary_keys]
with session.begin():
stmt = insert(table)
session.execute(
stmt.on_conflict_do_update(
index_elements = primary_keys,
set_ = {field: stmt.excluded]field] for field in fields}
),

records

)

records[:] =]

def read_gtf_line(line: str) -> list:
"""Read and parse a single gtf line

Args:
line (str): unbroken line of a gtf file

Returns:
list: gtf attributes
chromosome : str
source : str
feature : str
start:int
stop :int
score : str
strand : str
phase : str
attributes: dict
tags: list

chromosome, source, feature, start, stop, score, strand, phase, attributes = line.split('\t')
start = int(start)

stop = int(stop)

attributes = attributes.split(';")[:-1]

attributes = [att.strip(' ").split(" ") for att in attributes]

tags = [att[1].strip('"") for att in attributes if att[0] == 'tag']

attributes = {att[0]: att[1].strip('"") for att in attributes if att[0] |= 'tag'}

return chromosome, source, feature, start, stop, score, strand, phase, attributes, tags

def get_ids_from_gencode_fasta(header: str):
fields = [field for field in header.split('|') if field and not field.startswith(('"UTR}, 'CDS"))]
transcript_id = next((field for field in fields if field.startswith(('"ENST', 'ENSMUST"))), None)
protein_id = next((field for field in fields if field.startswith(('ENSP', 'ENSMUSP"))), None)
return FastaHeaderFields(transcript_id, protein_id)

def get_ids_from_pacbio_fasta(header: str):
return FastaHeaderFields(header, None)

def get_ids_from_Llrp_fasta(header: str):
fields = header.split('|")
return FastaHeaderFields(fields[1], fields[1] + :PROT1")

def skip_par_y(header: str): # these have duplicate ENSEMBL accessions and that makes
SQLAlchemy very sad
return 'PAR_Y"' in header

def skip_gencode(header: str):
return header.startswith('gc')

splice_events.py

import heapq

import warnings

from abc import ABC, abstractmethod

from operator import attrgetter, methodcaller
from typing import Iterable, Union

from attrs import evolve, field, frozen

from biosurfer.core.helpers import get_interval_overlap_graph

from biosurfer.core.models.biomolecules import Exon, Transcript

from biosurfer.core.models.nonpersistent import GenomeRange, Position, Junction
from graph_toolimport GraphView

from graph_tool.topology import is_bipartite, shortest_path, label_components
from more_itertools import first, windowed

@frozen(eq=True)
class TranscriptEvent(ABC):
@abstractmethod
def __neg_ (self) -> 'TranscriptEvent":
raise NotImplementedError

@property
@abstractmethod
def delta_nt(self) -> int:
raise NotImplementedError

@property

@abstractmethod

def start(self) -> 'Position":
raise NotImplementedError

@property

@abstractmethod

def stop(self) -> 'Position'":
raise NotImplementedError

def sort_events(x: Iterable['TranscriptEvent']):
return tuple(sorted(x, key=attrgetter('start’, 'stop')))

@frozen(eq=True)
class BasicTranscriptEvent(TranscriptEvent):
is_deletion: bool

def __neg__ (self):
return evolve(self, is_deletion=not self.is_deletion)

@property
def is_insertion(self):
return not self.is_deletion

@property
def delta_nt(self) -> int:
return (-1 if self.is_deletion else 1) * self.length

@property
def length(self) -> int:
return (self.stop - self.start) + 1

@frozen(eq=True)
class CompoundTranscriptEvent(TranscriptEvent):
members: tuple['BasicTranscriptEvent), ...] = field(converter=sort_events)

def __neg_ (self):
return self.from_basic_events(-event for event in self. members)

@property
def delta_nt(self) -> int:
return sum(event.delta_nt for event in self. members)

@property
def start(self):
return self.members[0].start

@property
def stop(self):
return self.members[-1].stop

@classmethod
def from_basic_events(cls, basic_events: Iterable['BasicTranscriptEvent']):
return cls(members=basic_events)

@frozen(eq=True)
class IntronSpliceEvent(BasicTranscriptEvent):
junction: Junction'

@property
def anchor_junctions(self):
return () if self.is_deletion else (self.junction,)

@property
def other_junctions(self):
return (self.junction,) if self.is_deletion else ()

@property
def start(self) -> 'Position":
return self.junction.donor

@property
def stop(self) -> 'Position'":

return self.junction.acceptor

@frozen(eq=True)
class DonorSpliceEvent(BasicTranscriptEvent):

upstream_junction: 'Junction'

downstream_junction: Junction' = field()

@downstream_junction.validator

def _check_junctions(self, attribute, value: 'Junction'):

if self.upstream_junction.donor >= value.donor:
raise ValueError(f'{value} has donor upstream of {self.upstream_junction}')

@property
def anchor_junctions(self):
return (self.downstream_junction,) if self.is_deletion else (self.upstream_junction,)

@property
def other_junctions(self):
return (self.upstream_junction,) if self.is_deletion else (self.downstream_junction,)

@property
def start(self) -> 'Position':
return self.upstream_junction.donor

@property
def stop(self) -> 'Position':
return self.downstream_junction.donor - 1

@frozen(eq=True)
class AcceptorSpliceEvent(BasicTranscriptEvent):

upstream_junction: 'Junction'

downstream_junction: Junction' = field()

@downstream_junction.validator

def _check_junctions(self, attribute, value: 'Junction'):

if self.upstream_junction.acceptor >= value.acceptor:
raise ValueError(f'{value} has acceptor upstream of {self.upstream_junction})

@property
def anchor_junctions(self):
return (self.upstream_junction,) if self.is_deletion else (self.downstream_junction,)

@property
def other_junctions(self):

return (self.downstream_junction,) if self.is_deletion else (self.upstream_junction,)

@property
def start(self) -> 'Position":
return self.upstream_junction.acceptor + 1

@property
def stop(self) -> 'Position'":
return self.downstream_junction.acceptor

@frozen(eq=True)
class ExonSpliceEvent(BasicTranscriptEvent):
skip_junction: Junction'
upstream_junction: 'Junction'
downstream_junction: Junction' = field()
@downstream_junction.validator
def _check_short_junctions(self, attribute, value: 'Junction'):
if self.upstream_junction & value:
raise ValueError(f'{self.upstream_junction} and {value} overlap')

@property
def anchor_junctions(self):
return (self.upstream_junction, self.downstream_junction) if self.is_deletion else
(self.skip_junction,)

@property
def other_junctions(self):
return (self.skip_junction,) if self.is_deletion else (self.upstream_junction,
self.downstream_junction)

@property
def start(self) -> 'Position':
return self.upstream_junction.acceptor + 1

@property

def stop(self) -> 'Position':
return self.downstream_junction.donor - 1

BasicSpliceEvent = Union[IntronSpliceEvent, DonorSpliceEvent, AcceptorSpliceEvent,
ExonSpliceEvent]

@frozen(eq=True)

class ExonBypassEvent(BasicTranscriptEvent):
exon: 'GenomeRange' # TODO: replace with updated Exon object
is_partial: bool = False

@property
def start(self) -> 'Position":
return self.exon.begin

@property
def stop(self) -> 'Position'":
return self.exon.end

EVENT_CODES =¢{
IntronSpliceEvent: ('I', 'i'),
DonorSpliceEvent: ('D), 'd'),
AcceptorSpliceEvent: (‘A 'a'),
ExonSpliceEvent: ('E!, 'e'),
ExonBypassEvent: ('B', 'b")

}

def get_event_code(events: Iterable['BasicTranscriptEvent']):
return ".join(EVENT_CODES[type(event)][event.is_deletion] for event in events)
code="
for event in events:
if getattr(event, 'is_partial, False):
code +="p'if event.is_deletion else 'P"
else:
code += EVENT_CODES[type(event)][event.is_deletion]
return code

@frozen(eq=True)
class SpliceEvent(CompoundTranscriptEvent):
members: tuple['BasicSpliceEvent), ...] = field(converter=sort_events, repr=False)
code: str = field(default=")
anchor_junctions: tuple['Junction| ...] = field(factory=tuple)
other_junctions: tuple[Junction), ...] = field(factory=tuple)

@members.validator
def _check_members(self, attribute, value):
if len(value) > 1:
if any(isinstance(event, IntronSpliceEvent) for event in value):

raise ValueError('Cannot combine IntronSpliceEvent with other BasicSpliceEvents')
if any(isinstance(event, DonorSpliceEvent) for event in value[1:]):

raise ValueError('DonorSpliceEvent must be first')
if any(isinstance(event, AcceptorSpliceEvent) for event in value[:-1]):

raise ValueError('‘AcceptorSpliceEvent must be last')

@classmethod
def from_basic_events(cls, events: Iterable['BasicSpliceEvent']):
events = tuple(events)
code = get_event_code(events)
anchor_junctions = sorted({junc for event in events for junc in event.anchor_junctions},
key=attrgetter('donor"))
other_junctions = sorted({junc for event in events for junc in event.other_junctions},
key=attrgetter('donor"))
return cls(members=events, code=code, anchor_junctions=tuple(anchor_junctions),
other_junctions=tuple(other_junctions))

@frozen(eq=True)
class TSSEvent(CompoundTranscriptEvent):
members: tuple['ExonBypassEvent,, ...] = field(converter=sort_events)

@members.validator
def _check_members(self, attribute, value: tuple['ExonBypassEvent), ...]):
if any(event.is_partial for event in value[:-1]):
raise ValueError(f'{value}')
if len({event.is_deletion for event in value[:-1]}) > 1:
raise ValueError(f'{value}')

@frozen(eq=True)
class APAEvent(CompoundTranscriptEvent):
members: tuple['ExonBypassEvent,, ...] = field(converter=sort_events)

@members.validator
def _check_members(self, attribute, value: tuple['ExonBypassEvent, ...]):
if any(event.is_partial for event in value[1:]):
raise ValueError(f'{value}')
if len({event.is_deletion for event in value[1:]}) > 1:
raise ValueError(f'{value}')

def call_splice_event(comp: 'GraphView') -> 'SpliceEvent':
def by_donor(v):

junc = comp.vp.label[v]
return junc.donor, junc.acceptor

def by_acceptor(v):
junc = comp.vp.label[v]
return junc.acceptor, junc.donor

basic_events =[]
N = comp.num_vertices()
if N==1:
call alt. intron event
v = first(comp.vertices())
if not (comp.vp.overlaps_tss[v] or comp.vp.overlaps_pas[v]):
basic_events = [IntronSpliceEvent(is_deletion=not comp.vp.from_anchor[v],
junction=comp.vp.label[v])]
else:
v0, v1 = heapqg.nsmallest(2, comp.vertices(), key=by_donor)
vN, vM = heapq.nlargest(2, comp.vertices(), key=by_acceptor)
check for alt. donor usage
junc0 = comp.vp.label[v0]
junc1 =comp.vp.label[v1]
if juncO0.donor !=junc1.donor and not comp.vp.overlaps_tss[vO]:
donor_event = DonorSpliceEvent(
is_deletion = bool(comp.vp.from_anchor[v1]),
upstream_junction = juncO,
downstream_junction = junc1
)
donor_event = [donor_event]
else:
donor_event =[]
check for alt. acceptor usage
juncM = comp.vp.label[vM]
juncN = comp.vp.label[vN]
if juncM.acceptor != juncN.acceptor and not comp.vp.overlaps_pas[vN]:
acceptor_event = AcceptorSpliceEvent(
is_deletion = bool(comp.vp.from_anchor[vM]),
upstream_junction = juncM,
downstream_junction = juncN
)
acceptor_event = [acceptor_event]
else:
acceptor_event =[]
call any alt. exon events
exon_events =]

if N> 2:
path, _=shortest_path(
comp,
source = min(v0, v1, key=methodcaller('out_degree")),
target = min(vM, vN, key=methodcaller('out_degree'))
)
for skip in path[1:-1]:
neighbors = sorted(skip.out_neighbors(), key=by_donor)
other_has_skip = not comp.vp.from_anchor[skip]
for upstream, downstream in windowed(neighbors, 2):
exon_event = ExonSpliceEvent(
is_deletion = other_has_skip,
upstream_junction = comp.vp.label[upstream],
downstream_junction = comp.vp.label[downstream],
skip_junction = comp.vp.label[skip]
)
exon_events.append(exon_event)
basic_events = donor_event + exon_events + acceptor_event
return SpliceEvent.from_basic_events(basic_events) if basic_events else None

def call_transcript_events(anchor: 'Transcript!, other: 'Transcript’):

chr =anchor.gene.chromosome_.id
strand = anchor.strand
anchor_start = Position(chr, strand, anchor.start)
anchor_stop = Position(chr, strand, anchor.stop)
if anchor_start > anchor_stop:

anchor_start, anchor_stop = anchor_stop, anchor_start
other_start = Position(chr, strand, other.start)
other_stop = Position(chr, strand, other.stop)
if other_start > other_stop:

other_start, other_stop = other_stop, other_start
downstream_start = max(anchor_start, other_start)
upstream_stop = min(anchor_stop, other_stop)

anchor_junctions = set(anchor.junctions)

diff_junctions = anchor_junctions * set(other.junctions)

diff_junctions = {junc for junc in diff_junctions if downstream_start <= junc.acceptor and
junc.donor <= upstream_stop}

tss_overlap_junction = first((junc for junc in diff_junctions if junc.donor <=
downstream_start <= junc.acceptor + 1), None)

pas_overlap_junction = first((junc for junc in diff_junctions if junc.donor - 1 <=
upstream_stop <= junc.acceptor), None)

g, _=get_interval_overlap_graph(((j.donor, j.acceptor+1) forj in diff_junctions),
diff_junctions, label_type='object')
if not is_bipartite(g):
warnings.warn(f'Overlap graph not bipartite for {anchor} | {other})
g.vp.from_anchor = g.new_vertex_property('bool’)
g.vp.overlaps_tss = g.new_vertex_property('‘bool’)
g.vp.overlaps_pas = g.new_vertex_property('‘bool’)
forvin g.vertices():
junc = g.vp.label[v]
g.vp.from_anchor[v] =junc in anchor_junctions
g.vp.overlaps_tss[v] =junc == tss_overlap_junction
g.vp.overlaps_pas[v] = junc == pas_overlap_junction

g.vp.comp, hist = label_components(g)
components ={c: GraphView(g, vfilt=lambda v: g.vp.comp[v] == ¢) for ¢ in range(len(hist))}

with warnings.catch_warnings():
warnings.simplefilter(‘'ignore')
splice_events = sorted(
filter(None, (call_splice_event(comp) for comp in components.values())),
key = lambda e: min(j.donor for j in (e.anchor_junctions + e.other_junctions))

)

