GutEuk.py
#!/usr/bin/env python3

Author: Ming Yan, The Ohio State University
import os
import re
import time
import shutil
import utils
import glob
import torch
import argparse
import logging
import subprocess
import multiprocessing
import numpy as np
import pandas as pd
from Bio import SeqIO
from pathlib import Path
from datetime import datetime
from torch.utils.data import DataLoader

description = '''\
GutEuk -- A deep-learning-based two-stage classifier to distinguish contigs/MAGs of prokaryotes, fungi or protozoa origins.

Designed specifically for gut microbiome.

In the first stage, the inputs are classified as either prokaryotes or eukaryotes origin (fungi or protozoa).

In the second stage, the eukaryotic sequences are further classified as either fungi or protozoa.

'''

Usage = '''Usage: GutEuk -i <input_file> -o <output_dir> [options]/ GutEuk -h.
To run GutEuk on a test dataset: GutEuk -i test/test.fa -o ./'''

parser = argparse.ArgumentParser(description = description, usage = Usage)

parser.add_argument(
 "-i",
 "--input",
 metavar="input",
 help='''The path to the contigs file (FASTA or gzipped FASTA).
 If -b/--bin is provided, the input should be the dir containing individual bins (MAGs).''',
 type=str,
 required=True
)

parser.add_argument(
 "-b",
 "--bin",
 help="If provided, treat individual FASTA files as bins instead of contigs",
 required=False,
 action='store_true'
)

parser.add_argument(
 "-s1",
 "--stage1_confidence",
 metavar="stage1 confidence level",
 help='''Confidence level for stage1 classification:
 e.g. -s1 0.6: only give predictions when 60 percents of the input contig/bin fragments are classified as the same category.
 Default: 0.5.
 ''',
 required=False,
 type=float,
 default=0.5
)

parser.add_argument(
 "-s2",
 "--stage2_confidence",
 metavar="stage2 confidence level",
 help='''Confidence level for stage2 classification:
 e.g. -s2 0.6: only give predictions when 60 percents of the input contig/bin fragments are classified as the same category.
 Default: 0.5.
 ''',
 required=False,
 type=float,
 default=0.5
)

parser.add_argument(
 "-o",
 "--output_dir",
 metavar="output",
 help='''A path to output files.
 If -b/--bin is provided, the output is a csv file containing prediction results for the input bins (MAGs)''',
 default=None,
 required=True
)

parser.add_argument(
 "-m",
 "--min_len",
 help=f"""Minimum length of a sequence. Sequences shorter than min_len are discarded.
 Default: 5000 bp.""",
 type=int,
 default=5000
)

parser.add_argument(
 "-t", "--threads", help="Number of threads used. Default: 1.", type=int, default=1
)

parser.add_argument(
 "--to_fasta", help="Write predicted results to fasta files (for contigs only)", action='store_true'
)

args = parser.parse_args()

def main():

 # config variables

 ## setting
 input_fasta = os.path.normpath(args.input)
 fasta_filename = os.path.basename(args.input)
 output_dir = os.path.normpath(args.output_dir)
 min_length = args.min_len
 to_fasta = args.to_fasta
 input_bin = args.bin

 if input_bin:
 tmp_dir = f"{output_dir}/tmp"

 else:
 fasta_filename_trailing_removed = re.search(r"(.*).(fa|fasta|fna)$", fasta_filename).group(1)
 tmp_dir = os.path.normpath(f"{output_dir}/{fasta_filename_trailing_removed}_GutEuk_tmp")

 threads = args.threads
 s1 = args.stage1_confidence
 s2 = args.stage2_confidence

 ## mise
 start_time = str(datetime.now()).split('.')[0]
 time_spent_start = time.time()

 ## results related
 ### in case of input length greater than 5000, record the origins and results of each 5000 bp fragment
 ### the majority rule is used for the final assignment
 seq_origin = {}
 seq_assignment = {}

 if os.path.exists(output_dir):
 pass
 else:
 os.mkdir(output_dir)

