Supplemental code 1. Perl script synthesizing gene evidence during genome annotation.

#!/usr/bin/perl -w

my $usage=<<EOF;

"ab homo", refers to "ab from homo", or "ab and homo", aim to let ab_initio and homology prediction make up for each other

Usage: $0 clusterred.gff(or stdin) (-ab AUGUSTUS) >ab_homo.gff

	-ab assigns the marker to recognize ab initio prediction, could also be "AUGUSTUS,snap,..."

* input gff should be scored by splice_score.pl first
* output about "pre_stop;frameshift" will not always be right anymore, replace them afterword

					Du Kang 2020-10-20

EOF

use List::Util qw(max min);

$ab="AUGUSTUS";
while ($_=shift @ARGV) {
	if (/^-ab$/) {
		$ab=shift @ARGV;
	}else{
		push @file, $_;
	}
}
die $usage if (!@file and -t STDIN);
$ab=~s/,/|/g;

open IN, "cat @file |cut -f9-|" or die $!;
while (<IN>) {
	my @ab;
	my @homo;

	my @iso=split /_flag_/;
	foreach $iso (@iso){
		$iso=~s/# alignment.*//;
		$iso= &gff_order($iso);
		$iso=~/\t($ab)\t/i? push @ab, $iso : push @homo, $iso;
	}

	if (@homo==0 or @ab==0) {
		s/_break_/\n/g and print for @iso;

	}else{
		# to judge whether to merge the multiple homo together or not
		# I only set an easy threshold here: merge them if the sum of the coverage <120 and none of them is perfectly supproted by RNA
		my $cover_sum=0;
		my $flag=0;
		foreach $homo (@homo){
			my ($score,$cover,$start,$stop)=$homo=~/\tgene\t\d+\t\d+\t(\S+)\t\S+\t\S+\t\S+cover=(.*?);.*;start_c=(\d);stop_c=(\d);/;
			$cover_sum+=$cover;
			$flag=1 if $score==100 and $start==1 and $stop==1;
		}

		if ($cover_sum<=120 and $flag==0) {	# merge, @homo==1 is included in this case
			foreach $homo (@homo){	# I know this section is hard to understand, but correct
				my @tmp;
				foreach $ab (@ab){
					my $cut= &cut($homo, $ab);
					if($cut eq ";"){push @tmp, $ab}elsif($cut eq "-"){$homo=$ab}else{$homo= &paste($homo, $ab, $cut)}
				}
				@ab=($homo,@tmp);
				$result=$homo;
			}
			$result=~s/_break_/\n/g;
			print $result;

		}else{	# do not merge, left gets left, right gets right, middle gets nothing
			my $cut= &cut($homo[0], $ab[0]);
			$cut=~s/;\d+/;/;
			$homo[0]= $cut eq ";"? $homo[0] : $cut eq "-"? $ab[0] : &paste($homo[0], $ab[0], $cut);

			$cut= &cut($homo[-1], $ab[-1]);
			$cut=~s/\d+;/;/;
			$homo[-1]= $cut eq ";"? $homo[-1] : $cut eq "-"? $ab[-1] : &paste($homo[-1], $ab[-1], $cut);

			s/_break_/\n/g and print for do { my %seen; grep { !$seen{$_}++ } @homo};
		}
	}
}

subs
sub gff_order {
	# I eat in a flatted gff, order then output
	my $in=shift @_;
	my ($gff,$suffix)=$in=~/(.*?)(#.*)$/;
	$gff=~s/_break_/\n/g;
	$gff=~s/\tintron\t/\tantron\t/g;
	my $o=`echo "$gff" |sort -k4,4n -k3,3Vr`;
	$o=~s/\n/_break_/gs;
	$o=~s/\tantron\t/\tintron\t/g;
	return $o.$suffix;
}

sub exon {
	# I eat in a flatted gff line and output exon structure (no sort version, already sorted by &gff_order)
	my $i=shift @_;
	my @exons=();
	for $catch ($i=~/\t(CDS|exon)\t(\d+\t\d+)\t/ig){
		next if $catch=~/CDS|exon/i;
		$catch=~/(\d+)\t(\d+)/;
		my ($s,$e)= $1<$2? ($1,$2) : ($2,$1);
		my $exon="$s..$e";
		push @exons, $exon;
	}
	my $exons=join(";", @exons);