#TODO: simplify this when Exons are refactored
def get_exon(exon_obj: 'Exon'):
return GenomeRange(*sorted((Position(chr, strand, exon_obj.start), Position(chr,
strand, exon_obj.stop))))

anchor_exons = [get_exon(exon) for exon in anchor.exons]
other_exons = [get_exon(exon) for exon in other.exons]
upstream_exons = sorted((exon for exon in set(anchor_exons) | set(other_exons) if
exon.begin < downstream_start), key=attrgetter('begin’))
downstream_exons = sorted((exon for exon in set(anchor_exons) | set(other_exons) if
upstream_stop < exon.end), key=attrgetter('begin'))
call TSS event
if upstream_exons:
is_deletion = downstream_start == other_start
bypass_events = [ExonBypassEvent(is_deletion, exon) for exon in upstream_exons]
if tss_overlap_junction:
alt_downstream_exon = (other_exons if is_deletion else anchor_exons)[0]
last_bypass_event = ExonBypassEvent(
not is_deletion,
GenomeRange(
downstream_start,

min(alt_downstream_exon.end, tss_overlap_junction.acceptor)

),
is_partial = tss_overlap_junction.acceptor < alt_downstream_exon.end
)
bypass_events.append(last_bypass_event)
elif any(exon.begin < downstream_start <= exon.end for exon in (anchor_exons if
is_deletion else other_exons)):
upstream_exons[-1] = evolve(upstream_exons[-1], end=downstream_start-1)
bypass_events[-1] = evolve(bypass_events[-1], exon=upstream_exons[-1],
is_partial=True)
tss_event = TSSEvent.from_basic_events(bypass_events)
else:
tss_event = None
call APA event
if downstream_exons:
is_deletion = upstream_stop == other_stop
bypass_events = [ExonBypassEvent(is_deletion, exon) for exon in downstream_exons]
if pas_overlap_junction:
alt_upstream_exon = (other_exons if is_deletion else anchor_exons)[-1]
first_bypass_event = ExonBypassEvent(
not is_deletion,
GenomeRange(
max(alt_upstream_exon.begin, pas_overlap_junction.donor),
upstream_stop

),

is_partial = alt_upstream_exon.begin < pas_overlap_junction.donor
)
bypass_events.insert(0, first_bypass_event)
elif any(exon.begin <= upstream_stop < exon.end for exon in (anchor_exons if
is_deletion else other_exons)):
downstream_exons[0] = evolve(downstream_exons[0], begin=upstream_stop+1)
bypass_events[0] = evolve(bypass_events[0], exon=downstream_exons[0],
is_partial=True)
apa_event = APAEvent.from_basic_events(bypass_events)
else:
apa_event = None
return splice_events, tss_event, apa_event

base.py

from typing import Iterable, Type

from sqlalchemy import Column, String, select

from sqglalchemy.ext.declarative import declarative_base, declared_attr
from sqlalchemy.orm.exc import NoResultFound

Base = declarative_base()

class TablenameMixin:
@declared_attr
def __tablename__(cls: Type['Base']):
return cls.__name__.lower()

class NameMixin:
name = Column(String, index=True)

@classmethod
def from_name(cls: Type['Base'], session, name: str, unique: bool = True):
statement = select(cls).where(cls.name == name)
result = session.execute(statement).scalars()
if unique:
try:
return result.oneg()
except NoResultFound:
return None
else:
return result.all()

@classmethod

def from_names(cls: Type['Base'], session, names: lterable[str]):
statement = select(cls).where(cls.name.in_(names))
return {inst.name: inst for inst in session.execute(statement).scalars()}

class AccessionMixin:
accession = Column(String, primary_key=True, index=True)

@classmethod

def from_accession(cls: Type['Base'], session, accession: str):
statement = select(cls).where(cls.accession == accession)
result = session.execute(statement).scalars()

try:
return result.one()
except NoResultFound:
return None

@classmethod

def from_accessions(cls: Type['Base'], session, accessions: lterable[str]):
statement = select(cls).where(cls.accession.in_(accessions))
return {inst.name: inst for inst in session.execute(statement).scalars()}

biomolecules.py

from functools import cached_property

from operator import attrgetter

from typing import Dict, Iterable, List, Optional, Tuple, Type
from warnings import warn

from Bio.Seq import Seq

from biosurfer.core.constants import APPRIS, SQANTI, Strand

from biosurfer.core.helpers import BisectDict

from biosurfer.core.models.base import AccessionMixin, Base, NameMixin,
TablenameMixin

from biosurfer.core.models.nonpersistent import *

from more_itertools import only

from sqlalchemy import Boolean, Column, Enum, ForeignKey, Integer, String, func
from sglalchemy.ext.hybrid import hybrid_property

from sqlalchemy.ext.orderinglist import ordering_list

from sglalchemy.orm import relationship

#TODO: replace with Enum?

class Chromosome(Base, TablenameMixin, NameMixin):
name = Column(String, primary_key=True)
genes = relationship('Gene', back_populates='chromosome')

def __repr__(self) -> str:
return self.name

class Gene(Base, TablenameMixin, NameMixin, AccessionMixin):
strand = Column(Enum(Strand))
chromosome_id = Column(String, ForeignKey('‘chromosome.name'))
chromosome = relationship('Chromosome’, back_populates='genes')

transcripts = relationship(
"Transcript),
back_populates = 'gene’,
order_by = 'Transcript.name/,
lazy = 'selectin' # always load transcripts along with gene

)

def __repr__(self) -> str:
return self.name

FIXME: make this work in SQL queries
@property
def start(self) -> int:
return min(exon.start for transcript in self.transcripts for exon in transcript.exons)

@property
def stop(self) -> int:
return max(exon.stop for transcript in self.transcripts for exon in transcript.exons)

class Transcript(Base, TablenameMixin, NameMixin, AccessionMixin):
strand = Column(Enum(Strand))
type = Column(String)
sequence = Column(String)
gene_id = Column(String, ForeignKey('gene.accession'))
gene = relationship('Gene’, back_populates="transcripts')
exons = relationship(
'Exon,
order_by ='Exon.transcript_start,
collection_class = ordering_list('position’, count_from=1),
back_populates = 'transcript),
uselist = True,
lazy = 'selectin' # always load exons along with transcript
)
orfs = relationship(
'ORF,
order_by ='ORF.transcript_start/,
back_populates = 'transcript),
uselist =True

)

__mapper_args__ ={
'polymorphic_on': type,

'polymorphic_identity': 'transcript'

}

The reason we use cached properties here instead of setting things up in __init__or
init_on_load
is to make sure the ORM eagerly loads all exons first.
@cached_property
def _exon_mapping(self) -> BisectDict:
return BisectDict((exon.transcript_stop+1, i) for i, exon in enumerate(self.exons))

@cached_property
def _junction_mapping(self) -> Dict['Junction’, Tuple['Exon', 'Exon']]:
mapping = dict()
foriinrange(1, len(self.exons)):
up_exon = self.exons[i-1]
down_exon = self.exonsi]
chr = self.gene.chromosome_id
if self.strand is Strand.MINUS:
up_exon_stop = up_exon.start
down_exon_start = down_exon.stop
else:
up_exon_stop = up_exon.stop
down_exon_start = down_exon.start
donor = Position(chr, self.strand, up_exon_stop) + 1
acceptor = Position(chr, self.strand, down_exon_start) - 1
junction = Junction.from_splice_sites(donor, acceptor)
mapping[junction] = (up_exon, down_exon)
return mapping

@cached_property
def nucleotides(self):
if not self.sequence:
raise AttributeError(f'{self.name} has no sequence’)
nucleotides =[]
self._nucleotide_mapping: Dict[int, 'Nucleotide'] = dict()
if self.exons:
i=0
for exon in self.exons:
coords = range(exon.start, exon.stop+1)
if self.strand is Strand.MINUS:
coords = reversed(coords)
for coord in coords:
nt = Nucleotide(self, coord, i+1)
nucleotides.append(nt)

self._nucleotide_mapping[coord] = nt
i+=1
else:
nucleotides = [Nucleotide(self, None, i+1) for i in range(len(self.sequence))]
return nucleotides

def __repr__(self) -> str:
return self.name

FIXME: make this work in SQL queries
@property
def start(self) -> int:
return self.exons[0].stop if self.strand is Strand.MINUS else self.exons[0].start

@property
def stop(self) -> int:
return self.exons[-1].start if self.strand is Strand.MINUS else self.exons[-1].stop

@hybrid_property
def length(self):
return len(self.sequence)

@length.expression
def length(cls):
return func.length(cls.sequence)

@property
def chromosome(self) -> 'Chromosome":
return self.gene.chromosome

@property
def primary_orf(self) -> Optional['ORF']:
if not self.orfs:
return None
return max(self.orfs, key=attrgetter('length'))

@property

def protein(self) -> Optional['Protein']:
"""Get the "primary" protein produced by this transcript, if it exists.
return self.primary_orf.protein if self.primary_orf else None

@property
def junctions(self):
return list(self._junction_mapping.keys())

These methods may seem redundant, but the idea is to keep the publicly accessible
interface separate from the implementation details
def get_exon_containing_position(self, position: int) -> 'Exon":
"""Given a position (1-based) within the transcript's nucleotide sequence, return the
exon containing that position."""
return self.exons[self._exon_mapping[position]]

def get_exon_index_containing_position(self, position: int) -> int:
"""Given a position (1-based) within the transcript's nucleotide sequence, return the
index (0-based) of the exon containing that position."""
return self._exon_mapping[position]

def get_nucleotide_from_coordinate(self, coordinate: int) -> 'Nucleotide":
"""Given a genomic coordinate (1-based) included in the transcript, return the
Nucleotide object corresponding to that coordinate."""
if not hasattr(self, '_nucleotide_mapping'):
self.nucleotides
if coordinate in self._nucleotide_mapping:
return self._nucleotide_mapping[coordinate]
else:
return None

def contains_coordinate(self, coordinate: int) -> bool:
"""Given a genomic coordinate (1-based), return whether or not the transcript contains
the nucleotide at that coordinate."""
return coordinate in self._nucleotide_mapping

def get_exons_from_junction(self, junction: Junction') -> Tuple['Exon', 'Exon']:
try:
return self._junction_mapping[junction]
except KeyError as e:
raise KeyError(f'{self} does not use junction {junction}') from e

def get_genome_coord_from_transcript_coord(self, tx_coord: int) -> Position:
try:
nt = self.nucleotides[tx_coord]
return Position(self.gene.chromosome_id, self.strand, nt.coordinate)
except IndexError:
pos = Position(self.gene.chromosome_id, self.strand, self.nucleotides[-1].coordinate)
return pos + (tx_coord - self.length + 1)

def get_transcript_coord_from_genome_coord(self, gn_coord: Position) -> int:
if self.strand is not gn_coord.strand:

raise ValueError(f'{gn_coord} is different strand from {self}')
elif self.gene.chromosome_id != gn_coord.chromosome:
raise ValueError(f'{gn_coord} is different chromosome from {self})
nt = self.get_nucleotide_from_coordinate(gn_coord.coordinate)
if nt:
return nt.position - 1
else:
raise KeyError

class GencodeTranscript(Transcript):
__tablename__ = None
appris = Column(Enum(APPRIS, values_callable=lambda x: [str(m.value) for m in x]))
start_nf = Column(Boolean)
end_nf= Column(Boolean)
pacbio = relationship(
'PacBioTranscript),
back_populates = 'gencode),
uselist = True

)

def __init__(self, **kwargs):
if 'strand' in kwargs:
kwargs['strand'] = Strand.from_symbol(kwargs['strand'])
super().__init__(**kwargs)

__mapper_args__ ={
'polymorphic_identity': 'gencodetranscript’

}

@hybrid_property
def basic(self):
return ~(self.start_nf | self.end_nf)

class PacBioTranscript(Transcript):
__tablename__= None
sganti = Column(Enum(SQANTI, values_callable=lambda x: [str(m.value) for m in x]))
gencode_id = Column(String, ForeignKey('transcript.accession'))
gencode = relationship(
'GencodeTranscript),
back_populates = 'pacbio),
uselist = False,
remote_side = [Transcript.accession]

)

__mapper_args__={
'polymorphic_identity': 'pacbiotranscript’

}

class Exon(Base, TablenameMixin, AccessionMixin):
type = Column(String)
position = Column(Integer) # exon ordinal within parent transcript
genomic coordinates
start = Column(Integer)
stop = Column(Integer)
transcript coordinates
transcript_start = Column(Integer)
transcript_stop = Column(Integer)
sequence = Column(String, default=")
transcript_id = Column(String, ForeignKey('transcript.accession'), primary_key=True)
transcript = relationship(
'"Transcript),
back_populates = 'exons'

)

def __repr__(self) -> str:
return f'{self.transcript}:exon{self.position}'

@hybrid_property
def length(self):
return self.stop - self.start + 1

@property
def gene(self):
return self.transcript.gene

@property
def chromosome(self):
return self.gene.chromosome

@property
def strand(self) -> 'Strand':
return self.transcript.strand

@property
def sequence(self):

return self.transcript.sequence[self.transcript_start-1:self.transcript_stop]

@property
def nucleotides(self):
return self.transcript.nucleotides[self.transcript_start-1:self.transcript_stop]

@property
def coding_nucleotides(self):
return [nt for ntin self.nucleotides if nt.residue]

class ORF(Base, TablenameMixin):

genomic coordinates
start = Column(Integer)
stop = Column(Integer)
transcript coordinates
transcript_start = Column(Integer)
transcript_stop = Column(Integer)
has_stop_codon = Column(Boolean)
position = Column(Integer, primary_key=True)
transcript_id = Column(String, ForeignKey('transcript.accession'), primary_key=True)
transcript = relationship(

'"Transcript),

back_populates = 'orfs|,

lazy = 'joined'
)
protein_id = Column(String, ForeignKey('protein.accession'))
protein = relationship(

'Protein’,

back_populates = 'orf,

uselist = False,

lazy = 'joined'

)

@property
def _first_exon_index(self):
return self.transcript.get_exon_index_containing_position(self.transcript_start)

@property
def _last_exon_index(self):
try:
return self.transcript.get_exon_index_containing_position(self.transcript_stop)
except KeyError as e:
warn(

f'KeyError: {e} when getting ORF._last_exon_index for {self}'
)

return len(self.transcript.exons) - 1

@cached_property
def utrb(self):
utr5_boundary_exon_index = self._first_exon_index
if self.transcript.exons[utr5_boundary_exon_index].transcript_start ==
self.transcript_start:
utr5_boundary_exon_index -= 1
if utr5_boundary_exon_index >= 0:
return FivePrimeUTR(self, utr5_boundary_exon_index)
else:
return None

