
GitHub repository https://github.com/AnimalGenomicsETH/pangenome_KIT

[image: A screenshot of a computer

Description automatically generated]

Snakefile

split out our samples into local and downloaded
local_samples, SRA_samples = [], {}
with open(config['samples'],'r') as fin:
 for line in fin:
 name, ID, *_ = line.split()
 if ID == 'local':
 local_samples.append(name)
 elif name[0] == '#':
 continue
 else:
 SRA_samples[name] = ID

samples = local_samples + list(SRA_samples.keys())

workflow._singularity_args = f'-B $TMPDIR'

include: 'snakepit/public_downloading.smk'
include: 'snakepit/pangenome_construction.smk'
include: 'snakepit/pangenome_analysis.smk'
include: 'snakepit/pangenome_alignment.smk'
include: 'snakepit/PCA.smk'

def make_targets():
 targets = []
 for graph, config_items in config['graphs'].items():
 for reference in config['references'].keys():
 targets.append(f'{graph}/node_coverage.{reference}.csv.gz')
 targets.append(f'sample_information.{reference}.csv')
 targets.append(f'PCA/control.eigenvec')

 for graph, config_items in config['gggenes'].items():
 targets.append(f'gggenes/{graph}.repeats.tsv')

 return targets

rule all:
 input:
 make_targets()

notebooks:

Jaccard.ipynb

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "7e928768-ea9e-46de-aead-8d336aa8b3a7",
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib widget\n",
 "import polars as pl\n",
 "import matplotlib.pyplot as plt\n",
 "from qmplot import manhattanplot"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "44988977-8133-4d4e-94cf-849a6e3a0b26",
 "metadata": {},
 "outputs": [],
 "source": [
 "def load_all_jaccard(chromosomes,min_paths=153):\n",
 " return pl.concat([pl.read_csv(f'Jaccard/{c}.summary.1000.jaccard.csv') for c in chromosomes])\n",
 "df = load_all_jaccard(range(1,30))"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "4c112faa-e371-418e-b1da-fdde6499aef2",
 "metadata": {
 "scrolled": true
 },
 "outputs": [],
 "source": [
 "xticks = list(map(str,range(1,10))) + list(map(str,range(10,30,2)))\n",
 "fancy_ratio = r\"$\\frac{\\langle J_{i = j} \\rangle}{\\langle J_{i \\neq j} \\rangle}$\"\n",
 "\n",
 "f, ax = plt.subplots(figsize=(7,2.75),layout=\"constrained\")\n",
 "axin1 = ax.inset_axes([0.6, 0.5, 0.35, 0.35])\n",
 "\n",
 "manhattanplot(data=df.filter(pl.col('count')<400).filter(pl.col('count')>200).sort(['Chromosome','Start']).to_pandas(),\n",
 " chrom='Chromosome',pos='Start',pv='Jaccard similarity ratio',ylabel='Jaccard similarity ratio',\n",
 " logp=False,rasterized=True,sign_marker_p=5,xtick_label_set=xticks,\n",
 " suggestiveline=None,genomewideline=5,\n",
 " sign_line_cols=[\"#37323E\", \"#37323E\"],hline_kws={'ls':'--'},\n",
 " sign_marker_color='#E90D13',color=\"#B8B8B8,#0DE9E3\",\n",
 " ax=ax)\n",
 "\n",
 "manhattanplot(data=df.filter((pl.col('Chromosome')==6)&(pl.col('Start')>70040000)&(pl.col('Start')<70130000)).sort(['Chromosome','Start']).to_pandas(),\n",
 " chrom='Chromosome',pos='Start',pv='Jaccard similarity ratio',ylabel='',\n",
 " logp=False,rasterized=True,sign_marker_p=5,xtick_label_set=xticks,\n",
 " suggestiveline=None,genomewideline=5,\n",
 " sign_line_cols=[\"#37323E\", \"#37323E\"],hline_kws={'ls':'--'},\n",
 " sign_marker_color='#E90D13',color=\"#0DE9E3,#B8B8B8\",ax=axin1)\n",
 "axin1.set_xlim(70040000, 70130000)\n",
 "axin1.set_xlabel('')"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "f6ed7411-21ff-467d-81d8-453622dc0143",
 "metadata": {},
 "outputs": [],
 "source": [
 "plt.savefig('Figures/Jaccard.svg',dpi=500)"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.6"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