	return $exons;
}

sub cut {
	# I eat in two flatted gff(homo, ab) and determine the cut site for paste
	my $homo=shift @_;
	my $ab=shift @_;
	my $cut;

	my ($score_homo,$start_homo,$stop_homo,$S_homo,$E_homo)=$homo=~/\tgene\t\d+\t\d+\t(\S+)\t\S\t\S+\t.*;start_c=(\d);stop_c=(\d);\S+;S=(\d);E=(\d)/;
	my ($score_ab,$strand,$start_ab,$stop_ab,$S_ab,$E_ab)=$ab=~/\tgene\t\d+\t\d+\t(\S+)\t(\+|\-)\t\S+\t.*;start_c=(\d+);stop_c=(\d);\S+;S=(\d);E=(\d)/;
	my $exons_homo= &exon($homo);
	my ($l_homo,$r_homo)=$exons_homo=~/(\d+)\..*\.(\d+)/;
	my $exons_ab= &exon($ab);
	my ($l_ab,$r_ab)=$exons_ab=~/(\d+)\..*\.(\d+)/;

	if (($score_homo==100 and $start_homo==1 and $stop_homo==1) or $exons_homo!~/;/){
		$cut=";";	# take the homo
	}elsif($score_ab==100 and $start_ab==1 and $stop_ab==1 and $l_ab<=$l_homo and $r_ab>=$r_homo){
		$cut="-";	# take the ab
#	}elsif($l_ab<=$l_homo and $r_ab>=$r_homo and $S_ab>=$S_homo and $E_ab>=$E_homo and $score_ab>$score_homo){
#		$cut="-";	# take the ab
	}else{
		my $left="";
		my $right="";
		my $cut_left;
		my $cut_right;
		
		$cut_left=1 if $strand eq "+" and ($start_homo<$start_ab or $S_homo<$S_ab or ($start_homo==$start_ab and $S_homo==$S_ab and $l_homo>$l_ab));
		$cut_left=1 if $strand eq "-" and ($stop_homo<$stop_ab or $E_homo<$E_ab or ($stop_homo==$stop_ab and $E_homo==$E_ab and $l_homo>$l_ab));
		
		$cut_right=1 if $strand eq "+" and ($stop_homo<$stop_ab or $E_homo<$E_ab or ($stop_homo==$stop_ab and $E_homo=$E_ab and $r_homo<$r_ab));
		$cut_right=1 if $strand eq "-" and ($start_homo<$start_ab or $S_homo<$S_ab or ($start_homo==$start_ab and $S_homo==$S_ab and $r_homo<$r_ab));
		
		#check the inner slice sides for the first and the last exon of the homo
		if ($cut_left) {
			my ($site)=$exons_homo=~/(;\d+\.\.)/;
			my $reg=quotemeta($site);
			($left)=$site=~/(\d+)/ if $exons_ab=~/$reg/;
		}
		if ($cut_right) {
			my ($site)=$exons_homo=~/.*(\.\.\d+;)/;
			my $reg=quotemeta($site);
			($right)=$site=~/(\d+)/ if $exons_ab=~/$reg/;
		}

		$cut="$left;$right";
	}

	return $cut;
}

sub paste {
	# I eat in two flatted gff and the cut site, then paste them and inherit the information
	my $homo=shift @_;
	my $ab=shift @_;
	my $cut=shift @_;

	my ($homo_head, $homo_gff, $homo_cds, $homo_pep)=$homo=~/^(.*\tgene\t.*?_break_)(.*)# coding sequence = \[(.*?)\]_break_# protein sequence = \[(.*?)\]/;
	my ($ab_head, $ab_gff, $ab_cds, $ab_pep)=$ab=~/^(.*\tgene\t.*?_break_)(.*)# coding sequence = \[(.*?)\]_break_# protein sequence = \[(.*?)\]/;
	$homo_pep=~s/\#|\!|*|X//ig;	# remove the symbol of prestop and frameshift if there is any

	my ($a, $b)=$cut=~/(.*);(.*)/;