@cached_property
def utr3(self):
utr3_boundary_exon_index = self._last_exon_index
if self.transcript.exons[utr3_boundary_exon_index].transcript_stop ==
self.transcript_stop:
utr3_boundary_exon_index += 1
if utr3_boundary_exon_index < len(self.transcript.exons):
return ThreePrimeUTR(self, utr3_boundary_exon_index)
else:
return None

@cached_property
def nmd(self):
ORFs with stop codons at least 50 bp upstream of the last splice site in the mature
transcript
(i.e. the beginning of the last exon) are considered candidates for nonsense-mediated
decay (NMD)
last_junction = self.transcript.exons[-1].transcript_start
return last_junction - self.transcript_stop >= 50

def __repr__(self) -> str:
return f'{self.transcript}.orf({self.transcript_start}-{self.transcript_stop})'

FIXME: make this work in SQL queries
@property
def start(self):
if self.transcript.strand is Strand.PLUS:
return self.nucleotides[0].coordinate
elif self.transcript.strand is Strand.MINUS:

return self.nucleotides[-1].coordinate

@property
def stop(self):
if self.transcript.strand is Strand.PLUS:
return self.nucleotides[-1].coordinate
elif self.transcript.strand is Strand.MINUS:
return self.nucleotides[0].coordinate

@hybrid_property
def length(self) -> int:
return self.transcript_stop - self.transcript_start + 1

@property
def sequence(self) -> str:
return self.transcript.sequence[self.transcript_start - 1:self.transcript_stop]

@property
def nucleotides(self) -> List['Nucleotide']:
return self.transcript.nucleotides[self.transcript_start - 1:self.transcript_stop]

@property
def gene(self) -> 'Gene":
return self.transcript.gene

@property
def exons(self) -> List['Exon']:
return self.transcript.exons[self._first_exon_index:self._last_exon_index+1]

@property
def junctions(self) -> List['Junction']:
return self.transcript.junctions[self._first_exon_index:self._last_exon_index]

def _link_aa_to_nt(self, residue_list):

aa_sequence = Seq(self.protein.sequence)

nt_sequence = Seq(self.sequence)

translation = nt_sequence.translate(to_stop=True)

aa_match_index = aa_sequence.find(translation)

if aa_match_index == -1:

warn(
f'Could not match amino acid sequence to nucleotide sequence of {self}'

)

return

nt_match_index = aa_match_index*3
nt_list = self.nucleotides[nt_match_index:]
for i, aa in enumerate(residue_list):
aa.codon = tuple(nt_Llist[3*i:3*i + 3])
for nt in aa.codon:
nt.residue = aa

class Protein(Base, TablenameMixin, AccessionMixin):
sequence = Column(String)
orf = relationship(
'ORF,
back_populates = 'protein,
uselist = False,
lazy = 'joined'
)
features = relationship(
'ProteinFeature’,
back_populates = 'protein,
uselist = True,
order_by ='ProteinFeature.protein_start’

)

def __init__(self, **kwargs):
super().__init__(**kwargs)
self.residues =]

@reconstructor

def init_on_load(self):

self.residues = [Residue(self, aa, i) for i, aa in enumerate(self.sequence + '*', start=1)]
if self.orf and self.orf.nucleotides:

self._link_aa_to_orf_nt()

@cached_property
def residues(self):
if not self.sequence.endswith('*"):
self.sequence +="*'
_residues = [Residue(self, i+1) for i in range(len(self.sequence))]
if self.orf:
self.orf._link_aa_to_nt(_residues)
return _residues

def __repr__(self):
if self.orf:

return f'{self.orf.transcript}:protein’
else:
return self.accession

@property
def gene(self):
return self.orf.transcript.gene

@property
def transcript(self) -> 'Transcript":
return self.orf.transcript

@hybrid_property
def length(self):
return len(self.sequence)

def get_protein_coord_from_transcript_coord(self, transcript_coord: int):
return (transcript_coord - self.orf.transcript_start+ 1) // 3

def get_transcript_coord_from_protein_coord(self, protein_coord: int):
return protein_coord*3 + self.orf.transcript_start — 1

features.py

import json
from functools import cached_property
from typing import TYPE_CHECKING, List

from biosurfer.core.constants import FeatureType
from biosurfer.core.constants import \
CodonAlignmentCategory as TranscriptAlignCat
from biosurfer.core.helpers import run_length_decode
from biosurfer.core.models.base import AccessionMixin, Base, NameMixin,
TablenameMixin
from sglalchemy.ext.hybrid import hybrid_property
from sqlalchemy.orm import relationship
from sqlalchemy.sql.schema import Column, ForeignKey, Table, UniqueConstraint
from sqlalchemy.sql.sqltypes import Boolean, Enum, Integer, PickleType, String

if TYPE_CHECKING:
from biosurfer.core.alignments import FeatureAlignment

from biosurfer.core.models.biomolecules import Residue

feature_base_table = Table(

'proteinfeature’, Base.metadata,

Column('type’, Enum(Featurelype)),

Column('accession', String, primary_key=True, index=True),
Column('name/, String),

Column('description’, String)

H*+ o H HF H F*

feature_mapping_table = Table(

'proteinfeature_mapping’, Base.metadata,

Column('feature_id, String, ForeignKey('proteinfeature.accession'), primary_key=True),
Column('protein_id', String, ForeignKey('protein.accession'), primary_key=True),
Column('protein_start|, Integer, primary_key=True),

Column('protein_stop), Integer, primary_key=True),

#
#
#
#
#
#

class Feature(Base, TablenameMixin, NameMixin, AccessionMixin):
type = Column(Enum(FeatureType))
description = Column(String)

__mapper_args__ ={
'polymorphic_on': type,
'polymorphic_identity': FeatureType.NONE
}

class Domain(Feature):
__tablename__ = None
__mapper_args__ ={
'polymorphic_identity': FeatureType.DOMAIN
}

class IDR(Feature):
__tablename__ = None
__mapper_args__ ={
'polymorphic_identity': FeatureType.IDR
}

class ProteinFeature(Base, TablenameMixin):
id = Column(Integer, primary_key=True, autoincrement=True)
feature_id = Column(String, ForeignKey('feature.accession'), nullable=False)

protein_id = Column(String, ForeignKey('protein.accession'), nullable=False)
protein_start = Column(Integer, nullable=False)

protein_stop = Column(Integer, nullable=False)

reference = Column(Boolean, nullable=False)

feature = relationship('Feature', uselist=False, lazy='selectin’)
protein = relationship('Protein, back_populates='features' uselist=False)

_ table_args__ = (UniqueConstraint(feature_id, protein_id, protein_start, protein_stop),)

__mapper_args__ ={
'polymorphic_on': reference,
'polymorphic_identity': True

}

def __repr__(self):
return f'{self.protein}:.{self.name}({self.protein_start}-{self.protein_stop})'

@property
def type(self) -> Featurelype:
return self.feature.type if self.feature else FeatureType.NONE

@property
def name(self) -> str:
return self.feature.name if self.feature else None

@property
def description(self) -> str:
return self.feature.description if self.feature else None

@hybrid_property
def length(self):
return self.protein_stop - self.protein_start + 1

@property
def sequence(self) -> str:
return self.protein.sequence[self.protein_start-1:self.protein_stop]

@property

def residues(self) -> List['Residue']:
return self.protein.residues(self.protein_start-1:self.protein_stop]

class ProjectedFeature(ProteinFeature, TablenameMixin):

__tablename__ = None

anchor_id = Column(Integer, ForeignKey('proteinfeature.id'))

anchor = relationship('ProteinFeature’, foreign_keys=[anchor_id], uselist=False)

_differences = Column(String) # run-length encoding of FeatureAlignment with anchor
feature

__mapper_args__ ={
'polymorphic_identity': False
}

@cached_property
def altered_residues(self):
alt_res =]
i=0
for token in self._differences.split(}):
char =token[-1]
length = int(token[:-1])
if char != TranscriptAlignCat.MATCH.value:
alt_res.extend(self.residuesJi:i+length])
i +=length
return alt_res

def __init__(self, feature_alignment: 'FeatureAlignment'):
self.alignment = feature_alignment

self.anchor = feature_alighment.proteinfeature

self.feature = feature_alignment.proteinfeature.feature
self.protein = feature_alignment.other

3+

residues = feature_alignment.other_residues
self.protein_start = residues[0].position
self.protein_stop = residues[-1].position

=

self.altered_residues = [res_aln.other for res_aln in feature_alignment if
res_aln.category not in {TranscriptAlignCat.MATCH, TranscriptAlignCat.EDGE_MATCH,
TranscriptAlignCat.DELETION}]

def __repr__(self):
return super().__repr__() +*'

nonpersistent.py

from abc import ABC, abstractmethod

from collections import Counter

from functools import cached_property

from operator import attrgetter

from typing import TYPE_CHECKING, List, Optional, Tuple, Union
from warnings import warn

from attrs import define, frozen, field, evolve, validators
from biosurfer.core.constants import Nucleobase, AminoAcid, Strand

if TYPE_CHECKING:
from biosurfer.core.models.biomolecules import Chromosome, Gene, Transcript, Exon,
ORF, Protein

@frozen(hash=True)

class Position:
chromosome: str # TODO: convert to dynamic Enum?
strand: 'Strand' = field(validator=validators.instance_of(Strand))
coordinate: int = field(validator=validators.gt(0))

def __repr__(self):
return f'{self.chromosome}({self.strand}):{self.coordinate}’

def _is_comparable(self, other: 'Position'):
return (self.chromosome, self.strand) == (other.chromosome, other.strand)

def __lt_ (self, other: 'Position'):
if not isinstance(other, Position):
return Notimplemented
if not self._is_comparable(other):
raise ValueError(f'{self} and {other} are from different strands')
elif self.strand is Strand.MINUS:
return self.coordinate > other.coordinate
else:
return self.coordinate < other.coordinate

def __le_ (self, other: 'Position'):
if not isinstance(other, Position):
return NotImplemented
if not self._is_comparable(other):
raise ValueError(f'{self} and {other} are from different strands')

elif self.strand is Strand.MINUS:

return self.coordinate >= other.coordinate
else:

return self.coordinate <= other.coordinate

def gt (self, other: 'Position'):
if not isinstance(other, Position):
return NotImplemented
if not self._is_comparable(other):
raise ValueError(f'{self} and {other} are from different strands')
elif self.strand is Strand.MINUS:
return self.coordinate < other.coordinate
else:
return self.coordinate > other.coordinate

def __ge_ (self, other: 'Position'):
if not isinstance(other, Position):
return NotImplemented
if not self._is_comparable(other):
raise ValueError(f'{self} and {other} are from different strands')
elif self.strand is Strand.MINUS:
return self.coordinate <= other.coordinate
else:
return self.coordinate >= other.coordinate

def __add__(self, offset: int):
if not isinstance(offset, int):
return Notimplemented
else:
if self.strand is Strand.MINUS:
offset = -offset
return evolve(self, coordinate=self.coordinate + offset)

def __radd__(self, offset: int):
return self.__add__(offset)

def __sub__(self, other: Union['Position’, int]):
if isinstance(other, int):
return self.__add__(-other)
elif not isinstance(other, Position):
return Notimplemented
elif not self._is_comparable(other):
raise ValueError(f'{self} and {other} are from different strands')
delta = self.coordinate - other.coordinate

if self.strand is Strand.MINUS:
delta = -delta
return delta

class Nucleotide:
_ slots__ = ('parent’, 'coordinate’, 'position', '_base/, 'residue’)

def __init__(self, parent, coordinate: int, position: int) -> None:
self.parent = parent
self.coordinate = coordinate # genomic coordinate
self.position = position # position within parent
self._base = None
self.residue = None # associated Residue, if any

def __repr__(self) -> str:
return f'{self.parent.chromosome}:{self.coordinate}({self.parent.strand}){self.base}'

@property
def base(self) -> 'Nucleobase':
if not self._base:
self._base = Nucleobase(self.parent.sequence[self.position - 1])
return self._base

@property
def chromosome(self) -> 'Chromosome":
return self.parent.chromosome

@property
def strand(self) -> 'Strand':
return self.parent.strand

@property
def gene(self) -> 'Gene":
if isinstance(self.parent, Gene):
return self.parent
return self.parent.gene

@property
def exon(self) -> 'Exon":
return self.parent.get_exon_containing_position(self.position)

def __eq__(self, other: 'Nucleotide'):
if not isinstance(other, Nucleotide):

raise TypeError(f'Cannot compare Nucleotide with {type(other)})
return self.coordinate, self.position, self.base == other.coordinate, other.position,
other.base

OptNucleotide = Optional['Nucleotide']
Codon =Tuple[OptNucleotide, OptNucleotide, OptNucleotide]

class Residue:
_ slots__ = ('protein’, 'position,

_aa', 'codon’)

def __init__(self, protein: 'Protein’, position: int) -> None:
self._aa =None
self.protein = protein
self.position = position # position within protein peptide sequence
self.codon: Codon = (None, None, None) # 3-tuple of associated Nucleotides; filled in
later

def __repr__(self) -> str:
return f'{self.amino_acid}self.position}'

@property
def amino_acid(self) -> 'AminoAcid":
if not self._aa:
self._aa = AminoAcid(self.protein.sequence[self.position - 1])
return self._aa

@property
def codon_str(self) -> str:
return ".join(str(nt.base) for ntin self.codon)

@property
def exons(self) -> List['Exon']:
return list(set(nt.exon for nt in self.codon))

@property

def primary_exon(self) -> 'Exon':
exons = Counter([nt.exon for nt in self.codon)])
return exons.most_common(1)[0][0]

@property

def junction(self) -> Optional['Junction']:
exons = self.exons
if len(exons) < 2:

return None
transcript = exons[0].transcript
this is a bit kludgy, may need to add properties to Exon class
return transcript.junctions[exons[0].position - 1]

@property
def is_gap(self):
return self.amino_acid is AminoAcid.GAP

@frozen(hash=True)

class GenomeRange:
begin: 'Position' = field(validator=validators.instance_of(Position))
end: 'Position' = field(validator=validators.instance_of(Position))

def __attrs_post_init__(self):
if self.begin > self.end:
raise ValueError(f'{self.begin} is downstream of {self.end}')