KIT_coverage.ipynb

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "e3541fed-4b31-4a30-87b4-6f0bb10ac150",
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib widget\n",
 "import pandas as pd\n",
 "import polars as pl\n",
 "import numpy as np\n",
 "\n",
 "import seaborn as sns\n",
 "import matplotlib.pyplot as plt\n",
 "import matplotlib.colors as colors\n",
 "\n",
 "from scipy.stats.mstats import kruskalwallis, mannwhitneyu\n",
 "import scikit_posthocs"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "54e99c34-918b-47a8-89a3-6c3320edf0ed",
 "metadata": {},
 "outputs": [],
 "source": [
 "white_headed_breeds = ['cross','MON','NMD','SIM','FV','HER','GWH','YAR'] + ['cSIM','SxH','FLK','VWD','HWD','sHER','KWH']\n",
 "info = pl.read_csv('sample_information.csv',separator=' ')\n",
 "nodes = pl.read_csv('subgraph.nodes.csv',separator=' ')\n",
 "KIT_nodes = [int(i) for i in open('KIT_nodes')]\n",
 "coverage = (pl.read_csv('node_coverage.csv.gz',separator=' ')\n",
 " .join(info,on='sample')\n",
 " .join(nodes,on='node')\n",
 " .with_columns([pl.col('breed').is_in(white_headed_breeds).alias('White-headed'),pl.col('node').is_in(KIT_nodes).alias('KIT'),(pl.col('coverage')*pl.col('length')).alias('total coverage')])\n",
 ")\n",
 "x_order = [i for i in coverage['breed'].unique() if i not in white_headed_breeds] + white_headed_breeds"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "766fc527-7320-4b15-9515-06b7fa91c3d2",
 "metadata": {},
 "outputs": [],
 "source": [
 "averages_r = (coverage.filter((pl.col('length')>=0)&(pl.col('coverage')>=0))\n",
 " .group_by('sample','breed','KIT','coverage_right','duplication_rate')\n",
 " .agg(pl.col('total coverage').sum())\n",
 " .with_columns([(pl.col('total coverage')/(pl.col('coverage_right')*(1-pl.col('duplication_rate')))).alias('adjusted coverage')])\n",
 " .with_columns([(pl.col('adjusted coverage')/((14325*pl.col('KIT') + 2e6*(~pl.col('KIT'))))).alias('Length normalised coverage')])\n",
 ")\n",
 "averages = averages_r.to_pandas()\n",
 "\n",
 "g = sns.catplot(data=averages,x='breed',y='Length normalised coverage',hue='breed',col='KIT',order=x_order)\n",
 "g.map(sns.boxplot,'breed','Length normalised coverage',order=x_order,**{'boxprops':{'facecolor':'none'}})\n",
 "g.set_xticklabels(rotation=45,ha='center')\n",
 "for ax in g.axes_dict.values():\n",
 " ax.axline((0,1), slope=0, c=\".2\", ls=\"--\", zorder=0)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "e490da5f-f027-4007-a18c-7ff57350c81f",
 "metadata": {},
 "outputs": [],
 "source": [
 "p_matrix = scikit_posthocs.posthoc_mannwhitney(averages_r.filter(pl.col('KIT')).to_pandas(),'Length normalised coverage','breed',p_adjust='bonferroni')\n",
 "plt.figure()\n",
 "scikit_posthocs.sign_plot(p_matrix[x_order].reindex(index = x_order).to_numpy())\n",
 "\n",
 "f, ax = plt.subplots()\n",
 "\n",
 "p = ax.pcolormesh(p_matrix[x_order].reindex(index = x_order).to_numpy(),norm=colors.LogNorm(vmin=1e-10, vmax=1))\n",
 "f.colorbar(p)\n",
 "ax.set_yticks(np.arange(len(p_matrix.index))+0.5)\n",
 "ax.set_yticklabels(p_matrix.index)\n",
 "\n",
 "ax.set_xticks(np.arange(len(p_matrix.columns))+0.5)\n",
 "\n",
 "ax.set_xticklabels(p_matrix.columns,rotation=45,ha='center')\n",
 "\n",
 "plt.show()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "7ca9722d-ce84-4e5e-a1ae-35ce996c4643",
 "metadata": {},
 "outputs": [],
 "source": [
 "def map_rolling(data,x,y,color,**kws):\n",
 " ax = plt.gca()\n",
 " ax.plot(data[x],data[y].rolling(10).mean(),color=color)\n",
 "\n",
 "def label(x, color, label):\n",
 " ax = plt.gca() #get current axis\n",
 " ax.text(-.1, .4, label, color='black', fontsize=13,\n",
 " ha=\"left\", va=\"center\", transform=ax.transAxes)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "22a14c44-5aa7-4014-9e17-659962e82814",
 "metadata": {},
 "outputs": [],
 "source": [
 "## rolling node plot\n",
 "\n",
 "means = (coverage.filter((pl.col('KIT'))&(pl.col('length')>=0)&(pl.col('coverage')>=0))\n",
 " .with_columns([(pl.col('coverage')/((pl.col('coverage_right')*(1-pl.col('duplication_rate'))))).alias('adjusted coverage')])\n",
 " .group_by('breed','node')\n",
 " .agg(pl.col('adjusted coverage').median(),pl.col('length').median())\n",
 " .sort(by='node')\n",
 ").to_pandas()\n",
 "\n",
 "g = sns.FacetGrid(means, hue='breed',height=.75,aspect=10,row=\"breed\",row_order=x_order)\n",
 "g.map_dataframe(map_rolling,x='node',y='adjusted coverage')\n",
 "#g.refline(y=0, linewidth=0.5, linestyle=\"-\", color=None, clip_on=False)\n",
 "g.figure.subplots_adjust(hspace=-5.75)\n",
 "g.set_titles(\"\")\n",
 "g.map(label, \"breed\")\n",
 "g.set(yticks=[], ylabel=\"\")\n",
 "g.despine(bottom=False, left=True)"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "112d0c37-fadd-47b2-a7b6-f4c3a6599d9c",
 "metadata": {},
 "outputs": [],
 "source": [
 "### Sample outlier detection\n",
 "\n",
 "## Weird FV sample\n",
 "print(averages[(averages['coverage']>0.90)&(averages['KIT']==False)&(averages['breed']=='FV')])\n",
 "\n",
 "\n",
 "## removing bad CHI/CHA samples with large insert sizes and stddev\n",
 "bad_inserts = ['UMCUSAU000000194426','UMCUSAU000000194423','UMCUSAU000000194424','UMCUSAU000000194748','UMCUSAU000000194761','UMCUSAU000000194425','UMCUSAU000000194370']\n",
 "print(averages[(averages['coverage']<0.25)&(averages['KIT']==False)&(averages['sample'].isin(bad_inserts))])\n",
 "\n",
 "\n",
 "## Potentially a mislabelling for SAMEA7690196\n",
 "print(averages[(averages['coverage']>0.60)&(averages['KIT']==True)&(averages['breed']=='CHI')])\n",
 "\n",
 "## same as first weird FV sample\n",
 "print(averages[(averages['coverage']>1.60)&(averages['KIT']==True)&(averages['breed']=='FV')])\n",
 "\n",
 "print(averages[(averages['coverage']>2.00)&(averages['KIT']==True)&(averages['breed']=='SIM')])\n",
 "\n",
 "print(averages[(averages['coverage']<.20)&(averages['KIT']==True)&(averages['breed']=='NMD')])\n",
 "\n",
 "print(averages[(averages['coverage']>4.5)&(averages['KIT']==True)&(averages['breed']=='HER')])"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "483dc91c-e3f9-47a7-8ad5-f641756392c8",
 "metadata": {},
 "outputs": [],
 "source": [
 "## DEAD CODE\n",
 "averages = coverage.filter((pl.col('length')>=0)&(pl.col('coverage')>=0)).group_by('sample','breed','KIT','coverage_right','duplication_rate').agg(pl.col('coverage').mean()).to_pandas()\n",
 "averages['coverage']/=(averages['coverage_right']*(1-averages['duplication_rate']))\n",
 "g = sns.catplot(data=averages,x='breed',y='coverage',hue='breed',col='KIT',order=x_order)\n",
 "g.map(sns.boxplot,'breed','coverage',order=x_order,**{'boxprops':{'facecolor':'none'}})\n",
 "g.set_xticklabels(rotation=45,ha='center')\n",
 "\n",
 "\n",
 "averages = coverage.group_by('node','breed','KIT','coverage_right','duplication_rate').agg(pl.col('coverage').mean()).to_pandas()\n",
 "averages['coverage']/=(averages['coverage_right']*(1-averages['duplication_rate']))\n",
 "sns.lmplot(data=means[means['cov']>0.05],x='node',y='cov',hue='breed',col='breed',col_order=x_order,col_wrap=3,lowess=True,scatter_kws={'s':20})\n",
 "sns.catplot(data=x,kind='point',x='node',y='adjusted coverage',hue='breed',col='breed',col_order=x_order,col_wrap=3)\n",
 "\n",
 "import statsmodels.api as sm\n",
 "lowess = sm.nonparametric.lowess\n",
 "from scipy.interpolate import splev, splrep, UnivariateSpline\n",
 "\n",
 "def map_lowess(data,x,y,color):\n",
 " spl = UnivariateSpline(list(data['node']), list(data['cov']),w=np.sqrt(data['length']),s=0)#,s=5e3)\n",
 " y2 = spl(data['node'])\n",
 " ax = plt.gca()\n",
 " ax.plot(data[x],y2)\n",
 " \n",
 " (averages_r.filter(pl.col('KIT')).groupby(\"breed\")\n",
 " .agg(krusk=pl.reduce(kruskalwallis,('adjusted coverage')))\n",
 ")"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.6"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