 # create a log file, overwrite if existed
 if input_bin:
 logfile = f"{fasta_filename}_GutEuk_log.txt"
 else:
 logfile = f"{output_dir}/{fasta_filename_trailing_removed}_GutEuk_log.txt"
 if os.path.exists(logfile):
 os.remove(logfile)
 logging.basicConfig(filename=os.path.join(logfile), level=logging.INFO, format='%(message)s')
 logging.info(f"{parser.description}")

 # create tmp dir
 try:
 os.mkdir(f'{tmp_dir}')
 except FileExistsError:
 pass

 # preprocessing
 def preprocessing(input_fasta, tmp_dir, threads, min_length):
 ## split fasta into multiple
 utils.split_fasta_parallel(input_fasta, tmp_dir, threads)

 ## fasta to int-encoded
 utils.fasta_int_encoded_parellel(tmp_dir, threads, min_length)

 ## convert int-encoded csv to kmerfre array and onehot-encoded array
 ## the resultant arrays could be used for prediction
 utils.save_npz_parellel(tmp_dir, threads)

 def preprocessing_bin_dir(bin_fasta, tmp_dir, min_length, threads):
 utils.preprocessing_bin_parellel(bin_fasta, tmp_dir, min_length, threads)

 # prediction for inidividual fragment
 def prediction(tmp_dir):
 indexs = [f.split("forward_")[1].split(".npz")[0] for f in glob.glob(f"{tmp_dir}/forward*.npz")]
 for index in indexs:
 utils.predict(tmp_dir, index)

 # organize fragment prediction results and generate final output
 def generate_final_output(tmp_dir):
 seqorigin = glob.glob(f"{tmp_dir}/seqorigin*.csv")
 stage1_res = glob.glob(f"{tmp_dir}/input_fasta_*_stage1_out.csv")
 stage2_res = glob.glob(f"{tmp_dir}/input_fasta_*_stage2_out.csv")
 if len(seqorigin) == 1:
 seqorigin_df = pd.read_csv(seqorigin[0])
 stage1_df = pd.read_csv(stage1_res[0])
 stage2_df = pd.read_csv(stage2_res[0])

 else:
 seqorigin_df = pd.concat([pd.read_csv(f) for f in seqorigin])
 stage1_df = pd.concat([pd.read_csv(f) for f in stage1_res])
 stage2_df = pd.concat([pd.read_csv(f) for f in stage2_res])

 stage1_res = pd.merge(seqorigin_df, stage1_df, on = "seq")
 stage2_res = pd.merge(seqorigin_df, stage2_df, on = "seq")

 stage1_final_prediction = {}
 stage1_confidence_dic = {}
 for f in set(stage1_res.origin):
 df = stage1_res.query('origin == @f')
 # if the input sequence unfragmented (seq length < 10,000 bp)
 if len(df) == 1:
 prediction = list(df.predict)[0]
 stage1_final_prediction[f] = prediction
 stage1_confidence_dic[f] = 1
 # if the input sequence fragmented, the final prediction for the original sequence determined based on the majority rule
 else:
 prediction = list(df.predict)
 prediction_pro = prediction.count("prokaryotes")
 prediction_euk = prediction.count("eukaryotes")
 stage1_confidence = max(prediction_euk,prediction_pro) / (prediction_pro + prediction_euk)
 stage1_confidence_dic[f] = stage1_confidence
 if stage1_confidence > s1:
 if prediction_pro > prediction_euk:
 stage1_final_prediction[f] = "prokaryotes"
 else:
 stage1_final_prediction[f] = "eukaryotes"
 else:
 stage1_final_prediction[f] = "undetermined"

 stage2_final_prediction = {}
 stage2_confidence_dic = {}
 for f in set(stage2_res.origin):
 df = stage2_res.query('origin == @f')
 if len(df) == 1:
 prediction = list(df.predict)[0]
 stage2_final_prediction[f] = prediction
 stage2_confidence_dic[f] = 1
 else:
 prediction = list(df.predict)
 prediction_fungi = prediction.count("fungi")
 prediction_protozoa = prediction.count("protozoa")
 stage2_confidence = max(prediction_protozoa,prediction_fungi) / (prediction_protozoa + prediction_fungi)
 stage2_confidence_dic[f] = stage2_confidence
 if stage2_confidence > s2:
 if prediction_fungi > prediction_protozoa:
 stage2_final_prediction[f] = "fungi"
 else:
 stage2_final_prediction[f] = "protozoa"
 else:
 stage2_final_prediction[f] = "undetermined"

