SUPPLEMENTAL CODE:

The custom script used in the processing of Pioneer-seq data is provided below and is also available at: https://github.com/pwilson97/Pioneer-seq_snakemake

Pioneer-seq data processing and alignment workflow
This is a Snakemake workflow for automated processing and alignment of paired-end sequencing data derived from Pioneer-seq experiments.

Requirements:
· Snakemake and Conda must be installed.
· Demultiplexed paired-end reads in gzipped FASTQ format located in the raw_data/ directory.
· A Pioneer-seq reference library in FASTA format (“reference_libraries/ Nucs_v1_DB_no_primers.fa” is included in this repository)
· A snakefile (“snakefile”) is included in this repository.
· A config file (“config.json”) is included in this repository. This contains customizable parameters, such as file paths and processing options.
· Conda environment files (“envs/”) are included in this repository. These ensure that the correct software and versions are installed.
· A metadata file (“metadata.txt”, tab-delimited) is included in this repository. The metadata file serves as input for the workflow and describes the relationships between samples, replicates, and associated files.

Creating the conda environment:

Navigate to the root directory of this repository and run the following commands to create each environment:

conda env create --file envs/cutadapt.yaml --name cutadapt_env
conda env create --file envs/vsearch.yaml --name vsearch_env
conda env create --file envs/fastx.yaml --name fastx_env

Run the Snakemake pipeline with Conda:

Use the --use-conda flag when running Snakemake. This ensures that Snakemake automatically creates and activates the required environments for each rule:

snakemake --use-conda --cores 4

Script: config.json:

{
 "metafile": "metafile.txt",
 "raw_fastq_gz_dir": "raw_data/",
 "ref_lib_dir": "reference_libraries/",
 "dir_names":
 {
 "unzip_dir": "outputs/unzip",
 "filter_dir": "outputs/filter",
 "filter_log_dir": "outputs/filter/filter_logs",
 "merge_dir": "outputs/merge",
 "notmerge_dir": "outputs/merge/notmerge",
 "merge_log_dir": "outputs/merge/merge_logs",
 "trim_dir": "outputs/trim",
 "trim_log_dir": "outputs/trim/trim_logs",
 "restrict_dir": "outputs/restrict",
 "restrict_log_dir": "outputs/restrict/restrict_logs",
 "convert_dir": "outputs/convert",
 "align_dir": "outputs/align",
 "align_dbout_dir": "outputs/align/align_dbout",
 "align_log_dir": "outputs/align/align_logs",
 "matrix_dir": "outputs/matrix"
 },
 "envs":
 {
 "cutadapt": "envs/cutadapt.yaml",
 "fastx": "envs/fastx.yaml",
 "vsearch": "envs/vsearch.yaml"	
 },
 "params":
 {
 "qscore": "30",
 "maxdiffs": "2",
 "minovlen": "20",
 "pair1": "GATGGACCCTATACGCGGC...TGCCAGTCGGATAGTGTTCCAGGTTCAGAGG",
 "pair2": "AGCTCGAGAACGATGGACCCTATACGCGGC...TGCCAGTCGGATAGTGTTCC",
 "pair3": "CTGAATGATGGACCCTATACGCGGC...TGCCAGTCGGATAGTGTTCCAGAACAGTA",
 "pair4": "TCACTCTTGATGGACCCTATACGCGGC...TGCCAGTCGGATAGTGTTCCCGTCCAT",
 "minimum_length": "174",
 "maximum_length": "195",
 "global_clustering_threshold": "0.985",
 "threads": "8",
 "maxrejects": "0",
 "maxaccepts": "0",
 "qmask": "none",
 "dbmask": "none",
 "userfields": "query+target+id+alnlen+mism+opens+qlo+qhi+tlo+thi+evalue+bits",
 "mincols": "150"
 },
}

Script: cutadapt.yaml:

name: cutadapt-env
channels:
 - bioconda
 - conda-forge
dependencies:
 - cutadapt=3.5
 - python=3.9 # Ensures compatibility

Script: fastx.yaml:

name: fastx-env
channels:
 - bioconda
dependencies:
 - fastx_toolkit=0.0.14

Script: vsearch.yaml:

name: vsearch-env
channels:
 - bioconda
dependencies:
 - vsearch=2.8.1

Script: snakefile:

import pandas as pd
import os

configfile: "config.json"

df = pd.read_csv(config["metafile"], sep='\t', header=0, index_col=0, dtype={'Ratio': str})
samples = list(df.index)
df.index = samples
replicates = set(df["Replicate"])

def get_gz_pair(sample):
 dir = config["raw_fastq_gz_dir"]
 return tuple(os.path.join(dir + df.loc[str(sample), x]) for x in ('ForwardFastqGZ', 'ReverseFastqGZ'))

def get_ref_lib(sample):
 dir = config["ref_lib_dir"]
 return os.path.join(dir, df.loc[sample]["ReferenceLibrary"])

def get_userouts(replicate):
 dir = config["dir_names"]["align_dir"]
 samples = df.index[df["Replicate"] == replicate].tolist()
 return [f"{dir}/{sample}.userout" for sample in samples]

def get_db(replicate):
 dir = config["ref_lib_dir"]
 db = df.loc[df["Replicate"] == replicate, "ReferenceLibraryDetails"].values[0]
 return dir + db