PCA.ipynb

{
 "cells": [
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "72b35fdf-19d3-4da6-abb7-025a9ef4879d",
 "metadata": {},
 "outputs": [],
 "source": [
 "%matplotlib widget\n",
 "\n",
 "import matplotlib.pyplot as plt\n",
 "import seaborn as sns\n",
 "import pandas as pd"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "03d6888b-25f7-4279-acba-ffdee96a8682",
 "metadata": {},
 "outputs": [],
 "source": [
 "def plot_PCAs(hues=None):\n",
 " expected_white = ['HER','SIM','FV','GWH','MON','NMD','YAR','cross'] + ['cSIM','SxH','FLK','VWD','HWD','sHER','KWH']\n",
 " SNPs = pd.read_csv('PCA/control.eigenvec',delimiter='\\t')\n",
 " SNPs_var = [float(i.rstrip()) for i in open('PCA/control.eigenval')]\n",
 "\n",
 " SNPs[SNPs['#IID']!='BSW_5|BSW_6']\n",
 " \n",
 " breeds = pd.read_csv('20231130/sample_information.ARS.csv',delimiter=' ')\n",
 " breeds_map = {row['sample']:row['breed'] for _,row in breeds.iterrows()}\n",
 "\n",
 " SNPs['breed'] = [breeds_map[I] for I in SNPs['#IID']]\n",
 " SNPs['Grouping'] = ['white' if B in expected_white else ('cross' if 'cross' in B else 'colored') for B in SNPs['breed']]\n",
 " \n",
 " f, axes = plt.subplots(figsize=(8,8))\n",
 " sns.scatterplot(data=SNPs,x='PC1',y='PC2',ax=axes,hue='breed',hue_order=hues,style='Grouping',palette='tab20',markers={'white':'o','colored':'X','cross':'P'})\n",
 "\n",
 " axes.set_title(f'Small variants (Top 10 PCs: {sum(SNPs_var):.1f}%)')\n",
 " axes.set_xlabel(f'PC 1 ({SNPs_var[0]:.1f}%)')\n",
 " axes.set_ylabel(f'PC 2 ({SNPs_var[4]:.1f}%)')\n",
 "\n",
 " f.tight_layout()"
]
 },
 {
 "cell_type": "code",
 "execution_count": null,
 "id": "36d35457-8ee9-4487-aba3-a1a180c99835",
 "metadata": {},
 "outputs": [],
 "source": [
 "plot_PCAs()"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3 (ipykernel)",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.11.6"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}

notes_phylogeny

copied 6.ga.gz from graphs
run
sbatch -n 1 --cpus-per-task=10 --time=4:00:00 --mem-per-cpu=2048 --wrap="bash mash_sketch.sh"

sbatch -n 1 --cpus-per-task=10 --time=4:00:00 --mem-per-cpu=2048 --wrap="bash mash_dist.sh"

then R script based on Danang's publication steps and code (small changes)

repeat_structure.ipynb

require(ggplot2) require(gggenes) plotter <- function(name,var="gene"){ x <- read.delim(paste0(name,".tsv")) ggplot(x, aes(xmin=start, xmax=end, y=molecule, fill=get(var), forward=strand)) scale_y_discrete(limits = c("OBV_1","OBV_2","BSW_7","EVO","RGV","BSW_1","BSW_2","BSW_3","BSW_4","BSW_5","BSW_6","BV_5","BV_6","OBV_3","OBV_4","BV_1","BV_2","BV_3","BV_4","HIG","HER","SIM_2","SIM_3","SIM_1")) + geom_gene_arrow(arrowhead_height = unit(2, "mm"), arrowhead_width = unit(1.25, "mm"),arrow_body_height=unit(1, "mm")) + scale_fill_brewer(palette = "Set3") + theme_genes() + xlim(0,50000) ggsave(paste0(name,".svg"), width = 50, height = 20, units = "cm") } plotter("repeats") plotter("ChIP")

Scripts

CLR_hit_counter.sh

if [[$1 == S*]] ;
then
 samtools view -h --reference /PacBio_CLR/${1}.cram 6:69999582-70223136 | samtools fasta | seqtk seq -L 10000 > ${1}.fa
else
 samtools view -h --reference /REF_DATA/ARS-UCD1.2_Btau5.0.1Y.fa /PacBio_CLR/${1}.mm2.bam 6:69999582-70223136 | samtools fasta | seqtk seq -L 10000 > ${1}.fa
fi

minimap2 -ax map-pb -r 2k -P --end-bonus 1000 -Y ${1}.fa SxG.repeat.fa | samtools sort --write-index -o ${1}.bam
samtools view -e 'rlen>13000' ${1}.bam | cut -f 3 | sort | uniq -c | sort -k1,1nr | awk -v S=${1} -v L=$(cat ${1}.fa | wc -l) '{++a[$1]} END {for (k in a) {print S,L,k,a[k]}}' > ${1}.count

find_bad_samples.sh

grep -Ff <(for i in publicSamples/fastq/*1.fixed.fastq.gz; do echo -n "$i "; zcat $i | head -n 1; done | grep -v ":" | grep -oP "\w+(?=_)") sample_information.csv | awk '{print $1}'

phylogenetic_tree.R

setwd("/sotiria/Documents/")
install.packages("ape")
install.packages("tidyverse")
install.packages("phylotools")
#load library
library(ape)
library(tidyr)
library(dplyr)
library(stringr)

#read the distance matrix from the tsv file
datdis <- read.csv("6.dist.tsv", header=FALSE, stringsAsFactors=FALSE, sep="\t")

Rename the header
colnames(datdis) <- c("anim1","anim2","distr","comp4","comp5")

Extract the correct assembly name from anim1 and anim2
datdis$anim1c <- str_extract(datdis$anim1, ".*")
datdis$anim2c <- str_extract(datdis$anim2, ".*")

Make the distance matrix into a wide matrix
datsel <- datdis %>% select(anim1c, anim2c, distr)
datwide <- datsel %>% pivot_wider(names_from = anim2c, values_from = distr)
datmat <- as.matrix(datwide %>% select(-anim1c))
rownames(datmat) <- datwide$anim1c

ref <- "ARS_UCD1.2#0#6"

outgroup <- which.max(datmat[ref,]) %>% names()
print(outgroup)

Apply neighbor joining
tr <- nj(datmat)

Visualize the tree
pdf("output.pdf", width=12, height=10)
plot.phylo(root(tr, outgroup=outgroup), cex=2, edge.width=2)
axisPhylo(backward=FALSE, cex.axis=2)
dev.off()

translate_bed_to_graph.py

#!/usr/bin/env python3

import bisect
import sys

def translate_bed_to_graph(gfa,bed):

 boundaries = [int(line.rstrip().split()[5][5:]) for line in open(gfa,'r') if line[0] == 'S' and 'SR:i:0' in line]

 with open(bed,'r') as fin:
 for line in fin:
 s_coord, e_coord = (int(i) for i in line.rstrip().split()[1:3])
 gene = line.rstrip().split()[3]

 s_node = bisect.bisect_left(boundaries,s_coord)
 s_offset = s_coord - boundaries[s_node-1]

 e_node = bisect.bisect_left(boundaries,e_coord)
 e_offset = e_coord - boundaries[e_node-1]

 if s_node == e_node:
 print(f's{s_node}\t{s_offset}\t{e_offset}\t{gene}')
 else:
 for i in range(s_node,e_node+1):
 if i == s_node:
 print(f's{s_node}\t{s_offset}\t{boundaries[s_node]-boundaries[s_node-1]}\t{gene}')
 elif i != e_node:
 print(f's{i}\t{0}\t{boundaries[i]-boundaries[i-1]}\t{gene}')
 else:
 print(f's{e_node}\t{0}\t{e_offset}\t{gene}')

if len(sys.argv) == 3:
 translate_bed_to_graph(*sys.argv[1:3])
else:
 print('python translate_bed_to_graph.py <gfa> <bed>\n !! Incorrect arguments !!\nPrints output to stdout')

