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The general pattern involving gene age and Mendelian diseases
After the discovery of the first disease gene in 1983, which was based on linkage mapping for a Huntington's disease with a pedigree (Gusella et al. 1983), there has been a rapid advancement in medical genetics research. As of now, this field has identified approximately 20% of human genes (~4000-5000 genes) associated with rare diseases, "orphan" diseases, and rare forms of common diseases (Asimit et al. 2012; Boycott et al. 2013; Henn et al. 2015; Krumm et al. 2015; Ji et al. 2016; Study 2017; Krausz and Riera-Escamilla 2018; Wen et al. 2018; Almlöf et al. 2019; Povysil et al. 2019; Thuresson et al. 2019; Guo et al. 2021; Oud et al. 2021; Chen et al. 2022). In our study, we utilized the latest disease gene and clinical phenotype data from HPO annotations (Köhler et al. 2018) and incorporated synteny-based gene age dating to account for new gene duplication events (Shao et al. 2019). Our synteny-based gene age dating reveals that younger genes have lower percentages of disease genes than older genes, qualitatively consistent with previous findings (Domazet-Lošo and Tautz 2008). We also reveal that evolutionary older genes tend to have a higher gene-wise DNVs burden. Logistic regression modeling indicates that protein length, gene age, and DNV burden are positively correlated with the probability of a gene being classified as a disease gene. Thus, the overrepresentation of disease genes in older evolutionary age groups could result from the combined effect of deleterious variant burden, sequence length, and gene age over evolutionary time under various forms of selection. Despite previous debates on the selective pressures on disease genes (Smith and Eyre-Walker 2003; Domazet-Lošo and Tautz 2008; Chakraborty et al. 2016; Spataro et al. 2017), Ka/Ks ratios between humans and primates consistently support stronger purifying selection on disease genes than non-disease genes, indicating evolutionary constraints to remove harmful variants. The phylostratum-wise estimates of the emergence rate of disease genes per million years reveal a steady integration of new genes into disease phenotypes, consistent with Haldane's finding that new deleterious mutations are eliminated at the same rate they occur (Haldane 1937; Keightley 2012).
The excess of disease genes in the X Chromosome supports the “faster-X effect” (Rice 1984; Charlesworth et al. 1987), that male X-hemizygosity could immediately expose the deleterious X chromosomal mutations to purifying selection. Conversely, the X-Chromosome inactivation (XCI) in female cells could alleviate the deleterious phenotypes of disease variants on the X Chromosome (Migeon 2020). The X Chromosome excess of disease genes is attributed disproportionally to genes with male reproductive functions. This male-specific bias is not limited to the sex chromosome but also detectable in autosomes. These findings align with the “faster-male” effect, where the reproductive system evolves more rapidly in males than in females due to heightened male-specific sexual selection (Wu and Davis 1993). Of the 22 HPO systems, young genes are enriched in disease phenotypes affecting the reproductive-related system. As genes evolve to be older, there's a marked decline in both phenotype enrichment and the male-to-female ratio of reproductive disease gene numbers, consistent with the “out of testis” hypothesis (Kaessmann 2010). This hypothesis also predicts that new genes could gain broader expression patterns and higher phenotypic complexity over evolutionary time (Vinckenbosch et al. 2006). Consistently, we reveal a pattern where older sets of disease genes have phenotypes affecting a much broader range of anatomical systems compared to younger genes. The strong enrichment of male reproductive phenotypes for young genes is also consistent with findings from model species that new genes often exhibit male-reproductive expression and functions (Betrán et al. 2002; Heinen et al. 2009), in both Drosophila (Heinen et al. 2009; Gubala et al. 2017; VanKuren and Long 2018) and mammals (Emerson et al. 2004; Jiang et al. 2017). Some new gene duplicates on autosomes are indispensable during male spermatogenesis, to preserve male-specific functions that would otherwise be silenced on the X Chromosome due to the meiotic sex chromosome inactivation (MSCI) (Emerson et al. 2004; Zhang et al. 2010; Jiang et al. 2017).
Evolutionary new genes are frequent source of adaptive innovation
[bookmark: OLE_LINK47][bookmark: OLE_LINK48][bookmark: OLE_LINK81]Apart from the reproductive functions, new genes are also enriched for adaptive phenotypes. Previous transcriptomic studies indicate that new genes have excessive upregulation in the human neocortex under positive selection (Zhang et al. 2011). The brain size enlargement ranks among the most extraordinary human phenotypic innovations (Rakic 2009; Zhang et al. 2011). Here, we found that a high proportion of primate-specific disease genes (42%) affecting the nervous systems could impact phenotypes related to brain size and intellectual development. For example, DDX11 is critical in pathology of microcephaly (Pirozzi et al. 2018; Lerner et al. 2020; van Schie et al. 2020; Ma et al. 2022). The NOTCH2NLA, NOTCH2NLB, and NOTCH2NLC may promote human brain size enlargement, due to their functions in neuronal intranuclear inclusion disease (NIID), microcephaly, and macrocephaly (Fiddes et al. 2018; Suzuki et al. 2018; Liu et al. 2022). The RRP7A is also a microcephaly disease gene evidenced from patient-derived cells with defects in cell cycle progression and primary cilia resorption (Farooq et al. 2020). The defects of SMPD4 can lead to a neurodevelopmental disorder characterized by microcephaly and structural brain anomalies (Magini et al. 2019). The SRGAP2C accounts for human-specific feature of neoteny and can promote motor and execution skills in mouse and monkey model (Charrier et al. 2012; Dennis et al. 2012; Meng et al. 2023). 