@property
def chromosome(self):
return self.begin.chromosome

@property
def strand(self):
return self.begin.strand

def __repr__(self):
return
f'{self.begin.chromosome}({self.begin.strand}):{self.begin.coordinate}*{self.end.coordinate

y

def __eq__(self, other: 'GenomeRange'):

if not isinstance(other, GenomeRange):
return Notlmplemented

delta_begin = abs(self.begin - other.begin)

delta_end = abs(self.end - other.end)

if delta_begin <=2 and delta_end <= 2 and (delta_begin != 0 or delta_end != 0):
warn(f'Possible off-by-one error for ranges {self} and {other}')

return delta_begin == 0 and delta_end ==

def __and__(self, other: '‘GenomeRange'):
if not isinstance(other, GenomeRange):
return NotImplemented

begin = max(self.begin, other.begin)
end = min(self.end, other.end)
return evolve(self, begin=begin, end=end) if begin <= end else None

def __or__(self, other: 'GenomeRange'):
if not isinstance(other, GenomeRange):
return NotImplemented
begin = min(self.begin, other.begin)
end = max(self.end, other.end)
return evolve(self, begin=begin, end=end) if begin <= end else None

@property
def length(self) -> int:
return (self.end - self.begin) + 1

def as_tuple(self):
return self.chromosome, self.strand, self.begin.coordinate, self.end.coordinate

@classmethod

def from_coordinates(cls, chromosome: str, strand: 'Strand’, begin: int, end: int):
return cls(Position(chromosome, strand, begin), Position(chromosome, strand, end))

@frozen(hash=True)

class Junction:

range: 'GenomeRange' = field(validator=validators.instance_of(GenomeRange))

@property
def donor(self):
return self.range.begin

@property
def acceptor(self):
return self.range.end

def __repr__(self):

return
f'{self.range.chromosome}({self.range.strand}):{self.donor.coordinate}*{self.acceptor.coord
inate}'

def __eq__(self, other: 'Junction'):
if not isinstance(other, Junction):
return NotImplemented
return self.range == other.range

def __and__(self, other: Junction'):
if not isinstance(other, Junction):
return NotImplemented
intersection = self.range & other.range
return Junction(intersection) if intersection else None

def __or__(self, other: Junction'):
if not isinstance(other, Junction):
return NotImplemented
union = self.range | other.range
return Junction(union) if union else None

@property
def length(self):
return self.range.length

def as_tuple(self):
return self.range.as_tuple()

@classmethod
def from_coordinates(cls, chromosome: str, strand: 'Strand', donor: int, acceptor: int):
return Junction(GenomeRange.from_coordinates(chromosome, strand, donor,
acceptor))

@classmethod
def from_splice_sites(cls, donor: 'Position!, acceptor: 'Position'):
return Junction(GenomeRange(donor, acceptor))

class UTR(ABC):
def __init__(self, orf: 'ORF', boundary_exon_index: int):
self.orf = orf
self.transcript: 'Transcript' = orf.transcript
self._boundary_exon_index = boundary_exon_index
self.transcript_start = None
self.transcript_stop = None

@property
def length(self):
return self.transcript_stop - self.transcript_start + 1

@property
def nucleotides(self) -> List['Nucleotide']:

return self.transcript.nucleotides[self.transcript_start-1:self.transcript_stop]

@property
def sequence(self) -> str:
return self.transcript.sequence[self.transcript_start-1:self.transcript_stop]

@property
def start(self) -> int:
return self.transcript.nucleotides[self.transcript_start-1].coordinate

@property
def stop(self) -> int:
return self.transcript.nucleotides[self.transcript_stop-1].coordinate

@property
@abstractmethod
def exons(self):
raise NotImplementedError

@abstractmethod
def __repr__(self):
raise NotimplementedError

class FivePrimeUTR(UTR):
def __init__(self, orf: 'ORF', boundary_exon_index: int):
super().__init__(orf, boundary_exon_index)
self.transcript_start =1
self.transcript_stop = orf.transcript_start - 1

@property
def exons(self) -> List['Exon']:
return self.transcript.exons[:self._boundary_exon_index+1]

def __repr__(self):
return f'{self.transcript}:utr5({self.transcript_start}-{self.transcript_stop})'

class ThreePrimeUTR(UTR):
def __init__(self, orf: 'ORF, boundary_exon_index: int):
super().__init__(orf, boundary_exon_index)
self.transcript_start = orf.transcript_stop + 1
self.transcript_stop = self.transcript.length

@property
def exons(self) -> List['Exon']:
return self.transcript.exons[self._boundary_exon_index:]

def __repr__(self):
return f'{self.transcript}:utr3({self.transcript_start}-{self.transcript_stop})'

plotting.py

functions to create different visualizations of isoforms/clones/domains/muts

from copy import copy

from dataclasses import dataclass

from itertools import chain, groupby, islice, tee

from operator import attrgetter, sub

from typing import (TYPE_CHECKING, Any, Callable, Collection, Dict, Iterable,
List, Literal, Optional, Set, Tuple, Union)

from warnings import filterwarnings, warn

import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from Bio import Align
from biosurfer.core.alignments import CodonAlignment, ProjectedFeature
from biosurfer.core.constants import (FRAMESHIFT, SPLIT_CODON, AminoAcid,
CodonAlignmentCategory, FeatureType,
SequenceAlignmentCategory, Strand)
from biosurfer.core.helpers import (ExceptionLogger, Interval, IntervalTree,
get_interval_overlap_graph)
from biosurfer.core.models.biomolecules import (GencodeTranscript,
PacBioTranscript, Transcript)
from biosurfer.core.splice_events import (AcceptorSpliceEvent,
DonorSpliceEvent, ExonBypassEvent,
ExonSpliceEvent, IntronSpliceEvent)
from brokenaxes import BrokenAxes
from graph_tool import Graph
from graph_tool.topology import sequential_vertex_coloring
from matplotlib._api.deprecation import MatplotlibDeprecationWarning
from more_itertools import first, last, only

if TYPE_CHECKING:

from biosurfer.core.alignments import ProteinAlignmentBlock, CodonAlignmentBlock
from biosurfer.core.models.biomolecules import Protein

from matplotlib.axes import Axes

from matplotlib.figure import Figure

StartStop = Tuple[int, int]
filterwarnings("ignore", category=MatplotlibDeprecationWarning)

TRANSCRIPT_SOURCE ={
'‘gencodetranscript': 'GENCODE]
'pacbiotranscript': 'PacBio'

}

def get_transcript_source(tx: 'Transcript'):
return TRANSCRIPT_SOURCE.get(tx.type, ")

colors for different transcript types
TRANSCRIPT_COLORS ={
None: ('#404040' '#777777"),
Gencodelranscript: ('‘#343553', '#5D5E7C'),
PacBioTranscript: ('#61374D/, '#91677D")

}

colors for transcript events

EVENT_COLORS ={
IntronSpliceEvent: '#e69138/,
DonorSpliceEvent: '#6aa84f',
AcceptorSpliceEvent: '#674ea7/,
ExonSpliceEvent: '#3d85c6),
ExonBypassEvent: '#bebebe’,

}

alpha values for different absolute reading frames
ABS_FRAME_ALPHA ={0:1.0,1:0.45, 2: 0.15}

hatching styles for different relative frameshifts

REL_FRAME_STYLE ={
CodonAlignmentCategory.FRAME_AHEAD: '////,,
CodonAlignmentCategory.FRAME_BEHIND: "xxxx'

}

colors for CodonAlignmentBlocks
CBLOCK_COLORS ={
CodonAlignmentCategory.TRANSLATED: '#9bf3ff',

CodonAlignmentCategory.INSERTION: '#05e0ff',
CodonAlignmentCategory.FRAME_AHEAD: '#fff099),
CodonAlignmentCategory. FRAME_BEHIND: '#ffd700/,
CodonAlignmentCategory.UNTRANSLATED: '#ff99ce/,
CodonAlignmentCategory. DELETION: '#ff0082',
CodonAlignmentCategory.EDGE: '#8270c1’,
CodonAlignmentCategory. COMPLEX: '#aaaaaa’

}

PBLOCK_COLORS ={
SequenceAlignmentCategory.DELETION: '#FF0082,
SequenceAlignmentCategory. INSERTION: '#05EQFF!,
SequenceAlignmentCategory.SUBSTITUTION: '#FFD700"

}

FEATURE_COLORS ={
'‘MobiDB'": '#AAAAAA'

}

@dataclass
class IsoformPlotOptions:
"""Bundles various options for adjusting plots made by IsoformPlot."""
intron_spacing: int = 30 # number of bases to show in each intron
track_spacing: float =2 # ratio of space between tracks to max track width
subtle_splicing_threshold: int =20 # maximum difference (in bases) between exon
boundaries to display subtle splicing

@property
def max_track_width(self) -> float:
return 1/(self.track_spacing + 1)

@max_track_width.setter
def max_track_width(self, width: float):
self.track_spacing = (1 - width)/width

TableColumn = Callable[[Transcript], str]
class IsoformPlot:
"""Encapsulates methods for drawing one or more isoforms aligned to the same genomic
x-axis."""
def __init__(self, transcripts: Iterable['Transcript'], columns: Dict[str, TableColumn] =
None, **kwargs):
self.transcripts: List['Transcript'] = list(transcripts) # list of orf objects to be drawn
gene = {tx.gene for tx in filter(None, self.transcripts)}

if len(gene) > 1:
raise ValueError(f'Found isoforms from multiple genes: {", ".join(g.name for gin
gene)})
strand = only(
{tx.strand for tx in filter(None, self.transcripts)},
too_long = ValueError("Can't plot isoforms from different strands")

)

self.strand: Strand = strand

self.fig: Optional['Figure'] = None

self._bax: Optional['BrokenAxes'] = None

self._columns: Dict[str, TableColumn] = {'Source': get_transcript_source} | (columns if
columns else dict())

self.opts = IsoformPlotOptions(**kwargs)

self.reset_xlims()

keep track of artists for legend
self._handles = dict()

Internally, IsoformPlot stores _subaxes, which maps each genomic region to the
subaxes that plots the region's features.
The xlims property provides a simple interface to allow users to control which genomic
regions are plotted.
@property
def xlims(self) -> Tuple[StartStop]:
""Coordinates of the genomic regions to be plotted, as a tuple of (start, end) tuples.
return self._xlims

@xlims.setter
def xlims(self, xlims: Iterable[StartStop]):
xregions = IntervalTree.from_tuples((min(start, stop), max(start, stop)+1) for start, stop
in xlims) # condense xlims into single IntervalTree object
xregions.merge_equals()
xregions.merge_overlaps()
xregions.merge_neighbors()
xregions = sorted(xregions.all_intervals)
if self.strand is Strand.MINUS:
xregions.reverse()
self._subaxes = IntervalTree.from_tuples((start, end, i) for i, (start, end, _) in
enumerate(xregions))
self._xlims = tuple((start, end-1) if self.strand is Strand.PLUS else (end-1, start) for start,
end, _in xregions)

def reset_xlims(self):
"""Set xlims automatically based on exons in isoforms."""
space = self.opts.intron_spacing
self.xlims = tuple((exon.start - space, exon.stop + space) for tx in filter(None,
self.transcripts) for exon in tx.exons)

This method speeds up plotting by allowing IsoformPlot to add artists only to the
subaxes where they are needed.
def _get_subaxes(self, xcoords: Union[int, StartStop]) -> Tuple['Axes']:
""For a specific coordinate or range of coordinates, retrieve corresponding subaxes."""
if isinstance(xcoords, tuple):
if xcoords[0] > xcoords[1]:
xcoords = (xcoords[1], xcoords[0])
xcoords = slice(*xcoords)
subax_ids = [interval[-1] for interval in self._subaxes[xcoords]]
if not subax_ids:
raise ValueError(f"{xcoords} is not within plot's xlims")
return tuple(self._bax.axs[id] for id in subax_ids)

def draw_point(self, track: int, pos: int,
ylims: tuple[float, float] = None,
marker=", linewidth=1, **kwargs):
"""Draw a feature at a specific point. Appears as a vertical line with an optional
marker."""
if ylims is None:
ylims = -0.5*self.opts.max_track_width, 0.5*self.opts.max_track_width
artist = mlines.Line2D(
xdata = (pos, pos),
ydata = (track + ylims[0], track + ylims[1]),
linewidth = linewidth,
marker = marker,
markevery = 2,
**kwargs

try:
subaxes = self._get_subaxes(pos)[0]
except ValueError as e:
warn(str(e))
else:
subaxes.add_artist(artist)
return artist

def draw_region(self, track: int, start: int, stop: int,

y_offset: Optional[float] = None,

height: Optional[float] = None,

type='rect!, **kwargs):
"""Draw a feature that spans a region. Appearance types are rectangle and line.
if start == stop:

return
#TODO: make type an enum?
if type == "rect":

if height is None:
height = self.opts.max_track_width

if y_offset is None:
y_offset = -0.5*height

artist = mpatches.Rectangle(
Xy = (start, track + y_offset),
width = stop - start,
height = height,
**kwargs

)

elif type =="line":

if y_offset is None:
y_offset=0

artist = mlines.Line2D(
xdata = (start, stop),
ydata = (track + y_offset, track + y_offset),
**kwargs

)

else:
raise ValueError(f'/Region type "{type}" is not defined')

subaxes = self._get_subaxes((start, stop))

for ax in subaxes:
ax.add_artist(copy(artist))

return artist

def draw_background_rect(self, start: int, stop: int,
track_first: int = None, track_last: int = None,
padding: float = None, **kwargs):
"""Draw a rectangle in the background of the plot.
if start == stop:
return
if track_first is None:
track_first=0
if track_lastis None:
track_last = len(self.transcripts) - 1

nmn

if padding is None:
padding = self.opts.max_track_width
top =track_first - padding
bottom = track_last + padding
artist = mpatches.Rectangle(
Xy = (start, top),
width = stop - start,
height = bottom - top,
zorder = 0.5,
**kwargs

)

subaxes = self._get_subaxes((start, stop))

for ax in subaxes:
ax.add_artist(copy(artist))

return artist

def draw_text(self, x: int, y: float, text: str, **kwargs):
""Draw text at a specific location. x-coordinate is genomic, y-coordinate is w/ respect
to tracks (0-indexed).
Ex: x=20000, y=2 will center text on track 2 at position 20,000."""
TODO: make this use Axes.annotate instead
we can't know how much horizontal space text will take up ahead of time
so text is plotted using BrokenAxes' big_ax, since it spans the entire x-axis
big_ax = self._bax.big_ax
try:
subaxes = self._get_subaxes(x)[0] # grab coord transform from correct subaxes
except ValueError as e:
warn(str(e))
else:
big_ax.text(x, y, text, transform=subaxes.transData, **kwargs)

def draw_legend(self, only_labels: Optional[lterable[str]] = None, except_labels:
Optional[lterable[str]] = None, **kwargs):
if only_labels and except_labels:
raise ValueError('Cannot set both "only_labels" and "except_labels"')
elif only_labels:
labels = [label for label in self._handles if label in only_labels]
elif except_labels:
labels = [label for label in self._handles if label not in except_labels]
else:
labels = list(self._handles.keys())
handles = [self._handles[label] for label in labels]
self.fig.legend(

handles = handles,

labels = labels,

#ncol=1,

loc ='center left),

mode = 'expand|

bbox_to_anchor =(1.05, 0.5),
**kwargs

)

def draw_isoform(self, tx: 'Transcript), track: int):
"""Plot a single isoform in the given track."""
start, stop = tx.start, tx.stop
align_start, align_stop = 'right’, 'left’
if self.strand is Strand.MINUS:
align_start, align_stop = align_stop, align_start

plotintron line

self.draw_region(
track,
start = start,
stop = stop,
type ="'line’,
linewidth = 1.5,
color ='gray,
zorder=1.5