[image: A screenshot of a computer

Description automatically generated]

PCA.smk

rule DeepVariant:
 input:
 expand(rules.strobealign.output,sample=samples,allow_missing=True,reference='ARS')
 output:
 'PCA/{region}.Unrevised.vcf.gz'
 params:
 samples = '[' + ','.join(samples) + ']',
 config = 'config/DV.yaml' #or directly call variants and add here
 localrule: True
 shell:
 '''
 #other workflow available from here https://github.com/AnimalGenomicsETH/BSW_analysis/blob/main/snakepit/deepvariant.smk
 snakemake -s /snakepit/deepvariant.smk --configfile {params.config} \
 --config Run_name="PCA" bam_path="publicSamples/" bam_index=".csi" bam_name="{{sample}}.ARS.bam" model="WGS" samples={params.samples} \
 --profile "slurm/fullNT" --nolock {output}
 '''

rule plink_PCA:
 input:
 rules.DeepVariant.output
 output:
 multiext('PCA/{region}','.prune.in','.eigenval','.eigenvec')
 params:
 prefix = lambda wildcards, output: PurePath(output[1]).with_suffix('')
 threads: 2
 resources:
 mem_mb = 5000
 shell:
 '''
 plink2 --threads {threads} --vcf {input} --indep-pairwise 100kb 0.8 --maf 0.1 --out {params.prefix} --vcf-half-call m --snps-only --max-alleles 2
 plink2 --threads {threads} --vcf {input} --pca --out {params.prefix} --vcf-half-call m --extract {output[0]}
 '''

bam_to_fastq.smk

def get_files():
 targets = []
 for samples in config['samples']:
 targets.extend(expand('fastq_F/{sample}.chr6.R{id}.fastq.gz',sample=config['samples'], id=["1","2"]))
 # print(targets)
 return targets

get_files()
rule all:
 input:
 get_files()

rule samtools_view:
 input:
 bam = lambda wildcards: config["samples"][wildcards.sample]
 output:
 out = 'bam/{sample}.chr6.bam'
 threads: 2
 params: 6
 resources:
 mem_mb = 2000
 shell:
 '''
 samtools view -b {input.bam} {params} > {output.out}
 '''

rule samtools_sort:
 input:
 bam = lambda wildcards: config["samples"][wildcards.sample],
 bam_chr = rules.samtools_view.output
 output:
 out = 'bam/{sample}.chr6.qsort.bam'
 threads: 2
 resources:
 mem_mb = 2000
 shell:
 '''
 samtools sort -m 30M -@ {threads} -T $TMPDIR -o {output.out} {input.bam_chr} --write-index
 '''

rule samtools_fastq:
 input:
 bam = rules.samtools_sort.output
 output:
 fq1 = 'fastq_F/{sample}.chr6.R1.fastq.gz',
 fq2 = 'fastq_F/{sample}.chr6.R2.fastq.gz'
 threads: 2
 resources:
 mem_mb = 2000
 shell:
 'samtools fastq --threads {threads} -1 {output.fq1} -2 {output.fq2} -F 0 {input.bam}'

blast.smk

def get_files():
 targets = []
 for samples in config['samples']:
 targets.extend(expand('{sample}.{reference}.blastn.out',sample=samples,reference=config['references']))
 # print(targets)
 return targets

get_files()
rule all:
 input:
 get_files()

rule run_blast:
 input:
 ref = lambda wildcards: config["references"][wildcards.reference],
 subject = lambda wildcards: config["samples"][wildcards.sample]
 output:
 out = '{sample}.{reference}.blastn.out'
 params: 6
 threads: 2
 resources:
 mem_mb = 2000
 shell:
 'blastn -query {input.ref} -subject {input.subject} -outfmt {params} -out {output.out}'

force_mapping.smk

rule all:
 input:
 expand('forcing_parameters/{samples}.{presets}.{references}.mm2.bam',**config)#sample=config['samples'],preset=config['presets'],reference=config['references'])

rule minimap2_align:
 input:
 reference = lambda wildcards: config['references'][wildcards.reference],
 sample = lambda wildcards: config['samples'][wildcards.sample]
 output:
 'forcing_parameters/{sample}.{preset}.{reference}.mm2.bam'
 params:
 preset = lambda wildcards: config['presets'][wildcards.preset]
 threads: 2
 resources:
 mem_mb = 5000,
 disk_scratch = 50
 shell:
 '''
 minimap2 -a {params.preset} -t {threads} {input.reference} {input.sample} | samtools sort - -m 3000M -@ 4 -T $TMPDIR --write-index -o {output}
 '''

mappings.smk

def get_files():
 targets = []
 for read_type, samples in config['samples'].items():
 targets.extend(expand('{sample}.{reference}.{read_type}.minimap.bam',read_type=read_type,sample=samples,reference=config['references']))

 # print(targets)
 return targets

get_files()
rule all:
 input:
 get_files()

presets = {'ONT':'map-ont','HiFi':'map-hifi','CLR':'map-pb','SR_w':'sr','SR':'sr'}

rule map_minimap2:
 input:
 ref = lambda wildcards: config["references"][wildcards.reference],
 fastq = lambda wildcards: config["samples"][wildcards.read][wildcards.sample]
 output:
 multiext('{sample}.{reference}.{read}.minimap.bam','','.csi')
 threads: 12
 params:
 preset = lambda wildcards: presets[wildcards.read]
 resources:
 mem_mb = 6000,
 walltime = "4:00",
 disk_scratch = 50
 shell:
 'minimap2 -ax {params.preset} -t {threads} {input.ref} {input.fastq} | samtools sort - -m 3000M -@ {threads} -T $TMPDIR -o {output[0]} --write-index'

mummer.smk

def get_files():
 targets = []
 for samples in config['query']:
 targets.extend(expand('{sample}_vs_{reference}.mumplot',sample=samples,reference=config['references']))
 print(targets)
 return targets

get_files()
rule all:
 input:
 get_files()

rule run_nucmer:
 input:
 ref = lambda wildcards: config["references"][wildcards.ref],
 subject = lambda wildcards: config["query"][wildcards.query]
 output:
 '{query}_vs_{ref}.delta'
 params:
 prefix = '{query}_vs_{ref}'
 threads: 2
 resources:
 mem_mb = 2000
 shell:
 '''
 nucmer -p={params.prefix} {input.ref} {input.subject}
 samtools faidx {input.ref}
 samtools faidx {input.subject}
 awk '{{print $1,$2,"+"}}' {input.ref}.fai > {input.ref}.tsv
 awk '{{print $1,$2,"+"}}' {input.subject}.fai > {input.subject}.tsv
 '''

rule run_mummerplot:
 input:
 deltafile = rules.run_nucmer.output,
 ref = lambda wildcards: config["references"][wildcards.ref],
 subject = lambda wildcards: config["query"][wildcards.query]
 output:
 out = '{query}_vs_{ref}.mumplot'
 params:
 settings = '-l -f',
 prefix = '{query}_vs_{ref}'
 threads: 2
 resources:
 mem_mb = 2000
 shell:
 'mummerplot {params.settings} -R {input.ref}.tsv -Q {input.subject}.tsv {input.deltafile} -p={params.prefix}'

node_associator.smk

rule all:
 input:
 'association.bed'
import glob
rule mgutils_merge:
 input:
 glob.glob('/cattle/*.bed')