def get_gelband_ratios(replicate):
 gel_bands = df.loc[df["Replicate"] == replicate, "GelBand"].tolist()
 ratios = df.loc[df["Replicate"] == replicate, "Ratio"].tolist()
 return [gel_band + "_" + ratio for gel_band, ratio in zip(gel_bands, ratios)]

def get_protein(replicate):
 protein = df.loc[df["Replicate"] == replicate, "Protein"].iloc[0]
 return protein

rule all:
 input:
	expand("{dir}/{sample}.userout", dir=config["dir_names"]["align_dir"],sample=samples)

rule unzip:
 input:
	lambda wildcards: get_gz_pair(wildcards.sample)
 output:
	config["dir_names"]["unzip_dir"] + "/{sample}_R1.fastq",
 config["dir_names"]["unzip_dir"] + "/{sample}_R2.fastq"
 shell:
	"gunzip -c {input[0]} > {output[0]} && gunzip -c {input[1]} > {output[1]}"

rule filter:
 input:
	rules.unzip.output
 output:
	config["dir_names"]["filter_dir"] + "/{sample}_R1.fq",
 config["dir_names"]["filter_dir"] + "/{sample}_R2.fq"
 conda:
	config["envs"]["cutadapt"]
 params:
	qscore = config["params"]["qscore"]
 log:
 config["dir_names"]["filter_log_dir"] + "/{sample}_R1.txt",
 config["dir_names"]["filter_log_dir"] + "/{sample}_R2.txt"
 shell:
 "cutadapt -q {params.qscore} -o {output[0]} {input[0]} | sed '1,6d' > {log[0]} && cutadapt -q {params.qscore} -o {output[1]} {input[1]} | sed '1,6d' > {log[1]} "

rule merge:
 input:
	rules.filter.output
 output:
	config["dir_names"]["merge_dir"] + "/{sample}.fq",
 config["dir_names"]["notmerge_dir"] + "/{sample}_R1.fq",
 config["dir_names"]["notmerge_dir"] + "/{sample}._R2.fq"
 conda:
	config["envs"]["vsearch"]
 params:
	maxdiffs = config["params"]["maxdiffs"],
 minovlen = config["params"]["minovlen"]
 log:
 config["dir_names"]["merge_log_dir"] + "/{sample}.txt"
 shell:
	"vsearch --fastq_mergepairs {input[0]} --reverse {input[1]} --fastq_maxdiffs {params.maxdiffs} --fastq_minovlen {params.minovlen} --fastqout {output[0]} --fastaout_notmerged_fwd {output[1]} --fastaout_notmerged_rev {output[2]} &> {log}"

rule trim:
 input:
	rules.merge.output
 output:
	config["dir_names"]["trim_dir"] + "/{sample}.fq"
 conda:
	config["envs"]["cutadapt"]
 params:
	pair1 = config["params"]["pair1"],
 pair2 = config["params"]["pair2"],
 pair3 = config["params"]["pair3"],
 pair4 = config["params"]["pair4"]
 log:
 config["dir_names"]["trim_log_dir"] + "/{sample}.txt"
 shell: #not done yet; might go from four to one param
 "cutadapt -a Pair_1={params.pair1} -a Pair_2={params.pair2} -a Pair_3={params.pair3} -a Pair_4={params.pair4} --discard-untrimmed -o {output} {input[0]} | sed '1,4d' > {log}"

rule restrict:
 input:
	rules.trim.output
 output:
	config["dir_names"]["restrict_dir"] + "/{sample}.fq"
 conda:
	config["envs"]["cutadapt"]
 params:
	min = config["params"]["minimum_length"],
 max = config["params"]["maximum_length"]
 log:
 config["dir_names"]["restrict_log_dir"] + "/{sample}.txt"
 shell:
	"cutadapt -m {params.min} -M {params.max} -o {output} {input} | sed '1,4d' > {log}"

rule convert:
 input:
	rules.restrict.output
 output:
	config["dir_names"]["convert_dir"] + "/{sample}.fa"
 conda:
	config["envs"]["fastx"]
 shell:
	"fastq_to_fasta -n -i {input} -o {output}"

rule align:
 input:
	rules.convert.output,
 lambda wildcards: get_ref_lib(wildcards.sample)
 output:
	config["dir_names"]["align_dir"] + "/{sample}.userout",
 config["dir_names"]["align_dbout_dir"] + "/{sample}.dbout"
 conda:
	config["envs"]["vsearch"]
 params:
	id = config["params"]["global_clustering_threshold"],
 threads = config["params"]["threads"],
 maxrejects = config["params"]["maxrejects"],
 maxaccepts = config["params"]["maxaccepts"],
 qmask = config["params"]["qmask"],
 dbmask = config["params"]["dbmask"],
 userfields = config["params"]["userfields"],
 mincols = config["params"]["mincols"]
 log:
 config["dir_names"]["align_log_dir"] + "/{sample}.txt"
 shell:
	"vsearch --usearch_global {input[0]} --db {input[1]} --dbmatched {output[1]} --sizeout --id {params.id} --threads {params.threads} --maxrejects {params.maxrejects} --maxaccepts {params.maxaccepts} --qmask {params.qmask} --dbmask {params.dbmask} --userfields {params.userfields} --userout {output[0]} --top_hits_only --mincols {params.mincols} &> {log}"

1