)

plot exons
utr_kwargs = {
'type': 'rect),
'edgecolor': 'k,
'facecolor': TRANSCRIPT_COLORS[type(tx)][1],
'height': 0.5*self.opts.max_track_width,
'zorder': 1.5
}
cds_kwargs ={
'type': 'rect),
'edgecolor': 'k},
'‘facecolor': TRANSCRIPT_COLORS[type(tx)][0],
'zorder': 1.5
}
if tx.orfs:
orf = tx.primary_orf
if orf.utr5:

for exon in orf.utr5.exons:
if self.strand is Strand.PLUS:
start = exon.start
stop = min(exon.stop, orf.start)
elif self.strand is Strand.MINUS:
start = max(exon.start, orf.stop)
stop = exon.stop
self.draw_region(track, start=start, stop=stop, **utr_kwargs)
for exon in orf.exons:
start = max(exon.start, orf.start)
stop = min(exon.stop, orf.stop)
self.draw_region(track, start=start, stop=stop, **cds_kwargs)
if orf.utr3:
for exon in orf.utr3.exons:
if self.strand is Strand.PLUS:
start = max(exon.start, orf.stop)
stop = exon.stop
elif self.strand is Strand.MINUS:
start = exon.start
stop = min(exon.stop, orf.start)
self.draw_region(track, start=start, stop=stop, **utr_kwargs)
else:
for exon in tx.exons:
self.draw_region(track, start=exon.start, stop=exon.stop, **utr_kwargs)

for exon in tx.exons:
label every 5th exon in anchor isoform for easier navigation
if track == 0 and exon.position % 5 == 0:
self.draw_text((exon.start + exon.stop)//2, track - self.opts.max_track_width,
f'E{exon.position}, ha='center’, va='baseline')

add subtle splice (delta) amounts, if option turned on

first, make sure the exon contains a (coding) cds object

if exon.cds:

#TODO: pull subtle splice detection code out into this method?

delta_start, delta_end = retrieve_subtle_splice_amounts(exon.cds)

if delta_start:

self.draw_text(exon.start, track-0.1, delta_start, va='bottom', ha=align_start,
size='x-small')

ifdelta_end:

self.draw_text(exon.stop, track-0.1, delta_end, va='bottom', ha=align_stop,
size="'x-small')

for orfin tx.orfs:

first_res = orf.protein.residues[0]

last_res = orf.protein.residues[-1]

if first_res.amino_acid is AminoAcid.MET:
start_codon = first_res.codon[0].coordinate
self.draw_point(track, start_codon, color='lime’)

if last_res.amino_acid is AminoAcid.STOP:
stop_codon = last_res.codon[2].coordinate
self.draw_point(track, stop_codon, color="'red")

if hasattr(tx, 'start_nf') and tx.start_nf:
self.draw_text(tx.start if self.strand is Strand.PLUS else tx.stop, track, "' |, ha='right/,
va='center’, weight="bold', color="r")
if hasattr(tx, 'end_nf') and tx.end_nf:
self.draw_text(tx.stop if self.strand is Strand.PLUS else tx.start, track, '!', ha='left),
va='center’, weight="bold', color="r")

def draw_all_isoforms(self, subplot_spec = None):

"""Plot all isoforms."""

R = len(self.transcripts)

C = len(self._columns)

self.fig = plt.figure()

self._bax = BrokenAxes(fig=self.fig, xlims=self.xlims, ylims=((R-0.5, -0.5),), wspace=0,
d=0.008, subplot_spec=subplot_spec)

self._handles['Intron'] = mlines.Line2D([], [], linewidth=1.5, color="gray')

self._handles['Exon (translated)'] =
mpatches.Patch(facecolor=TRANSCRIPT_COLORS[None][0], edgecolor="k'")

self._handles['Exon (untranslated)'] =
mpatches.Patch(facecolor=TRANSCRIPT_COLORS[None][1], edgecolor="k'")

self._handles['Start codon'] = mlines.Line2D([], [], linestyle='"None’, color='lime’,
marker='|', markersize=10, markeredgewidth=1)

self._handles['Stop codon'] = mlines.Line2D([], [], linestyle='"None’, color="red’,
marker='|', markersize=10, markeredgewidth=1)

process orfs to get ready for plotting
#find_and_set_subtle_splicing_status(self.transcripts,
self.opts.subtle_splicing_threshold)

for i, tx in enumerate(self.transcripts):
with ExceptionLogger(f'Error plotting {tx}"):
if tx:
self.draw_isoform(tx, i)

plot genomic region label

gene = self.transcripts[0].gene
start, end = self.xlims[0][0], self.xlims[-1][1]
self._bax.set_title(f'{gene.chromosome}({self.strand}):{start}-{end})

hide y axis spine

left_subaxes = self._bax.axs[0]
left_subaxes.spines['left'].set_visible(False)
left_subaxes.set_yticks([])

plot table

https://stackoverflow.com/a/57169705

table = self._bax.big_ax.table(
rowlLabels = [getattr(tx, 'name’, ') for tx in self.transcripts],
colLabels = list(self._columns.keys()),
cellText = [[f(tx) if tx else " for f in self._columns.values()] for tx in self.transcripts],
cellLoc = 'center,
edges ='open),
bbox=(-0.1*C, 0.0, 0.1*C, (R+1)/R)

)

table.auto_set_font_size(False)

table.set_fontsize(10)

rotate x axis tick labels for better readability
for subaxes in self._bax.axs:
subaxes.xaxis.set_major_formatter('{x:.0f})
for label in subaxes.get_xticklabels():
label.set_va('top)
label.set_rotation(90)
label.set_size(8)

def draw_frameshifts(self, anchor: Optional['Transcript'] = None, hatch_color='white'):
"""Plot relative frameshifts on all isoforms. Uses first isoform as the anchor by
default.™"
self._handles['Frame +1'] = mpatches.Patch(facecolor='k!, edgecolor='w/
hatch=REL_FRAME_STYLE[CodonAlignmentCategory. FRAME_AHEAD])
self._handles['Frame +2'] = mpatches.Patch(facecolor='k!, edgecolor='w/
hatch=REL_FRAME_STYLE[CodonAlignmentCategory.FRAME_BEHIND])

if anchor is None:
anchor = next(filter(None, self.transcripts))
if not anchor or not anchor.protein:
warn(
'Cannot draw frameshifts without an anchor ORF'

)

return
for i, other in enumerate(self.transcripts):
if not other or not other.protein or other is anchor:
continue
aln = CodonAlignment.from_proteins(anchor.protein, other.protein)
for block in filter(lambda block: block.category in FRAMESHIFT, aln.blocks):
for exons, residues in
groupby(other.protein.residues[block.other_range.start:block.other_range.stop],
key=attrgetter('exons')):
if len(exons) > 1:
continue
r1, r2 = tee(residues, 2)
start = first(r1).codon[1].coordinate
stop = last(r2).codon[1].coordinate
self.draw_region(
track =1,
start = start,
stop = stop,
facecolor ='none),
edgecolor = hatch_color,
linewidth = 0.0,
zorder=1.9,
hatch = REL_FRAME_STYLE[block.category]
)

def draw_codon_alignment_blocks(self, cd_aln: 'CodonAlignment!, alpha: float = 0.5):
for category, color in CBLOCK_COLORS.items():
label = category.name.capitalize().replace('_} ' ")
if label not in self._handles:
self._handles[label] = mpatches.Patch(facecolor=color)
height = 0.25*self.opts.max_track_width
track = self.transcripts.index(cd_aln.other.transcript)
for block in filter(lambda block: block.category is not
CodonAlignmentCategory.MATCH, cd_aln.blocks):
if block.other_range:
start = cd_aln.other.residues[block.other_range[0]].codon[1].coordinate
stop = cd_aln.other.residues[block.other_range[-1]].codon[1].coordinate
else:
start = cd_aln.anchor.residues[block.anchor_range[0]].codon[1].coordinate
stop = cd_aln.anchor.residues[block.anchor_range[-1]].codon[1].coordinate
if block.category in SPLIT_CODON:
self.draw_point(# TODO: fix
track,
start,

height = height,

type = 'lollipop),
marker =",
color = CBLOCK_COLORS[block.category],
zorder=1.9,
alpha =alpha

)

else:

self.draw_region(
track,
start,
stop,

y_offset = -0.5*self.opts.max_track_width,
height = -height,
facecolor = CBLOCK_COLORS[block.category],
alpha = alpha

)

def draw_protein_alignment_blocks(self, pblocks: Iterable['ProteinAlighmentBlock'],
anchor: 'Protein’, other: 'Protein, alpha: float = 1.0):
for category, color in PBLOCK_COLORS.items():
label = category.name.capitalize().replace('_} ' ")
if label not in self._handles:
self._handles[label] = mpatches.Patch(facecolor=color)
self._handles['Ragged 5\' end'] = mlines.Line2D(]], [], linestyle='"None', color="#999999
marker='<', markersize=8, markeredgewidth=1)
self._handles['Ragged 3\' end'] = mlines.Line2D([], [], linestyle='None/, color="#999999
marker=">', markersize=8, markeredgewidth=1)

for pblock in filter(lambda block: block.category is not
SequenceAlignmentCategory.MATCH, pblocks):
anchor_start, anchor_stop, other_start, other_stop = None, None, None, None
if pblock.category is not SequenceAlignmentCategory.INSERTION:
anchor_start = anchor.transcript.get_genome_coord_from_transcript_coord(
anchor.get_transcript_coord_from_protein_coord(pblock.anchor_range[0]) + 1
)-.coordinate
anchor_stop = anchor.transcript.get_genome_coord_from_transcript_coord(
anchor.get_transcript_coord_from_protein_coord(pblock.anchor_range[-1]) + 1
).coordinate
if pblock.category is not SequenceAlignmentCategory.DELETION:
other_start = other.transcript.get_genome_coord_from_transcript_coord(
other.get_transcript_coord_from_protein_coord(pblock.other_range[0]) + 1
).coordinate
other_stop = other.transcript.get_genome_coord_from_transcript_coord(

other.get_transcript_coord_from_protein_coord(pblock.other_range[-1]) + 1

).coordinate

other_track = self.transcripts.index(other.transcript)
lollipop_direction = 1 if pblock.category is SequenceAlignmentCategory.INSERTION

else -1

if pblock.ragged5:
self.draw_point(

)

other_track,

pos = anchor_start,

ylims = (lollipop_direction*0.75*self.opts.max_track_width, 0),
linewidth =0,

marker ='<,

markersize = 6,

color = PBLOCK_COLORS[pblock.category],

zorder=1.9

if pblock.ragged3:
self.draw_point(

)

other_track,

pos = anchor_stop,

ylims = (lollipop_direction*0.75*self.opts.max_track_width, 0),
linewidth =0,

marker ="'>,

markersize = 6,

color = PBLOCK_COLORS[pblock.category],

zorder=1.9

self.draw_region(

other_track,

start = anchor_start,

stop = anchor_stop,

y_offset = -1.0*self.opts.max_track_width,
height = 0.5*self.opts.max_track_width,
edgecolor = 'none’,

facecolor = PBLOCK_COLORS[pblock.category],
alpha = alpha

)

self.draw_region(

other_track,

start = other_start,

stop = other_stop,

y_offset = 0.5*self.opts.max_track_width,

height = 0.5*self.opts.max_track_width,
edgecolor ='none’,
facecolor = PBLOCK_COLORS[pblock.category],
alpha =alpha

)

def draw_features(self):
h = self.opts.max_track_width
feature_names = sorted({feature.name for tx in filter(None, self.transcripts) if tx.protein
for feature in tx.protein.features if feature.type is not FeatureType.IDR})
cmap = sns.color_palette('pastel, len(feature_names))
colors = dict(zip(feature_names, cmap))
colors.update(FEATURE_COLORS)
self._handles.update({name: mpatches.Patch(facecolor=color) for name, color in
colors.items()})
for track, tx in enumerate(self.transcripts):
if not tx or not tx.protein:
continue
features = tx.protein.features
if not features:
continue
subtracks, n_subtracks = generate_subtracks(
((feature.protein_start, feature.protein_stop) for feature in features),
(feature.name for feature in features)
)
for feature in features:
subtrack = subtracks[feature.name]
color = colors[feature.name]
if feature.reference:
subfeatures = groupby(feature.residues, key=lambda res: (False,
res.primary_exon))
n_subtracks_temp = n_subtracks
else:
subfeatures = groupby(feature.residues, key=lambda res: (res in
feature.altered_residues, res.primary_exon))
n_subtracks_temp = 2*n_subtracks
for (altered, _), subfeature in subfeatures:
subfeature = list(subfeature)
start = subfeature[0].codon[1].coordinate
stop = subfeature[-1].codon[1].coordinate
self.draw_region(
track,
start = start,
stop = stop,

y_offset = (-0.5 + subtrack/n_subtracks)*h,
height = h/n_subtracks,
edgecolor = 'none),
facecolor = color,
alpha = 0.5 if altered else 1.0,
zorder=1.8,
label = feature.name
)
draw box behind entire feature
self.draw_region(
track,
start = feature.residues[0].codon[1].coordinate,
stop = feature.residues[-1].codon[1].coordinate,
y_offset = (-0.5 + subtrack/n_subtracks)*h,
height = h/n_subtracks,
edgecolor = 'none’,
facecolor = color,
alpha=0.5,
zorder=1.4

)

def savefig(self, fig_path):
self.fig.set_size_inches(20, 0.8 + 0.4*len(self.transcripts))
plt.figure(self.fig)
plt.savefig(fig_path, facecolor='w/ transparent=False, dpi=200, bbox_inches='"tight')

def generate_subtracks(intervals: Iterable[Tuple[int, int]], labels: Iterable):
inspired by https://stackoverflow.com/a/19088519
build graph of labels where labels are adjacent if their intervals overlap
g, vertex_labels = get_interval_overlap_graph(intervals, labels)
find vertex coloring of graph
all lLabels w/ same color can be put into same subtrack
coloring = sequential_vertex_coloring(g)
label_to_subtrack = dict(zip(vertex_labels, coloring))
subtracks = max(label_to_subtrack.values(), default=0) + 1
return label_to_subtrack, subtracks