 output:
 'association.vcf'
 shell:
 '''
 paste {input} | mgutils.js merge -s <(ls {input} | xargs -L1 -I{{}} basename {{}} .bed) - | mgutils.js merge2vcf | bcftools query -H -f '%INFO/VS %INFO/VE %INFO/AWALK [%GT0]\\n' > {output}
 '''

from collections import defaultdict
import regex
import numpy as np
import matplotlib.pyplot as plt

arrows = regex.compile('>|<')

def get_allele_nodes(start,end,nodes):
 alleles = defaultdict(list)
 for i,node in enumerate(nodes.split(',')):
 if node == '*':
 alleles[i] = [f'{start}-{end}']
 else:
 for n in arrows.split(node)[1:]:
 alleles[i].append(n)

 return dict(alleles)

def generate_matrix(fname):
 MATRIX = {}
 samples = None
 for line in open(fname):
 if not samples:
 samples = [i.split(']')[1].split(':')[0] for i in line.rstrip().split()[4:]]
 continue
 start, end, nodes, *GTs = line.rstrip().split()
 alleles = get_allele_nodes(start,end,nodes)
 for i, GT in enumerate(GTs):
 if GT == '.':
 continue
 GT = int(GT)
 for node in alleles[int(GT)]:
 if node not in MATRIX:
 MATRIX[node] = [False]*len(GTs)

 MATRIX[node][i] = True
 IDs = np.array(list(MATRIX.keys()))
 vals = np.array(list(MATRIX.values()))
 return samples,IDs,vals

rule generate_assoication_bed:
 input:
 'association.vcf'
 output:
 'association.bed'
 run:
 samples,nodes,matrix = generate_matrix(input[0])
 #!! HARDCODED SAMPLE ORDER !!
 white_headed = np.array([False, True, False, False, False, False, False, False, False, False, False, False, False, False, False, True, False, True, False])
 #!! HARDCODED SAMPLE ORDER !!
 _sum = np.isclose(matrix,white_headed,equal_nan=True).sum(axis=1)
 cmap = plt.get_cmap('cividis',len(samples))
 with open(output[0],'w') as fout:
 for i,n in enumerate(nodes):
 if '-' in n:
 for e in n.split('-')[1:]:
 fout.write(f'{e[2:]}\t0\t1000\tX\t{_sum[i]}\t+\t0\t1000\t255,40,77\n')
 else:
 col = ','.join([f'{255*i:.0f}' for i in cmap(_sum[i]/len(samples))[:3]])
 fout.write(f'{n[1:]}\t0\t100000\tX\t{_sum[i]}\t+\t0\t0\t{col}\n')

pangenome_alignment.smk

from pathlib import PurePath

wildcard_constraints:
 EXT = r'gaf.gz|gam|bam|gaf'

rule samtools_fastq:
 input:
 bam = rules.strobealign.output,
 reference = lambda wildcards: config['references'][wildcards.reference]
 output:
 '{pangenome}/extractedFastq_{reference}/{sample}.fastq.gz'
 params:
 region = lambda wildcards: config['graphs'][wildcards.pangenome]['region'][wildcards.reference]
 threads: 2
 resources:
 mem_mb = 2000
 shell:
 '''
 samtools view --reference {input.reference} -@ {threads} -u {input.bam[0]} {params.region} 197bp 6kb | samtools collate -O -@ {threads} -u -T $TMPDIR - | samtools fastq --threads {threads} -f 3 -F 1284 -N -o {output} -s /dev/null
 '''

rule vg_autoindex:
 input:
 gfa = expand(rules.odgi_extract.output,renamed='renamed',allow_missing=True),
 fasta = lambda wildcards: expand(rules.panSN_spec.output,chromosome=convert_region_to_chromosome(wildcards))
 output:
 multiext('{pangenome}/index','.giraffe.gbz','.min','.dist')
 params:
 prefix = lambda wildcards, output: PurePath(output[1]).with_suffix('')
 threads: 4
 resources:
 mem_mb = 4000
 shell:
 '''
 vg autoindex -t {threads} --workflow giraffe -g {input.gfa} -r <(zcat {input.fasta[0]} | head -n 2) -p {params.prefix}
 chmod 444 {output[2]}
 '''

rule vg_giraffe:
 input:
 indexed = rules.vg_autoindex.output,
 reads = rules.samtools_fastq.output
 output:
 '{pangenome}/{sample}.{reference}.giraffe.gaf'
 threads: 4
 resources:
 mem_mb = 1500,
 walltime = '4h'
 shell:
 '''
 vg giraffe -t {threads} -Z {input.indexed[0]} -m {input.indexed[1]} -d {input.indexed[2]} --named-coordinates -o gaf --interleaved -f {input.reads} > {output}
 '''

rule gafpack_count:
 input:
 gfa = expand(rules.odgi_extract.output,renamed='renamed',allow_missing=True),
 gaf = rules.vg_giraffe.output[0]
 output:
 '{pangenome}/{sample}.{reference}.giraffe.count'
 resources:
 walltime = '30m'
 shell:
 '''
 gafpack -g {input.gfa} -a {input.gaf} -l -c | awk '!/#/ {{print "{wildcards.sample}",$1,$2}}' > {output}
 '''

rule make_node_coverage_csv:
 input:
 expand(rules.gafpack_count.output,sample=samples,allow_missing=True)
 output:
 '{pangenome}/node_coverage.{reference}.csv.gz'
 localrule: True
 shell:
 '''
 {{ echo "sample node coverage" ; cat {input} ; }} | pigz -p 2 -c > {output}
 '''

pangenome_analysis.smk

import subprocess

def rename_region(pangenome,fasta,just_name=False):

 if just_name:
 chromosome = pangenome
 elif pangenome in config['graphs']:
 region = config['graphs'][pangenome]['region']
 chromosome = region['ARS'].split(':')[0]
 elif pangenome in config['gggenes']:
 region = config['gggenes'][pangenome]['region']
 chromosome = region['ARS'].split(':')[0]
 try:
 panSN = subprocess.check_output(f"zcat {fasta} | head -n 1 | sed 's/>//'",shell=True,encoding="utf-8",stderr=subprocess.STDOUT).strip()
 except subprocess.CalledProcessError:
 return '' #file doesn't exist yet, but will when we need this
 if 'gzip' in panSN:
 return '<TBD>' # panSN doesn't really exist yet
 if just_name:
 return panSN
 return region['ARS'].replace(chromosome,panSN,1)

def convert_region_to_chromosome(wildcards):
 key = 'gggenes' if wildcards.pangenome in config['gggenes'] else 'graphs'
 return config[key][wildcards.pangenome]['region']['ARS'].split(':')[0]

rule odgi_extract:
 input:
 og = lambda wildcards: expand(rules.pggb_construct.output['og'],chromosome=convert_region_to_chromosome(wildcards)),
 fasta = lambda wildcards: expand(rules.panSN_spec.output[0],chromosome=convert_region_to_chromosome(wildcards))
 output:
 '{pangenome}/pggb.subgraph.{renamed}.gfa'
 params:
 region = lambda wildcards, input: rename_region(wildcards.pangenome,input.fasta),
 rename = lambda wildcards: "sed 's/:[0-9]\+-[0-9]\+//'" if wildcards.renamed == 'renamed' else "cat"
 threads: 2
 resources:
 mem_mb = 2500
 shell:
 '''
 odgi extract -t {threads} -i {input.og} -r "{params.region}" -o /dev/stdout |\
 odgi sort -t {threads} -p "wc" -i - -o - |\
 odgi view -t {threads} -i - -g |\
 {params.rename} > {output}
 '''