	# get the cds length on the left and right for ab and homo prediction
	my $homo_left=0;
	my $homo_right=0;
	my $ab_left=0;
	my $ab_right=0;

	if ($a) {
		my ($catch)=$homo_gff=~/(.*)\tcds\t$a\t/is;
		foreach $cds_range ($catch=~/\tcds\t(\d+\t\d+)\t/isg){
			$cds_range=~/(\d+)\t(\d+)/;
			$homo_left+=$2-$1+1;
		}
		($catch)=$ab_gff=~/(.*)\tcds\t$a\t/is;
		foreach $cds_range ($catch=~/\tcds\t(\d+\t\d+)\t/isg){
			$cds_range=~/(\d+)\t(\d+)/;
			$ab_left+=$2-$1+1;
		}
	}

	if ($b) {
		my ($catch)=$homo_gff=~/\t$b\t(.*)/is;
		foreach my $cds_range ($catch=~/\tcds\t(\d+\t\d+)\t/isg){
			$cds_range=~/(\d+)\t(\d+)/;
			$homo_right+=$2-$1+1;
		}
		($catch)=$ab_gff=~/\t$b\t(.*)/is;
		foreach my $cds_range ($catch=~/\tcds\t(\d+\t\d+)\t/isg){
			$cds_range=~/(\d+)\t(\d+)/;
			$ab_right+=$2-$1+1;
		}
	}

	my $strand= $homo_head=~/\t\+\t/? "+" : "-";

	# nail the cds
	my $left= $strand eq "+"? substr($ab_cds, 0, $ab_left) : substr($ab_cds, 0, $ab_right);
	my $right= $strand eq "+"? substr($ab_cds, -$ab_right, $ab_right) : substr($ab_cds, -$ab_left, $ab_left);

	if ($strand eq "+") {substr($homo_cds, 0, $homo_left)=""} else {substr($homo_cds, 0, $homo_right)=""}
	if ($strand eq "+") {substr($homo_cds, -$homo_right, $homo_right)=""} else {substr($homo_cds, -$homo_left, $homo_left)=""}
	my $middle=$homo_cds;

	my $cds=$left.$middle.$right;

	# nail the pep
	$left= $strand eq "+"? substr($ab_pep, 0, int($ab_left/3)) : substr($ab_pep, 0, int($ab_right/3));
	$right= $strand eq "+"? substr($ab_pep, -int($ab_right/3), int($ab_right/3)) : substr($ab_pep, -int($ab_left/3), int($ab_left/3));

	if ($strand eq "+") {substr($homo_pep, 0, int($homo_left/3))=""} else {substr($homo_pep, 0, int($homo_right/3))=""}
	if ($strand eq "+") {substr($homo_pep, -int($homo_right/3), int($homo_right/3))=""} else {substr($homo_pep, -int($homo_left/3), int($homo_left/3))=""}
	$middle=$homo_pep;

	my $pep=$left.$middle.$right;

	# nail the gff
	$ab_gff=~/(\t\S+\tcds\t$a\b.*\b$b\t.*?[+-])/i;
	my $ori= $1? quotemeta $1 : "";

	$homo_gff=~/(\t\S+\tcds\t$a\b.*\b$b\t.*?[+-])/i;
	my $rep= $1? $1 : "";

	$ab_gff=~s/$ori/$rep/ if $ori;

	# nail the head
	$ab_gff=~/cds\t(\d+)\t.*cds\t\d+\t(\d+)\t/i;
	$rep="gene\t$1\t$2\t";
	$homo_head=~s/gene\t\d+\t\d+\t/$rep/;

	my ($S, $E)=$ab_head=~/(S=\d);(E=\d)/;
	my ($start, $stop)=$ab_head=~/(start_c=\d);(stop_c=\d)/;
	my $cds_num=($ab_gff=~s/\tcds\t/\tCDS\t/ig);

	$homo_head=~s/S=\d/$S/ and $homo_head=~s/start_c=\d/$start/ if ($strand eq "+" and $a) or ($strand eq "-" and $b);
	$homo_head=~s/E=\d/$E/ and $homo_head=~s/stop_c=\d/$stop/ if ($strand eq "+" and $b) or ($strand eq "+" and $a);
	$homo_head=~s/cds=\d+;/cds=$cds_num;/;

	return "$homo_head$ab_gff# coding sequence = [$cds]_break_# protein sequence = [$pep]_break_";
}