Young genes are also enriched in other adaptive phenotypes, such as the head and neck, eyes, and musculoskeletal system. Some examples include CFHR3 associated with macular degeneration (Fritsche et al. 2016), SMPD4 with the retinopathy (Smits et al. 2023), TUBA3D with the keratoconus (Hao et al. 2017), OPN1MW with loss of color vision (Winderickx et al. 1992; Ueyama et al. 2002), YY1AP1 with Fibromuscular dysplasia (Guo et al. 2017), SMN2 with spinal muscular atrophy (Hahnen et al. 1996), GH1 with defects in adult bone mass and bone loss (Dennison et al. 2004), KCNJ18 with thyrotoxicosis complicated by paraplegia and hyporeflexia (Ryan et al. 2010), TBX5 with the cardiac and limb defects of Holt-Oram syndrome (Basson et al. 1997; Li et al. 1997), and DUX4 with muscular dystrophy (Lemmers et al. 2012). Additionally, sex-specific functions have also been reported for these young genes. For example, the Y chromosome gene TBL1Y could lead to male-specific hearing loss (Di Stazio et al. 2019). Defects in TUBB8 could lead to complete cleavage failure in fertilized eggs and oocyte maturation arrest (Feng et al. 2016; Yuan et al. 2018; Yao et al. 2022). Interestingly, a previous case study on mice also shows the role of de novo genes in female-specific reproductive functions (Xie et al. 2019).
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AI 生成的内容可能不正确。]
The fractions of disease genes for seven age groups (phylostrata). The horizontal axis shows the seven age groups and the vertical one shows the fractions of disease genes out of each age group. The “br” indicates “branch”, which is also age group or phylostratum.
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Description automatically generated]
The interaction plot between DNVs burden and protein length (at logarithm scale) for the predicted probability of being a disease gene. The details of full model are shown in Supplemental Table 4.
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Description automatically generated with medium confidence]
The relationship between multiple features (protein length, burden of DNVs, ultra-rare pLOF burden score) and seven gene age groups (phylostrata). (A) The comparison of protein lengths across gene ages between disease genes and non-disease genes. (B) The comparison of DNVs burdens across gene ages between disease genes and non-disease genes. (C) The comparison of ultra-rare pLOF burden scores across gene ages between disease genes and non-disease genes. 
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Description automatically generated with medium confidence]
The relationship between two types of gene age dating and the DNVs burden. (A)The relationship between gene-wise DNVs burden from 68,404 individuals (Zhao et al. 2020) and the previously reported synteny-based gene age (Shao et al. 2019).  (B) The relationship between gene-wise DNVs burden from 68,404 individuals (Zhao et al. 2020)and gene-family based gene age (Neme and Tautz 2013). Note: the linear models are between median values and ranked ages. The significance p values are shown above age groups (the one-tail Wilcoxon rank sum test with continuity correction).
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The pairwise Ka/Ks ratios from the Ensembl database based on the Maximum Likelihood estimation for “one-to-one” orthologs between human and other species. (A) The pairwise Ka/Ks ratios between human and chimpanzee across seven age groups. (B) The pairwise Ka/Ks ratios between human and bonobo across four age groups. (C) The pairwise Ka/Ks ratios between human and macaque across four age groups. Only genes under purifying selection are visualized (Ka/Ks < 1). Note: significance levels are based on the Wilcoxon rank sum test comparing disease genes and non-disease genes (one tail test). ”*”, ”**”, “***” indicate p < 0.05, < 0.01, < 0.001, respectively.
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The numbers of disease genes affecting single disease system (OP count = 1) and multiple OP systems (two or more OPs). (A) The distribution disease gene counts along the OP numbers. The horizontal axis is based on the numbers of disease systems that a gene defect could impact, and the vertical axis is the number of disease genes. (B) The percentage of disease genes for each disease system (OP1 to OP22). The percentage is based on the number of disease genes for certain OP out of all disease genes. The definition of OP systems is consistent with Fig. 1B.
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The distribution of gene expression breadth (the number of tissues) with RNASEQ data (The Human Protein Atlas, or HPA, normal tissues). (A) The distribution of counts of normal tissues with low levels of gene expression (based on HPA annotation). (B) The distribution of counts of normal tissues with medium levels of gene expression (based on HPA annotation). (C) The distribution of counts of normal tissues with high levels of gene expression (HPA annotation). (D) The distribution percentages of genes expressed in multiple tissues (>3) compared to those expressed in a limited number of tissues (<=3) across different evolutionary ages (only “HIGH” expression genes based on HPA are used).

Supplemental_Table_S1. The gene age information for 19,665 protein-coding genes from autosomes, X, and Y chromosomes.
Supplemental_Table_S2. HPO organ abnormality and genes.
Supplemental_Table_S3. Disease genes states (1 yes; 0 no) and their predictors.
Supplemental_Table_S4. Logistic regression and the model comparison for binary states (“1”, disease genes; “0”, non-disease genes) of all genes.
Supplemental_Table_S5. Burden of deleterious variants between new genes and parental gene.
Supplemental_Table_S6. Ka/Ks for species pairs of human-chimpanzee, human-bonobo, human-macaque.
Supplemental_Table_S7. The disease gene emergence rate, which is the percentage of disease genes for each age per millions of years, r.
Supplemental_Table_S8. Gene expression breadth information based on HPA annotation and the number of affected OP systems for disease genes.
Supplemental_Table_S9. The median values of OP numbers (Figure 2c), phenotype enrichment index (PEI, Figure 2e, see the formula in M&M).
Supplemental_Table_S10. Chromosome Distribution of Disease Genes.
Supplemental_Table_S11. Reproductive system related disease genes.
Supplemental_Table_S12. Male Reproductive system related disease genes and evolutionary strata distribution.
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