rule node_sizes:
 input:
 expand(rules.odgi_extract.output,renamed='renamed',allow_missing=True)
 output:
 '{pangenome}/subgraph.nodes.csv'
 localrule: True
 shell:
 '''
 awk '$1=="S" {{print $2,length($3)}}' {input} > {output}
 '''

rule odgi_sort:
 input:
 og = rules.pggb_construct.output['og']
 output:
 gfa = 'graphs/{chromosome}.pggb.sorted.gfa',
 og = 'graphs/{chromosome}.pggb.sorted.og'
 threads: 1
 resources:
 mem_mb = 20000
 shell:
 '''
 odgi sort -t {threads} -i {input} -p "wc" -o /dev/stdout | tee {output.og} | odgi view -i - -g > {output.gfa}
 '''

rule find_bubbles:
 input:
 rules.odgi_sort.output['gfa']
 output:
 'graphs/{chromosome}.graph_bubbles.list'
 resources:
 mem_mb = 35000
 shell:
 '''
 gfatk SSC --size 5 {input} | sort -k1,1n | sed 's/^0/1/' > {output}
 '''

rule jaccard_index:
 input:
 graph = rules.odgi_sort.output['og'],
 bubbles = rules.find_bubbles.output,
 fasta = rules.panSN_spec.output[0]
 output:
 'graphs/{chromosome}.graph_bubbles.jaccard.gz'
 params:
 reference_name = lambda wildcards, input: rename_region(wildcards.chromosome,input.fasta,True),
 graph = lambda wildcards, input: Path(input.graph).resolve(),
 _output = lambda wildcards, output: Path(output[0]).resolve(),
 padding = 1000
 threads: 8
 resources:
 mem_mb = 2500
 shell:
 '''
 set +e #some similarities still segfault, but we can ignore them
 echo "path sample1 sample2 jaccard" | pigz > {output}

 odgi position -t {threads} -i {input.graph} -r {params.reference_name} -G <(cat {input.bubbles} | tr ' ' '\\n') | awk -F',' 'NR>1 {{print $1,$4}}' |\

 awk 'FNR==NR {{ a[$1] = $2; next }} {{ print a[$1],a[$2]}}' - {input.bubbles} | awk 'NF==2&&!/NA/' |\
 awk -v OFS='\\t' '$1>0&&$2>0&&$2>$1 {{print "{params.reference_name}",$1-{params.padding},$2+{params.padding};next}} {{print R,$2-{params.padding},$1+{params.padding} }}' | awk -v prev1=0 -v prev2=0 -v OFS='\\t' '$2>0&&$3>0&&$3>$2&&$3>prev2&&prev2!=0 {{print $1,prev1,prev2}} {{prev1=$2;prev2=$3}}' > $TMPDIR/positions.bed

 cd $TMPDIR
 odgi extract -t {threads} -i {params.graph} -b $TMPDIR/positions.bed -E -d 10000 -s

 for g in *.og
 do
 odgi similarity -t {threads} -i $g | sed 's/:[0-9]\+-[0-9]\+//g' | awk -v S=${{g}} 'NR>1 && $2>$1 {{print S,$1,$2,$6}}'
 done | pigz -p {threads} >> {params._output}
 '''

checkpoint bedtools_makewindows:
 input:
 fai = 'graphs/{chromosome}.fa.gz.fai',
 output:
 directory('graphs/{chromosome}_windows_{size,\d+}')
 params:
 reference_path = 'ARS_UCD1.2#0#{chromosome}',
 split_every = 1000
 localrule: True
 shell:
 '''
 mkdir -p {output}
 bedtools makewindows -w {wildcards.size} -g <(echo -e "{params.reference_path}\\t"$(awk '$1=="{params.reference_path}" {{print $2}}' {input.fai})) |\
 split --lines {params.split_every} -a 4 --additional-suffix .bed -d - {output}/
 '''

rule odgi_extract_windows:
 input:
 og = rules.pggb_construct.output['og'],
 bed = 'graphs/{chromosome}_windows_{size}/{window}.bed'
 output:
 'graphs/{chromosome}_windows_{size}/{window}.jaccard.gz'
 params:
 og = lambda wildcards, input: Path(input['og']).resolve(),
 bed = lambda wildcards, input: Path(input['bed']).resolve(),
 _output = lambda wildcards, output: Path(output[0]).resolve()
 threads: 6
 resources:
 mem_mb = 6000,
 walltime = '4h'
 shell:
 '''
 cd $TMPDIR
 odgi extract -i {params.og} -b {params.bed} -t {threads} -s
 for g in *.og
 do
 odgi similarity -t {threads} -i $g | sed 's/:[0-9]\+-[0-9]\+//g' | awk -v S=${{g}} 'NR>1 && $2>$1 {{print S,$1,$2,$6}}'
 done | pigz -p {threads} > {params._output}
 '''

def aggregate_windows(wildcards):
 checkpoint_output = checkpoints.bedtools_makewindows.get(**wildcards).output[0]
 return expand('graphs/{{chromosome}}_windows_{{size}}/{window}.jaccard.gz', window=glob_wildcards(PurePath(checkpoint_output).joinpath('{window}.bed')).window)

rule gather:
 input:
 aggregate_windows
 output:
 'graphs/{chromosome}.windows.{size}.jaccard.gz'
 localrule: True
 shell:
 '''
 echo "path sample1 sample2 jaccard" | pigz > {output}
 cat {input} >> {output}
 '''

rule summarise_jaccard:
 input:
 rules.gather.output
 output:
 'graphs/{chromosome}.summary.{size}.jaccard.csv'
 params:
 min_paths = 153
 threads: 4
 resources:
 mem_mb = 5000,
 walltime = '10m'
 run:
 import polars as pl
 df = (pl.read_csv(input[0],separator=' ',dtypes=[pl.Utf8,pl.Utf8,pl.Utf8,pl.Float32])
 .with_columns([pl.lit(wildcards.chromosome).alias('Chromosome'),pl.col("path").str.extract(r":(\d+)-").cast(pl.UInt32, strict=False).alias('Start')])
 .drop('path')
)
 sample_classes = {"white":[f'{S}#{wildcards.chromosome}' for S in ('SIM_2','HER','SIM_3','SIM_1')],
 "colored":[f'{S}#{wildcards.chromosome}' for S in ["BSW_1","BSW_2","BSW_3","EVO","RGV",
 "BSW_4","BSW_5","BSW_6","BSW_7","OBV_1",
 "OBV_2","OBV_3","OBV_4","BV_1","BV_2",
 "BV_3","BV_4","BV_5","BV_6","HIG"]]}
 invert_samples = {v:K for K,samples in sample_classes.items() for v in samples}

 df = df.with_columns([(pl.col('sample1').replace(invert_samples)==pl.col('sample2').replace(invert_samples)).alias('grouping')]).drop(['sample1','sample2'])
 (df.group_by(['Chromosome','Start','grouping'])
 .agg(pl.col('jaccard').mean())
 .join(df.group_by(['Chromosome','Start']).agg(pl.count()),on=['Chromosome','Start'])
 .filter(pl.col('count')>=params.min_paths)
 .pivot(index=['Chromosome','Start','count'],columns='grouping',values='jaccard')
 .with_columns([(pl.col('true')/pl.col('false')).alias('Jaccard similarity ratio')])
 .drop(['true','false'])
 .write_csv(output[0]))