Biosurfer_analysis codebase

The directory structure of the Biosurfer_analysis codebase is outlined below:

biosurfer analysis/

—— scripts

— c_termini summary.py
—— download gencode toy.sh
—— download gencode v42.sh
—— download wtcll.sh

—— genome wide summary.py
— install biosurfer.sh
—— internal summary.py

—— 1isoform plotting.sh

—— manuscript stats.ipynb
— n_termini summary.py
—— plot config.py

c_termini_summary.py
#!/usr/bin/env python

#%%Importing libraries

from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd

import seaborn as sns

import numpy as np

import scipy.stats as stats
import matplotlib as mpl

from plot_configimport CTERM_CLASSES, CTERM_PALETTE, cterm_splice_palette,
cterm_frameshift_palette, pblocks

%% Output paths
output = Path('../E_cterm_summary_plots')
output.mkdir(exist_ok=True)

#%%

cterm_pblocks = pblocks[~pblocks['cterm'].isna() & (pblocks['nterm'].isna()) &
(pblocks['cterm'] != "ALTERNATIVE_ORF") & (pblocks['cterm'] I= "UNKNOWN")].copy()
cterm_pblocks['cterm'] =
cterm_pblocks['cterm'].map(CTERM_CLASSES).astype('category')

Changed string to set for intersection

cterm_pblocks['APA'] = cterm_pblocks['events'].apply(lambda x:
set(x).intersection('BbPp')).astype(bool)

#%% Figh panel A: Frequency of splice-driven and frameshift-driven C-terminal events

cterm_fig = plt.figure(figsize=(3.8, 2))
ax = sns.countplot(

data = cterm_pblocks,

y ='cterm),

order = CTERM_CLASSES.values(),

palette = CTERM_PALETTE,

saturation =1,

linewidth =1,

edgecolor ="'k,
)
ax.set_xlabel('Number of alternative isoforms')
ax.set_ylabel(")
plt.savefig(output/'cterm-class-counts.png', dpi=200, facecolor=None,
bbox_inches='"tight")

#0Output source data
cterm_pblocks.query("cterm in ['Splice-driven’, 'Frameshift-
driven']")[['anchor’ other',/cterm']].to_csv(output/'cterm-class-counts-table.tsv) sep="\t")

%% Figh panel B: Frequency of splice-driven patterns
cterm_pblock_events =
cterm_pblocks['up_stop_events'].combine(cterm_pblocks['down_stop_events'], lambda x,
y: (%, y))
single_ATE = (cterm_pblocks['cterm'] == 'Splice-driven') &
cterm_pblocks['tblock_events'].isin({('B, 'b"), ('b', 'B')})
cterm_splice_subcats = pd.DataFrame(
{

'Exon extension introduces termination': cterm_pblocks['up_stop_events'].isin({'P} 'l|
‘DD,

'Alternative terminal exon(s)': cterm_pblock_events.isin({('B', 'b'), ('b', 'B")}),

'Poison exon inclusion': cterm_pblocks['up_stop_events'] =="E|,

'Other': [True for _in cterm_pblocks.index]

#'Alternative last exon in UTR'": cterm_pblocks['cblocks'].apply(lambda x: "'TRANSLATED'
inx and 'DELETION'"in x and '"UNTRANSLATED' not in x)

}
)
cterm_pblocks['splice_subcat'] =
cterm_splice_subcats.idxmax(axis=1).astype(pd.CategoricalDtype(cterm_splice_subcats.
columns, ordered=True))

cterm_splice_palette_dict = dict(zip(

cterm_splice_subcats.columns,

cterm_splice_palette[0:1] + cterm_splice_palette[1:2] + cterm_splice_palette[2:3] +
['#bbbbbb']
)

splice_subcat_order = tuple(cterm_splice_subcats.keys())

cterm_pblock_events =
cterm_pblocks['up_stop_events'].combine(cterm_pblocks['down_stop_events'], lambda x,
y: (X, Y))

single_ATE = (cterm_pblocks['cterm'] == 'Splice-driven') &
cterm_pblocks['tblock_events'].isin({('B, 'b"), ('b', 'B')})

cterm_splice_subcats = pd.DataFrame(
{

'Exon extension introduces \n termination (EXIT)'":
cterm_pblocks['up_stop_events'l.isin({'P', 'l', 'D'}),

'Alternative terminal \n exon(s) (ATE)": cterm_pblock_events.isin({('B) 'b"), ('b’, 'B")}),

‘Alternative last exon \n in UTR (ALE in UTR)': cterm_pblocks.apply(lambda row:
'TRANSLATED' in row['cblocks'] and 'DELETION' in row['cblocks'] and 'UNTRANSLATED' not
in row['cblocks'] if row['cterm'] == 'Splice-driven' and row['splice_subcat'] == 'Other’ else
False, axis=1),

'Poison exon inclusion': cterm_pblocks['up_stop_events'] =="E|,

'Cut-out splice terminal \n exon (COSTE)': cterm_pblocks.apply(lambda row:
'DELETION' in row['cblocks'] and 'INSERTION' in row['cblocks'] and 'TRANSLATED' not in
row['cblocks'] and '"UNTRANSLATED' not in row['cblocks'] and 'FRAME' not in row['cblocks']
and 'p' in row['tblock_events'] and row['tblock_events'].count('B') == 1 if row['cterm'] ==
'Splice-driven' and row['splice_subcat'] == 'Other’ else False, axis=1),

'Other': [True for _in cterm_pblocks.index]

}
)

cterm_pblocks['splice_subcat'] =
cterm_splice_subcats.idxmax(axis=1).astype(pd.CategoricalDtype(cterm_splice_subcats.
columns, ordered=True))

cterm_splice_palette_dict = dict(zip(

cterm_splice_subcats.columns,

cterm_splice_palette[0:1] + cterm_splice_palette[1:2] + cterm_splice_palette[2:3] +
cterm_splice_palette[3:4] + cterm_splice_palette[4:5] + ['‘#bbbbbb']
)

splice_subcat_order = tuple(cterm_splice_subcats.keys())

cterm_splice_fig, axs = plt.subplots(1, 2, figsize=(9, 4))
sns.countplot(
ax = axs[0],
data = cterm_pblocks[cterm_pblocks['cterm'] == 'Splice-driven'],
y = 'splice_subcat)
order = splice_subcat_order,
palette = cterm_splice_palette_dict,
saturation =1,
edgecolor ="'k,
linewidth =1,
)
axs[0].set_xlabel('Number of alternative isoforms')
axs[0].set_ylabel(None)

plt.savefig(output/'cterm-splicing-subcats.png', dpi=700, facecolor=None,
bbox_inches="tight')

#0Qutput source data

cterm_pblocks.assign(anchor_relative_length_change =
cterm_pblocks['anchor_relative_length_change'].abs())[['anchor’,/other’,
'splice_subcat''anchor_relative_length_change']].to_csv(output/'cterm-splicing-subcats-
table.tsv', sep="\t")

#%%

#TODO: Mann-Whitney U Test signed ranked test here between SE, alt Acc .. vs Intron
cterm_frameshift=cterm_pblocks[cterm_pblocks['cterm'] == 'Frameshift-driven']
cterm_intron = cterm_pblocks[cterm_pblocks['frame_subcat'] == 'Intron’]

cterm_se = cterm_pblocks[cterm_pblocks['frame_subcat'] == 'Single exon']
cterm_altacc = cterm_pblocks[cterm_pblocks['frame_subcat'] == 'Alt. acceptor’]
cterm_altdonor = cterm_pblocks[cterm_pblocks['frame_subcat'] == 'Alt. donor']

data = [[cterm_intron],[cterm_frameshift],[cterm_se],[cterm_altacc],[cterm_altdonor]]
data = [[4890, 3499, 3301, 551], [6819, 2247, 1185, 1096, 457, 437]]
stat, p, dof, expected = chi2_contingency(data)

%% Alternative Last Exon in 3' UTR case from Splice-driven 'Other' category.

cterm_pblock_splice = cterm_pblocks[cterm_pblocks['cterm'] == 'Splice-driven']
cterm_splice_other = cterm_pblock_splice[cterm_pblock_splice['splice_subcat']=="0Other']
condition1 = cterm_splice_other['cblocks'].apply(lambda x: 'DELETION'in x and
'"TRANSLATED' in x)

condition2 = cterm_splice_other['cblocks'].apply(lambda x: 'UNTRANSLATED' not in x)
cterm_aleutr = cterm_splice_other[condition1 & condition2].copy()

cterm_aleutr.to_csv(output/'cterm-splice-driven-ALEinUTR.tsv, sep="\t')
%% Cut-out splice terminal exon case from Splice-driven 'Other' category.

condition3 = cterm_splice_other['cblocks'].apply(lambda x: 'DELETION' in x and
'INSERTION'" in x)

condition4 = cterm_splice_other['cblocks'].apply(lambda x: "'TRANSLATED' not in x and
'UNTRANSLATED' not in x and 'FRAME' not in x)

condition5 = cterm_splice_other['tblock_events'].apply(lambda x: x.count('B') ==1 and 'p'
in x)

cterm_other_new = cterm_splice_other[condition3 & condition4 & condition5].copy()
cterm_other_new.to_csv(output/'cterm-splice-driven-other-NEW.tsv, sep="\t")

%% Figh panel C & D: 2D scatter plot v2 splice-driven vs frameshift-driven

font ={
'‘family': 'sans-serif,
'sans-serif'; ['Arial'],
'weight': 'normal,
'size': 10
}
mpl.rc('font’, **font)
msx_data = cterm_pblocks[cterm_pblocks['cterm'] == 'Splice-driven']
sds_data = cterm_pblocks[cterm_pblocks['cterm'] == 'Frameshift-driven']
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(6, 6))
msx_color =(0.5048212226066897, 0.00392156862745098, 0.47021914648212226)
sds_color =(0.7885121107266436, 0.03238754325259515, 0.13656286043829297)

sns.scatterplot(data=msx_data, x="aa_loss|, y="aa_gain', marker='o', ax=axes[0], alpha=0.2,
color=msx_color)

axes[0].set_title('Splice-driven', fontsize=13)

axes[0].set_xlabel('Reference \n(amino acids)’, fontsize=12)

axes[0].set_ylabel('Alternative \n(amino acids) fontsize=12)

axes[0].set_xlim(0, 3000)

axes[0].set_ylim(0, 3000)

axes[0].set_aspect('equal’)

axes[0].grid(True, linestyle='--', linewidth=0.5)

sns.scatterplot(data=sds_data, x="aa_loss', y='aa_gain', marker='0', ax=axes[1], alpha=0.2,
color=sds_color)

axes[1].set_title('Frameshift-driven’, fontsize=13)

axes[1].set_xlabel('Reference \n(amino acids)’, fontsize=12)
axes[1].set_ylabel('Alternative \n(amino acids)’, fontsize=12)

axes[1].set_xlim(0, 3000)

axes[1].set_ylim(0, 3000)
axes[1].set_aspect(‘equal’)
axes[1].grid(True, linestyle='--', linewidth=0.5)

plt.tight_layout()

plt.savefig(output/'cterm-rel-length-change_scatterplot.png’, dpi=800, facecolor=None,
bbox_inches="tight')

plt.show()

#0Output source data

cterm_pblocks.query("cterm in ['Splice-driven’, 'Frameshift-

driven']")[['anchor’ otheraa_loss' aa_gain']].to_csv(output/'cterm_mechanism_affected_le
n.tsv), sep="\t")

%% Supplementary Figure S5: 2D scatter plot v2 frameshift-driven subcats

d1 = cterm_pblocks[cterm_pblocks['splice_subcat'] == 'Exon extension introduces \n
termination (EXIT)']

d2 = cterm_pblocks[cterm_pblocks['splice_subcat'] == 'Alternative terminal \n exon(s)
(ATE)]

d3 = cterm_pblocks[cterm_pblocks['splice_subcat'] == 'Alternative last exon \nin UTR (ALE
in UTR)']

d4 = cterm_pblocks[cterm_pblocks['splice_subcat'] == 'Poison exon inclusion']

d5 = cterm_pblocks[cterm_pblocks['splice_subcat'] == 'Cut-out splice terminal \n exon
(COSTE)"]

fig, axes = plt.subplots(nrows=5, ncols=1, figsize=(6, 15))

colors =[(0.5048212226066897, 0.00392156862745098, 0.47021914648212226),
(0.735840061514802, 0.061960784313725495, 0.5225682429834679),

(0.9094502114571319, 0.2894886582083814, 0.6086120722798923),

(0.9754555940023067, 0.5330257593233372, 0.6768935024990388),

(0.9859592464436755, 0.7293041138023837, 0.7404229142637447)]

sns.scatterplot(data=d1, x="aa_loss', y="aa_gain', marker='o', ax=axes[0], alpha=0.2,
color=colors[0])

axes[0].set_title('Exon extension introduces termination’, fontsize=30, pad=20)

axes[0].set_xlabel('Reference \n(amino acids)’, fontsize=25)

axes[0].set_ylabel('Alternative \n(amino acids)', fontsize=25)

axes[0].set_xlim(0, 3000)

axes[0].set_ylim(0, 3000)

axes[0].grid(True, linestyle='--', linewidth=0.5)

sns.scatterplot(data=d2, x="aa_loss', y="aa_gain', marker='0', ax=axes[1], alpha=0.2,
color=colors[1])

axes[1].set_title('Alternative terminal exon(s)', fontsize=30, pad=20)
axes[1].set_xlabel('Reference \n(amino acids)’, fontsize=25)
axes[1].set_ylabel('Alternative \n(amino acids)', fontsize=25)
axes[1].set_xlim(0, 3000)

axes[1].set_ylim(0, 3000)

axes[1].grid(True, linestyle='--, linewidth=0.5)

sns.scatterplot(data=d3, x="aa_loss', y="aa_gain', marker='o', ax=axes[2], alpha=0.2,
color=colors[2])

axes[2].set_title('Alternative last exon in UTR), fontsize=30, pad=20)

axes[2].set_xlabel('Reference \n(amino acids)’, fontsize=25)

axes[2].set_ylabel('Alternative \n(amino acids)’, fontsize=25)

axes[2].set_xlim(0, 3000)

axes[2].set_ylim(0, 3000)

axes[2].grid(True, linestyle='--', linewidth=0.5)

sns.scatterplot(data=d4, x="aa_loss', y="aa_gain', marker='0', ax=axes[3], alpha=0.2,
color=colors[3])

axes[3].set_title('Poison exon inclusion', fontsize=30, pad=20)

axes[3].set_xlabel('Reference \n(amino acids)’, fontsize=25)

axes[3].set_ylabel('Alternative \n(amino acids)’, fontsize=25)

axes[3].set_xlim(0, 3000)

axes[3].set_ylim(0, 3000)

axes[3].grid(True, linestyle='--', linewidth=0.5)

sns.scatterplot(data=d5, x="aa_loss', y="aa_gain', marker='0', ax=axes[4], alpha=0.2,
color=colors[4])

axes[4].set_title('Cut-out splice terminal exon', fontsize=30, pad=20)

axes[4].set_xlabel('Reference \n(amino acids)’, fontsize=25)

axes[4].set_ylabel('Alternative \n(amino acids)', fontsize=25)

axes[4].set_xlim(0, 3000)

axes[4].set_ylim(0, 3000)

axes[4].grid(True, linestyle='--', linewidth=0.5)

plt.tight_layout()
plt.savefig(output/'cterm-rel-splice-driven-subcat-length-change_scatterplot.png,
dpi=900, facecolor=None, bbox_inches="tight')

plt.show()