rule odgi_procbed:
 input:
 graph = lambda wildcards: expand(rules.odgi_extract.output,pangenome=wildcards.region,renamed='raw'),
 bed = lambda wildcards: config['gggenes'][wildcards.region]['repeats']
 output:
 repeats = 'gggenes/{region}.bed',
 og = 'gggenes/{region}.og'
 params:
 chromosome = lambda wildcards: config['gggenes'][wildcards.region]['region']['ARS'].split(':')[0],
 path = lambda wildcards: PurePath(config['gggenes'][wildcards.region]['repeats']).with_suffix('').with_suffix('').name
 localrule: True
 shell:
 '''
 awk -v OFS='\\t' '$1=={params.chromosome} {{print "{params.path}#{params.chromosome}",$2,$3,$4"_"NR,$6,$5,$7,$8}}' {input.bed} | grep -vE "(Simple_repeat|Low_complexity)" | sort -k 1,1V -k2,2n | tee {output.repeats} |
 odgi procbed -i {input.graph} -b /dev/stdin |\
 odgi inject -i {input.graph} -b /dev/stdin -o {output.og}
 '''

rule odgi_untangle:
 input:
 bed = rules.odgi_procbed.output['repeats'],
 og = rules.odgi_procbed.output['og']
 output:
 'gggenes/{region}.tangle',
 'gggenes/{region}.repeats.tsv'
 params:
 jaccard = config['gggenes'].get('jaccard',0.5)
 localrule: True
 shell:
 '''
 odgi untangle -j {params.jaccard} -R <(odgi paths -i {input.og} -L | grep -v "#") -i {input.og} -g | tee {output[0]} |\
 grep -E $(odgi paths -i {input.og} -L | awk 'BEGIN {{printf "^mol|"}} /#/ {{printf $1"|"}}' | sed 's/|$//') |\
 awk -v OFS='\\t' 'BEGIN {{b["gene"]="repeat_class"; c["gene"]="repeat_family"}} NR==FNR {{a[$4]=$5; b[$4]=$7; c[$4]=$8; next}} {{if (a[$2]=="-") {{$5=0}}; print $1,$2,b[$2],c[$2],$3,$4,$5 }}' {input.bed} - |\
 sed -E 's/_[0-9]+//' |\
 sed -E 's/#[0-9]+:[0-9]+-[0-9]+//' > {output[1]}
 '''

pangenome_construction.smk

def get_all_samples():
 return list(filter(None,[asm for sample,asms in config['assemblies'].items() for asm in asms if asm !='~']))

def panSN_naming():
 mapping = []
 for n, (sample_ID, sample_assemblies) in enumerate(config['assemblies'].items()):
 for haplotype, path in enumerate(sample_assemblies,len(sample_assemblies)!=1):
 if n == 0: #is reference
 mapping.append(f'"{sample_ID}#{haplotype}# {path}"')
 elif path: #is generic/haplotype, #NOTE this is still unclear on vg path metadata model, as potentially needs a further #phaseblock after the chromosome, which we can't prefix here
 mapping.append(f'"{sample_ID}#{haplotype}# {path}"')
 return mapping

localrules: pangenome_tree

rule panSN_spec:
 input:
 lambda wildcards: get_all_samples()
 output:
 multiext('graphs/{chromosome}.fa.gz','','.fai','.gzi')
 params:
 mapping = lambda wildcards: panSN_naming()
 threads: 4
 resources:
 mem_mb = 1500,
 walltime = '30m'
 shell:
 '''
 for i in {params.mapping}
 do
 set -- $i
 samtools faidx --length 0 $2 {wildcards.chromosome} | fastix -p $1 -
 done | bgzip -@ {threads} -c > {output[0]}
 samtools faidx {output[0]}
 '''

rule mash_triangle:
 input:
 rules.panSN_spec.output[0]
 output:
 'graphs/{chromosome}.mash'
 threads: 4
 resources:
 mem_mb = 1000,
 walltime = '1h'
 shell:
 '''
 mash triangle -s 10000 -k 25 -p {threads} -i {input} | awk 'NR>1' > {output}
 '''

rule mash_sketch:
 input:
 lambda wildcards: config['assemblies'][wildcards.sample][max(int(wildcards.haplotype)-1,0)]
 output:
 'graphs/{sample}.{haplotype}.msh'
 threads: 4
 resources:
 mem_mb = 1500
 shell:
 '''
 samtools faidx {input} {{1..29}} | mash sketch -s 10000 -k 25 -p {threads} -I {wildcards.sample}.{wildcards.haplotype} -o {output} -
 '''

def find_assembly_haplotypes():
 panSN = panSN_naming()
 samples, haplotypes = [], []
 for i in panSN:
 sample, haplotype, *_ = i.split('#')
 samples.append(sample[1:])
 haplotypes.append(int(haplotype))
 return {'sample':samples,'haplotype':haplotypes}

rule mash_big_triangle:
 input:
 expand(rules.mash_sketch.output,zip,**find_assembly_haplotypes())
 output:
 'mash.big_triangle'
 localrule: True
 shell:
 '''
 mash triangle -s 10000 -k 25 {input} | tail -n +2 > {output}
 '''

import numpy as np
def read_mash_triangle(mash_triangle,estimate_divegence=False):
 names, vals = [], []
 with open(mash_triangle,'r') as fin:
 for i,line in enumerate(fin):
 parts = line.rstrip().split()
 names.append(parts[0])
 vals.append(parts[1:]+[0])
 Q = np.asarray([np.pad(a, (0, len(vals) - len(a)), 'constant', constant_values=0) for a in vals],dtype=float)
 if estimate_divegence:
 return round((1-Q.max()*2.5)*100,1) #adjust max divergence by 2.5x factor
 return names, (Q+Q.T)

rule pangenome_tree:
 input:
 mash = rules.mash_triangle.output
 output:
 'graphs/{chromosome}.tree.svg'
 # localrule: True
 run:
 from scipy.spatial.distance import squareform
 from scipy.cluster import hierarchy
 import matplotlib.pyplot as plt
 names, dists = read_mash_triangle(input.mash[0])
 Z = hierarchy.linkage(squareform(dists),method='average',optimal_ordering=True)
 f, ax = plt.subplots()
 dn = hierarchy.dendrogram(Z,labels=names,orientation='left',get_leaves=True,ax=ax)
 f.savefig(output[0])