Output source data

#cterm_pblocks.query("splice_subcat in ['Exon extension introduces \n termination (EXIT)',
'Alternative terminal \n exon(s) (ATE)) 'Alternative last exon \n in UTR (ALE in UTR)', 'Poison
exon inclusion’, 'Cut-out splice terminal \n exon

(COSTE)'I"[['anchor'other'aa_loss! aa_gain']].to_csv(output/'cterm_mechanism_affected
_len.tsv), sep="\t')

download_gencode_toy.sh

#1/bin/sh
#Author: Mayank Murali
#Project: Biosurfer

#Script to download GENCODE toy files from Zenodo (https://zenodo.org/record/7297008)

cd data
mkdir A_gencode_toy
cd A_gencode_toy

wget https://zenodo.org/records/10822882/files/biosurfer_gencode_toy_data.zip
unzip biosurfer_gencode_toy_data.zip
rm -rf __ MACOSX biosurfer_gencode_toy_data.zip

download_gencode_v42.sh

#!/bin/sh
#Author: Mayank Murali
#Project: Biosurfer

#Script to download GENCODE v42 files from Zenodo (https://zenodo.org/record/7297008)

cd data
mkdir A_gencode_v42
cd A_gencode_v42

wget https://zenodo.org/records/10822882/files/biosurfer_gencode_v42_data.zip
unzip biosurfer_gencode_v42_data.zip
rm -rf __MACOSX biosurfer_gencode_v42_data.zip

download_wtc11.sh

#!/bin/sh
#Author: Mayank Murali
#Project: Biosurfer

#Script to download PacBio WTC11 from Zenodo (https://zenodo.org/record/7297008)

mkdir A_wtc11
cd A_wtc11

wget https://zenodo.org/records/10822882/files/biosurfer_wtc11_data.zip
unzip biosurfer_wtc11_data.zip
rm -rf __MACOSX biosurfer_wtc11_data.zip

genome_wide_summary.py

%% Importing libraries

from pathlib import Path

from re import M

import scipy.stats as stats

import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import numpy as np

import csv

from plot_configimport PBLOCK_COLORS, SECTION_COLORS, pblocks

%% Output paths
output = Path('../C_altered_region_summary_plots')
output.mkdir(exist_ok=True)

%% Fig2 panel A: Number of altered isoforms per gene vs humber of genes
fig = plt.figure(figsize=(4, 2.4))
bins = list(range(1, 11)) + [100]
ax = sns.histplot(
x = pd.cut(
pblocks.groupby(‘anchor')['other'].nunique(),
bins = bins,
right = False,

labels = [str(x) for x in bins[:-2]] + [f'{bins[-2]}+'],

)

shrink =0.75,

color ='#888888),

edgecolor ="'k,

alpha=1,
)
ax.set_xlabel('Number of alternative isoforms\nper gene')
ax.set_ylabel('Number of genes')
ax.set_ylim(0, 5000)
output
fig.savefig(output/'alternative-isoforms-per-gene.png', dpi=200, facecolor=None,
bbox_inches='"tight")

#0Output source data

H#Hi#
pblocks.groupby(‘anchor')['other'].nunique().to_frame(name='count').to_csv(output/'altern
ative-isoforms-per-gene-table.tsv, sep="\t')

%% Fig2 panel B: Number of observed pblocks per alternative protein isoforms
fig = plt.figure(figsize=(4, 2.4))
ax = sns.histplot(
x = pd.cut(
pblocks.groupby(['anchor!, 'other']).size(),
bins=[1, 2, 3, 4, 5, 14],
right = False,
labels =['1, '2, '3, '4’, '5+']
),
shrink =0.75,
color ='#888888/,
edgecolor ="'k,
alpha=1,
)
ax.set_xlabel('Number of altered regions\nper isoform’)
ax.set_ylabel('Number of alternative\nprotein isoforms')
ax.set_ylim(0, 30000)
#ax.ticklabel_format(axis='y' style='sci', scilimits=(0, 0))

output
fig.savefig(output/'altered-regions-per-isoform.png', dpi=200, facecolor=None,
bbox_inches="tight')

#0Output source data
output

pblocks.groupby(['anchor,
'other']).size().to_frame(name='num_alt_regions').to_csv(output/'altered-regions-per-
isoform-table.tsv), sep="\t')

%% Fig2 panel C: Distribution of lengths of the insertion, deletion and substituion
affected regions for proteins

aa_loss = pblocks[pblocks['pblock_category'].isin({'DELETION,
'SUBSTITUTION'"})].reset_index()[['anchor' other' pblock_category', 'aa_loss']]
aa_loss['pblock_category'].replace('SUBSTITUTION', 'SUBSTITUTION (reference),
inplace=True)

aa_loss.rename(columns={'aa_loss": 'length'}, inplace=True)

aa_gain = pblocks[pblocks['pblock_category'].isin({'INSERTION},
'SUBSTITUTION'})].reset_index()[['anchor otherpblock_category', 'aa_gain']]
aa_gain['pblock_category'].replace('SUBSTITUTION', 'SUBSTITUTION (alternative)’,
inplace=True)

aa_gain.rename(columns={'aa_gain': 'length'}, inplace=True)

affected_lengths = pd.concat([aa_loss, aa_gain])

binwidth =50
xmax = 600
xtick = 200

fig = plt.figure(figsize=(5, 2))
data = affected_lengths[affected_lengths['pblock_category'] != 'SUBSTITUTION
(alternative)']
ax = sns.histplot(
data = data,
x ='length’,
binwidth = binwidth,
binrange = (0, xmax),
stat = 'count),
color ="'#808080',
alpha=1,
)
ax.set_xlabel('Length of altered region (amino acids)")
ax.set_ylabel('Number of\naltered regions')
ax.ticklabel_format(axis='y style='sci, scilimits=(-1, 1))
ax.vlines(data['length']l.median(), *ax.get_ylim(), color="#b0b0b0/, linestyle="'- linewidth=1)

##4# output
fig.savefig(output/'altered-region-affected-lengths.png', dpi=200, facecolor=None,
bbox_inches="tight')

#0Qutput source data

output
affected_lengths[affected_lengths['pblock_category'] != 'SUBSTITUTION
(alternative)'].to_csv(output/'altered-region-affected-lengths-table.tsv', sep="\t')

%% Fig2 panel D: Distribution of the length of altered protein regions across the
annotated proteome
facets = sns.displot(

data = affected_lengths,

x ='length),

binwidth = binwidth,

binrange = (0, xmax),

stat = 'count,

row = 'pblock_category’,

hue ='pblock_category/,

palette = PBLOCK_COLORS,

row_order = ('DELETION/, 'INSERTION', 'SUBSTITUTION (reference)’, 'SUBSTITUTION
(alternative)"),

legend = False,

alpha=1,
height = 2,
aspect=2.5

)
facets.set_xlabels('Length of altered region (amino acids)")
facets.set_ylabels('Number of\naltered regions')
for category, ax in facets.axes_dict.items():
ax.set_title(category.capitalize())
ax.set_xticks(range(0, xmax+1, xtick))
ax.ticklabel_format(axis='y' style='sci) scilimits=(-1, 1))
ax.vlines(affected_lengths[affected_lengths['pblock_category'] ==
category]['length'].median(), *ax.get_ylim(), color="#808080}, linestyle="-| linewidth=1)

output
facets.fig.savefig(output/'altered-region-affected-lengths-categories.png’, dpi=200,
facecolor=None, bbox_inches='"tight')

#0Output source data

output
affected_lengths.to_csv(output/'altered-region-affected-lengths-categories-table.tsv/,
sep="\t")

%%

T-test for the means of two independent samples of scores.

insertion = affected_lengths[affected_lengths['pblock_category'] =="'INSERTION']['length’]
deletion = affected_lengths[affected_lengths['pblock_category'] == 'DELETION']['length’]

substitution_ref = affected_lengths[affected_lengths['pblock_category']l == 'SUBSTITUTION
(reference)']['length']

substitution_alt = affected_lengths[affected_lengths['pblock_category'] == 'SUBSTITUTION
(alternative)']['length']

stats.mannwhitneyu(insertion, deletion) #MannwhitneyuResult(statistic=37940405.5,
pvalue=0.0)

stats.mannwhitneyu(insertion, substitution_ref)
#MannwhitneyuResult(statistic=20566509.0, pvalue=0.0)
stats.mannwhitneyu(insertion, substitution_alt)
#MannwhitneyuResult(statistic=51275501.0, pvalue=1.1174708861070221e-07)

Also alternative package

import pingouin as pg

pg.mwu(insertion, deletion, alternative="two-sided’)
pg.mwau(insertion, substitution_ref, alternative="two-sided')

Mann-Whitney U Test in R using stats library

wilcox.test(insertion_data$V1, deletion_data$V1, alternative = "two.sided")
data: insertion_data$V1 and deletion_data$V1

#W = 37940406, p-value < 2.2e-16

alternative hypothesis: true location shift is not equalto 0

%% Fig2 panel | =: Substitution scatter plot
plt.figure(figsize=(4.8, 3.6))
ax = sns.histplot(
data = pblocks[pblocks['pblock_category'] == 'SUBSTITUTION'],
X ='aa_gain|,
y = 'aa_loss),
binwidth = binwidth/2,
stat ='count),
color = PBLOCK_COLORS['SUBSTITUTION'],
legend = False,
cbar =True,
cbar_kws ={
'label’: 'Number of regions/,
b
alpha=1,
)
ax.set_xlim(0, xmax)
ax.set_ylim(0, xmax)
ax.set_xticks(range(0, xmax+1, xtick))
ax.set_yticks(range(0, xmax+1, xtick))

ax.set_xlabel('Length of substitution region \nin alternative isoform (AA)")
ax.set_ylabel('Length of substitution region \nin reference isoform (AA)')
output
plt.savefig(output/'substitution-reference-alternative-lengths.png’, dpi=200,
facecolor=None, bbox_inches='"tight')

#0Output source data

output

pblocks.query("pblock_category == 'SUBSTITUTION")[['anchor’,
'other'/pblock_category'/aa_gain''aa_loss']].to_csv(output/'substitution-reference-
alternative-lengths-table.tsv!, sep="\t")

%% Fig2 panel D: Pie chart
category_counts = pblocks['pblock_category'].value_counts()
total_pblocks = category_counts.sum()
fig, ax = plt.subplots()
wedges, texts, autotexts = plt.pie(
category_counts,
colors = category_counts.index.map(PBLOCK_COLORS),
wedgeprops = {'width': 0.4},
startangle = 180,
counterclock = False,
autopct = lambda x: f'{np.round(total_pblocks*x/100):.0f}\n({x:.0f}%),
pctdistance = 1.3,
)
for i, wedge in enumerate(wedges):
wedge.set_edgecolor('k")
##4# output
fig.savefig(output/'altered-region-category-donut.png’, dpi=200, facecolor=None,
bbox_inches="tight')

#0Output source data

##4# output
pblocks['pblock_category']l.value_counts().to_csv(output/'altered-region-category-donut-
table.tsv', sep="\t')

%%
def get_section(nterm, cterm):
if nterm and cterm:
return 'Full-length’
elif nterm:
return 'N-terminal'
elif cterm:
return 'C-terminal’

else:
return 'Internal’

pblocks['protein_section'] = list(map(get_section, ~pblocks['nterm'].isha(),
~pblocks['cterm'].isna()))
pblock_sections = pblocks|['protein_section'].value_counts()

fig, ax = plt.subplots(figsize=(6, 1))
left=0
for section, colorin SECTION_COLORS.items():
val = pblock_sections[section]
label = f'{val:gi\n({100*val/pblock_sections.sum():0.1f}%)'
if section =="Full-length':
left +=5000
label_type ="'edge’
padding=5
else:
label_type ='center’
padding=0
bar = plt.barh(
[0],
val,
left = left,
color =color,
edgecolor ="k},
label = section,
)
plt.bar_label(bar, labels=[label], label_type=label_type, padding=padding)
left = left + pblock_sections[section]
ax.legend(loc="upper left), bbox_to_anchor=(0, 0, 1, -0.1), ncols=2, frameon=False)
plt.axis('off')
output
fig.savefig(output/'protein-section-counts.png’, dpi=200, facecolor=None,
bbox_inches="tight'")

#0Output source data

output

with open(output/'protein-section-counts-table.tsv) 'w', newline=") as file:
writer = csv.DictWriter(file, fieldnames=SECTION_COLORS.keys(), delimiter="\t')
writer.writeheader()
writer.writerow(SECTION_COLORS)

%% ldentifying frameshift cases
pblocks[pblocks['cblocks'].str.count('FRAME') > 2]

install biosurfer.sh

%%writefile create_conda_env.sh
#!/usr/bin/env bash

#Author: Mayank Murali

#Project: Biosurfer

#Script to download and install Biosufer from GitHub

Clone the repository
git clone -b dev --single-branch https://github.com/sheynkman-lab/biosurfer.git

Move to the folder
cd biosurfer

Run setup
pip install --editable .

internal_summary.py

%%

from pathlib import Path

from matplotlib.patches import Patch

from scipy.stats.contingency import chi2_contingency
from itertools import combinations

import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

from plot_config import PBLOCK_COLORS, SPLICE_EVENT_COLORS, pblocks

%% Output paths
output = Path(../F_internal_summary_plots')
output.mkdir(exist_ok=True)

%%
internal_pblocks = (
pblocks[pblocks['internal']].
drop(columns=[col for col in pblocks.columns if 'start' in col or 'stop' in col]).

copy()

)

convert string repr back to Python object
internal_pblocks['tblock_events'] = internal_pblocks['tblock_events'].map(eval)
internal_pblocks['events'] = internal_pblocks['events'].map(eval)

internal_subcats = pd.DataFrame(
{
'Frameshift': internal_pblocks['frameshift'],
'Intron': internal_pblocks['tblock_events'l.isin({('l}), ('i})}),
'Alt. donor': internal_pblocks['tblock_events'].isin({('D},), ('d")}),
'Alt. acceptor': internal_pblocks['tblock_events'].isin({('A}), (‘a’,)}),
'Single exon': internal_pblocks['tblock_events'].isin({('E}), ('e')}),
'‘Compound': [True for _in internal_pblocks.index]
}
)

subcat_order = ('Single exon'Alt. acceptor|Alt. donor' Intron'Compound’ Frameshift')
internal_pblocks['splice_event'] =
internal_subcats.idxmax(axis=1).astype(pd.CategoricalDtype(subcat_order,
ordered=True))

%% Figd panel A: Internal splicing events frequencies
internal_pblocks_fig = plt.figure(figsize=(4.6, 3.8))
ax = sns.countplot(
data = internal_pblocks.sort_values('pblock_category', ascending=True),
y ='splice_event),
dodge =True,
hue = 'pblock_category/,
palette = PBLOCK_COLORS,
saturation =1,
edgecolor ="k},
)
plt.legend(loc='center right! labels=['Deletions, 'Insertions, 'Substitutions'])
ax.set_xlabel('Number of altered internal regions')
ax.set_ylabel(None)
internal_pblocks_fig.savefig(output/'internal-events.png’, dpi=500, facecolor=None,
bbox_inches="tight')

#0Output source data
internal_pblocks[['splice_event''pblock_category']].to_csv(output/'internal-events-
table.tsv', sep="\t')

%% Fig4 panel C: Proportion of each internal protein region that are ragged codons
internal_pblocks_ragged_fig = plt.figure(figsize=(4.6, 3.8))
ax = sns.countplot(

data = internal_pblocks.sort_values('pblock_category', ascending=True),
y ='splice_event,,
palette = SPLICE_EVENT_COLORS,
saturation =1,
edgecolor ="'k,
)
sns.countplot(
ax = ax,
data = internal_pblocks[internal_pblocks['split_codons']].sort_values('pblock_category,
ascending=True),
y = 'splice_event),
fill = False,
edgecolor ="'k,
hatch ="///,
)
Creating the combined legend handles and labels
handles =
Patch(facecolor='w/, edgecolor='k', hatch="///"),
Patch(facecolor='w', edgecolor='k'")
#]
labels = ['Contains \nragged codons’, 'Clean \ncodons']

Creating the combined legend
combined_legend = plt.legend(handles=handles, labels=labels, loc='center right')

Adding the combined legend to the plot

plt.gca()

ax.set_xlabel('Number of altered internal regions')

ax.set_ylabel(None)
internal_pblocks_ragged_fig.savefig(output/'internal-events-ragged.png’, dpi=700,
facecolor=None, bbox_inches='"tight')

#0Output source data
internal_pblocks[['splice_event''split_codons']].to_csv(output/'internal-events-ragged-
table.tsv', sep="\t')

%%

alpha =0.01

ragged_contingency = pd.crosstab(internal_pblocks['split_codons'],
internal_pblocks['splice_event'])

chi2, p_all, dof, expected = chi2_contingency(ragged_contingency)

ps = dict()
for event1, event2 in combinations(internal_subcats.columns, 2):
sub_contingency = ragged_contingency[[event1, event2]]

_, ps[event1, event2], _, _=chi2_contingency(sub_contingency)

ps_sig ={k: p fork, p in ps.items() if p < alpha/len(ps)}
ps_insig ={k: p for k, p in ps.items() if k not in ps_sig}

%%
nagnag_pblocks = internal_pblocks[(internal_pblocks['splice_event'] == 'Alt. acceptor') &
(internal_pblocks['length_change']l.abs() == 1)]

%% Figd panel B: Frequency of compound splicing events
internal_compound_pblocks = internal_pblocks[internal_pblocks|['splice_event'] ==
'‘Compound'].copy()

internal_compound_subcats = pd.DataFrame(
{
'Multi-exon skipping': internal_compound_pblocks['events'] == frozenset('e'),
'Exon skipping + \nalt. donor/acceptor': internal_compound_pblocks['events'].isin({
frozenset(sorted('de")),
frozenset(sorted('De')),
frozenset(sorted('ea’)),
frozenset(sorted('eA’)),
frozenset(sorted('dea')),
frozenset(sorted('Dea')),
frozenset(sorted('deA")),
frozenset(sorted('DeA)),
1,
'Mutually exclusive exons': internal_compound_pblocks['tblock_events'].isin({('E 'e'),
(‘e 'EN),
'Multi-exon inclusion': internal_compound_pblocks['events'] == frozenset('E'),
'Alt. donor + alt. acceptor': internal_compound_pblocks['events'].isin({
frozenset(sorted('ad")),
frozenset(sorted('Ad")),
frozenset(sorted('aD
frozenset(sorted('AD
1,
'Exon inclusion + \nalt. donor/acceptor': internal_compound_pblocks['events'].isin({
frozenset(sorted('dE")),
frozenset(sorted('DE")),
frozenset(sorted('Ea')),
frozenset(sorted('EA")),
frozenset(sorted('dEa')),
((
((
((

0
),

)

frozenset(sorted('DEa')),
frozenset(sorted('dEA)),
frozenset(sorted('DEA)),

1,
'Other': [True for _in internal_compound_pblocks.index]
}
)

internal_compound_pblocks['‘compound_subcat'] =
internal_compound_subcats.idxmax(axis=1).astype(pd.CategoricalDtype(internal_compo
und_subcats.columns, ordered=True))

internal_pblocks_compound_fig = plt.figure(figsize=(3, 3))
ax = sns.countplot(

data = internal_compound_pblocks,

y ='compound_subcat),

palette = 'Greys_r,

saturation =1,

edgecolor ="'k,
)
ax.set_xlabel('Number of altered\ninternal regions'),
ax.set_ylabel(None)
internal_pblocks_compound_fig.savefig(output/'internal-compound-events.png', dpi=200,
facecolor=None, bbox_inches='"tight')

#0Output source data
internal_compound_pblocks[['anchor' other'compound_subcat']].to_csv(output/'internal-
compound-events-table.tsv', sep="\t")

%%
from scipy.stats import chi2_contingency

Define the observed frequencies (counts) as a 2D array
observed =[[578, 829, 1806]]

Perform the chi-square test
chi2, p, dof, expected = chi2_contingency(observed)

Output the results
print(f"Chi-Square Statistic: {chi2}")
print(f"P-Value: {p}")
print(f"Degrees of Freedom: {dof}")
print("Expected Frequencies:")
print(expected)

Set the significance level (alpha)

alpha =0.05

Determine whether to reject the null hypothesis
if p <alpha:
print("Reject the null hypothesis: There is a significant association.")
else:
print("Fail to reject the null hypothesis: There is no significant association.")

%%
isoform_plotting.sh

%%writefile create_conda_env.sh
#!/usr/bin/env bash

#Author: Mayank Murali

#Project: Biosurfer

#Script to plot isoforms using Biosurfer
biosurfer plot -d gencode_toy --gene CRYBG2

n_termini_summary.py

%%

from pathlib import Path

from matplotlib.patches import Patch
from scipy.stats import mannwhitneyu
import matplotlib.pyplot as plt

import pandas as pd

import seaborn as sns

import matplotlib as mpl

from plot_configimport NTERM_CLASSES, NTERM_COLORS, pblocks

%% Output paths
output = Path(../D_nterm_summary_plots')
output.mkdir(exist_ok=True)

%%

nterm_pblocks = pblocks[~pblocks['nterm'].isna() & (pblocks['nterm'] !=
'ALTERNATIVE_ORF') & (pblocks['cterm'].isna())].copy()
nterm_pblocks['nterm'].replace(NTERM_CLASSES, inplace=True)
nterm_pblocks['altTSS'] = nterm_pblocks['events'].apply(lambda x:
eval(x).intersection('BbPp')).astype(bool)

%% Fig3 panel A (both Alt TSS and 5' UTR AS)
tss_fig = plt.figure(figsize=(5, 4))
ax = sns.countplot(

data = nterm_pblocks,

y = 'nterm)

order = NTERM_COLORS.keys(),

palette = NTERM_COLORS,

edgecolor ="'k,

saturation =1,
)
sns.countplot(

ax = ax,

data = nterm_pblocks[nterm_pblocks['altTSS']],

y = 'nterm)

order = NTERM_COLORS.keys(),

palette = NTERM_COLORS,

edgecolor ="k}

fill = False,

hatch ="//,
)
ax.legend(

loc=(0, 1),

frameon = False,

handles = [Patch(facecolor='w', edgecolor='k', hatch='///"), Patch(facecolor='w/
edgecolor="k')],

labels = ['Alternative transcription start site', '5\' UTR alternative splicing'],
)
ax.set_xlabel('Number of alternative isoforms')
ax.set_ylabel(None)
plt.savefig(output/'nterm-counts-all_mechanism.png', dpi=500, facecolor=None,
bbox_inches="tight')

#0Output source data

nterm_pblocks.query("nterm in ['Mutually exclusive starts (MSX)', 'Shared downstream
start (SDS)'T")[['anchor’'other, nterm','altTSS']].to_csv(output/'nterm-counts-
all_mechanism.tsv) sep="\t')

%% Fig3 panel C: MXS vs SDS scatterplot
font ={

'family': 'sans-serif,

'sans-serif': ['Arial'],

'weight': 'normal,

'size': 10

mpl.rc('font’, **font)

Filter the dataframe for 'Mutually exclusive starts (MXS)' and 'Shared downstream start
(SDS)'

msx_data = nterm_pblocks[nterm_pblocks['nterm'] == 'Mutually exclusive starts (MSX)']
sds_data = nterm_pblocks[nterm_pblocks['nterm'] == 'Shared downstream start (SDS)']
fig, axes = plt.subplots(nrows=2, ncols=1, figsize=(5.5, 5.5))

msx_color = (0.565498, 0.84243, 0.262877)

sds_color =(0.20803, 0.718701, 0.472873)

sns.scatterplot(data=msx_data, x="aa_loss|, y="aa_gain', marker=", ax=axes[0], alpha=0.2,
color=msx_color)

axes[0].set_title('Mutually exclusive starts (MXS)', fontsize=11)

axes[0].set_xlabel('Reference \n(amino acids)’, fontsize=10)

axes[0].set_ylabel('Alternative \n(amino acids)', fontsize=10)

axes[0].set_xlim(0, 2000)

axes[0].set_ylim(0, 2000)

axes[0].set_aspect('equal’)

axes[0].grid(True, linestyle='--, linewidth=0.5)

sns.scatterplot(data=sds_data, x="'aa_loss', y="aa_gain', marker=",, ax=axes[1], alpha=0.2,
color=sds_color)

axes[1].set_title('Shared downstream start (SDS)', fontsize=11)
axes[1].set_xlabel('Reference \n(amino acids)’, fontsize=10)
axes[1].set_ylabel('Alternative \n(amino acids)’, fontsize=10)

axes[1].set_xlim(0, 2000)

axes[1].set_ylim(0, 2000)

axes[1].set_aspect(‘equal’)

axes[1].grid(True, linestyle='--', linewidth=0.5)

plt.tight_layout()

Save plot

plt.savefig(output/'nterm-rel-length-change_scatterplot.png', dpi=600, facecolor=None,
bbox_inches='"tight")

plt.show()

#0Output source data

nterm_pblocks.query("nterm in ['Mutually exclusive starts (MSX)', 'Shared downstream
start
(SDS)'1")[['anchor!other'/aa_loss''aa_gain']].to_csv(output/'nterm_mechanism_affected_le
n.tsv), sep="\t")

plot_config.py
import colorsys

import matplotlib as mpl

import matplotlib.colors as mc
import matplotlib.font_manager as fm
import pandas as pd

from seaborn import color_palette

Setting configurations for plotting
for font_path in fm.findSystemFonts():
fm.fontManager.addfont(font_path)

font ={
'family': 'sans-serif,
'sans-serif': ['Arial'],
'weight': 'normal,
'size': 16

}

mpl.rc('font!, **font)

from https://stackoverflow.com/a/49601444
def adjust_lightness(color, amount=0.5):
try:
¢ =mc.cnames[color]
except:
c =color
¢ = colorsys.rgb_to_hls(*mc.to_rgb(c))
cnew = colorsys.hls_to_rgb(c[0], max(0, min(1, amount * c[1])), c[2])
return mc.to_hex(cnew)

PBLOCK_COLORS ={
'DELETION': '#f800c0/,
'INSERTION': '#00c0f8),
'SUBSTITUTION': '#f8c000),

}

PBLOCK_COLORS['SUBSTITUTION (reference)'] =
adjust_lightness(PBLOCK_COLORS['SUBSTITUTION'], 1)
PBLOCK_COLORS['SUBSTITUTION (alternative)'] =
adjust_lightness(PBLOCK_COLORS['SUBSTITUTION'], 1)

SECTION_COLORS ={

'N-terminal': color_palette('pastel’)[2],
'Internal': color_palette('pastel’)[7],
'C-terminal': color_palette('pastel’)[3],
‘Full-length': 'none’,

}

NTERM_CLASSES ={
'MUTUALLY_EXCLUSIVE': 'Mutually exclusive starts (MSX),,
'DOWNSTREAM_SHARED': 'Shared downstream start (SDS),,
'UPSTREAM_SHARED': 'Shared upstream start (SUS)|,
'MUTUALLY_SHARED': 'Mutually shared starts (MSS)'
}
NTERM_COLORS = dict(zip(
NTERM_CLASSES.values(),
color_palette('viridis_r', n_colors=len(NTERM_CLASSES)+1)[:-1]
)

SPLICE_EVENT_COLORS ={
'Intron': '#EBA85F,
'Single exon': '#649FD2/,
'Alt. donor': '#86BB6F,
'Alt. acceptor': '#A26FBB/,
'‘Compound': '#888888/,
'Frameshift": '#F7D76E,

}

CTERM_CLASSES ={

'SPLICING' : 'Splice-driven),

'FRAMESHIFT' : 'Frameshift-driven’,
}
cterm_splice_palette = color_palette('RdPu_r', n_colors=6)
cterm_frameshift_palette = color_palette('YIOrRd_r', n_colors=5)
CTERM_PALETTE = [cterm_splice_palette[0], cterm_frameshift_palette[0]]

GENCODE v42

pblocks = pd.read_csv(../B_hybrid_aln_gencode_v42/pblocks.tsv', sep="\t")
##WTC11

#pblocks = pd.read_csv(../B_hybrid_aln_wtc11/pblocks.tsv), sep="\t')

	SUPPLEMENTAL CODE