#Do we want to implement split_approx_mappings_in_chunks.py?
#implemented in nfcore-pangenome

rule pggb_construct:
 input:
 fasta = rules.panSN_spec.output,
 mash = rules.mash_triangle.output
 output:
 gfa = 'graphs/{chromosome}.pggb.gfa',
 og = 'graphs/{chromosome}.pggb.og'
 threads: 12
 resources:
 mem_mb = 3500,
 walltime = '24h',
 scratch = '50G'
 params:
 _dir = lambda wildcards, output: Path(output[0]).parent,
 divergence = lambda wildcards, input: read_mash_triangle(input.mash[0],True),
 n_haplotypes = lambda wildcards: len(get_all_samples()),
 min_match = 31, #adjusted from HPRC pipeline
 segment_length = 75000
 shell:
 '''
 pggb -i {input.fasta[0]} -t {threads} \
 -s {params.segment_length} -p {params.divergence} -n {params.n_haplotypes} \
 -k {params.min_match} \
 --skip-viz --temp-dir $TMPDIR \
 -o {params._dir}

 mv {params._dir}/{wildcards.chromosome}.*.smooth.final.gfa {output.gfa}
 mv {params._dir}/{wildcards.chromosome}.*.smooth.final.og {output.og}
 '''

public_downloading.smk

from pathlib import PurePath

rule fastq_dl:
 output:
 temp(expand('publicSamples/fastq/{accession}_R{N}.fastq.gz', N=(1,2), allow_missing=True)),
 params:
 _dir = lambda wildcards, output: PurePath(output[0]).parent
 threads: 1
 resources:
 mem_mb = 5000,
 proxy_load = 1
 envmodules:
 'eth_proxy'
 conda: 'fastq-dl'
 shell:
 '''
 fastq-dl --accession {wildcards.accession} --cpus {threads} --silent --outdir {params._dir} --prefix {wildcards.accession} --group-by-sample && [[-s {output[0]}]] && [[-s {output[1]}]]
 '''

rule fastq_dl_fixed:
 input:
 fastq = 'publicSamples/fastq/{accession}_R{N}.fastq.gz'
 output:
 temp('publicSamples/fastq/{accession}_R{N}.fixed.fastq.gz')
 threads: 4
 resources:
 mem_mb = 1500
 shell:
 '''
 pigz -dc -p {threads} {input.fastq} | awk '{{print (NR%4==1 && NF>1) ? "@"$2 : $0}}' | pigz -c -p {threads} > {output}
 '''

rule fastp_filter:
 input:
 lambda wildcards: expand(rules.fastq_dl_fixed.output,accession=SRA_samples[wildcards.sample],N=(1,2),allow_missing=True) if wildcards.sample in SRA_samples else expand(config['local_bams']+'{{sample}}_R{N}.fastq.gz',N=(1,2))
 output:
 fastq = temp(expand('publicSamples/fastq/{sample}.R{N}.fastq.gz',N=(1,2),allow_missing=True))
 params:
 min_quality = config.get('fastp',{}).get('min_quality',15),
 unqualified = config.get('fastp',{}).get('unqualified',40),
 min_length = config.get('fastp',{}).get('min_length',15)
 threads: 4
 resources:
 mem_mb = 2500
 shell:
 '''
 fastp -q {params.min_quality} -u {params.unqualified} -g --length_required {params.min_length} --thread {threads} -i {input[0]} -o {output.fastq[0]} -I {input[1]} -O {output.fastq[1]} --json /dev/null --html /dev/null
 '''

We don't index the reference, because it depends on read size which is variable. Do it on the fly
rule strobealign:
 input:
 fastq = expand(rules.fastp_filter.output,allow_missing=True),
 reference = lambda wildcards: config['references'][wildcards.reference]
 output:
 bam = temp(multiext('publicSamples/{sample}.{reference}.cram','','.crai')),
 dedup_stats = 'publicSamples/{sample}.{reference}.dedup.stats'
 params:
 rg = '"@RG\\tID:{sample}\\tCN:UNK\\tLB:{sample}\\tPL:illumina\\tSM:{sample}"',
 threads: 16
 resources:
 mem_mb = 2000,
 scratch = '50g',
 walltime = '4h'
 shell:
 '''
 strobealign {input.reference} {input.fastq} -t {threads} --rg-id {wildcards.sample} |\
 samtools collate -u -O -@ {threads} - |\
 samtools fixmate -m -u -@ {threads} - - |\
 samtools sort -T $TMPDIR -u -@ {threads} |\
 samtools markdup -T $TMPDIR -S -@ {threads} --write-index -f {output.dedup_stats} --reference {input.reference} --output-fmt-option version=3.1 - {output.bam[0]}
 '''

rule samtools_stats:
 input:
 rules.strobealign.output['bam']
 output:
 'coverage/{sample}.{reference}.cram.stats'
 threads: 2
 resources:
 mem_mb = 1500
 shell:
 '''
 samtools stats -d -f 3 -F 1284 --threads {threads} {input[0]} {{1..29}} > {output[0]}
 '''

#hardcoded filenames in the awk loop
rule make_fancy_csv:
 input:
 csv = config['samples'],
 stats = expand(rules.samtools_stats.output,sample=samples,allow_missing=True),
 dedup = expand(rules.strobealign.output['dedup_stats'],sample=samples,allow_missing=True)
 output:
 'sample_information.{reference}.csv'
 localrule: True
 shell:
 '''
 echo "sample ID breed coverage read_length duplication_rate" > {output}
 while read -r a b c d
 do
 if [[${{a::1}} == "#"]] ; then
 continue
 fi
 echo "$a $b $c $(awk '/total length/ {{ print $4/2489385779 }}' coverage/$a.{wildcards.reference}.cram.stats) $(awk '$1=="RL" {{L+=($2*$3);n+=$3}} END {{printf L/n}}' coverage/$a.{wildcards.reference}.cram.stats) $(awk '$1=="PAIRED:" {{P=$2}} {{if ($1=="DUPLICATE"&&$2=="PAIR:") {{ D=$3 }} }} END {{print D/P}}' publicSamples/$a.{wildcards.reference}.dedup.stats)"
 done < {input.csv} >> {output}
 '''

short_read_regions.smk

rule all:
 input:
 expand('bam_slices/{region}.coverage.Q{Q}.tsv',region=config['regions'],Q=config.get('Q',10))

rule samtools_view:
 input:
 '{sample}.bam'
 output:
 'bam_slices/{sample}.{region}.bam'
 threads: 2
 resources:
 mem_mb = 3000,
 walltime = '30'
 params:
 region = '6:70063972-70155205' #lambda wildcards: config['regions'][wildcards.region]
 shell:
 '''
 samtools view --threads {threads} --write-index -o {output} {input} {params.region}
 '''

rule samtools_bedcov:
 input:
 bams = expand('{sample}.bam',sample=config['samples']),
 bed = 'bam_slices/{region}.bed'
 output:
 'bam_slices/{region}.coverage.Q{Q}.tsv'
 params:
 breeds = '\\n'.join(['ID\\tbreeds'] + [f'{K}\\t{V}' for K,V in config['samples'].items()])
 threads: 1
 resources:
 mem_mb = 25000
 shell:
 '''
 paste <(echo -e "{params.breeds}") <(samtools bedcov -Q {wildcards.Q} {input.bed} {input.bams} |\
 cut -f 4- |\
 awk '{{for(i=1;i<=NF;i++)a[i][NR]=$i}}END{{for(i in a)for(j in a[i])printf"%s"(j==NR?RS:FS),a[i][j]}}' |\
 tr ' ' '\\t') > {output}
 '''

image1.png
- st
= contig

9 notaboos
o serpts

9 snakopi

0 reomEma
O snakorie

) assembiy_patchingnd

image2.png
‘pangenome_KIT / snakepit | (&

miasot sdd snakesit

o
o

00 EO0000 00

Pehamk

bam_to_fastgsmic

blastamic

force_mapping.smk.

mappings smi

mummeramc

rode_assocatorsmic

pangenome_aigment sm

pangenome_analysis.smk

pangenome_consiruction smk.

public_donmiosding mk.

short_read_ragions smic