 stage1_final_prediction_df = pd.DataFrame.from_dict(stage1_final_prediction, orient = "index").rename(columns = {0:"stage1_prediction"})
 stage2_final_prediction_df = pd.DataFrame.from_dict(stage2_final_prediction, orient = "index").rename(columns = {0:"stage2_prediction"})
 stage1_confidence_df = pd.DataFrame.from_dict(stage1_confidence_dic, orient = "index").rename(columns = {0:"stage1_confidence"})
 stage2_confidence_df = pd.DataFrame.from_dict(stage2_confidence_dic, orient = "index").rename(columns = {0:"stage2_confidence"})
 final_output_tmp1 = pd.merge(stage1_final_prediction_df, stage2_final_prediction_df, left_index = True, right_index = True, how="left")
 final_output_tmp2 = pd.merge(final_output_tmp1, stage1_confidence_df, left_index = True, right_index = True, how="left")
 final_output = pd.merge(final_output_tmp2, stage2_confidence_df, left_index = True, right_index = True, how="left")
 final_output.reset_index(names = "sequence_id", inplace = True)
 final_output.stage2_prediction = final_output.stage2_prediction.fillna("prokaryotes")
 final_output.loc[list(final_output.query("stage1_prediction == 'prokaryotes'").index), "stage2_prediction"] = "prokaryotes"
 final_output.loc[list(final_output.query("stage1_prediction == 'prokaryotes'").index), "stage2_confidence"] = 0
 final_output.loc[list(final_output.query("stage1_prediction == 'undetermined'").index), "stage2_prediction"] = "undetermined"
 final_output.loc[list(final_output.query("stage1_prediction == 'undetermined'").index), "stage2_confidence"] = 0
 return final_output

 def generate_final_output_for_bins(tmp_dir):
 bin_list = []
 stage1_predict = []
 stage2_predict = []
 stage1_confidence = []
 stage2_confidence = []
 for _ in glob.glob(f"{tmp_dir}/*"):
 Bin = _.split("/")[-1]
 bin_list.append(Bin)
 stage1_df_list = []
 stage2_df_list = []

 for stage1_out in glob.glob(f"{tmp_dir}/{Bin}/*stage1*.csv"):
 stage1_df_list.append(pd.read_csv(stage1_out))
 stage1_df = pd.concat(stage1_df_list)
 if len(stage1_df) == 0:
 logging.info(f"{Bin} does not have any contig that is longer than the minimal contig length")
 stage1_predict.append("NA")
 stage1_confidence.append("NA")
 else:
 eukaryotes_percent = len(stage1_df.query('predict == "eukaryotes"'))/len(stage1_df)
 prokaryotes_percent = 1 - eukaryotes_percent
 if eukaryotes_percent > prokaryotes_percent:
 if eukaryotes_percent > s1:
 stage1_predict.append("eukaryotes")
 stage1_confidence.append(eukaryotes_percent)
 else:
 stage1_predict.append("undetermined")
 stage1_confidence.append("NA")

 elif eukaryotes_percent == prokaryotes_percent:
 stage1_predict.append("undetermined")
 stage1_confidence.append("NA")

 else:
 if prokaryotes_percent > s1:
 stage1_predict.append("prokaryotes")
 stage1_confidence.append(prokaryotes_percent)
 else:
 stage1_predict.append("undetermined")
 stage1_confidence.append("NA")

 if stage1_predict[-1] != "eukaryotes":
 stage2_predict.append("NA")
 stage2_confidence.append("NA")

 else:
 for stage2_out in glob.glob(f"{tmp_dir}/{Bin}/*stage2*.csv"):
 stage2_df_list.append(pd.read_csv(stage2_out))
 stage2_df = pd.concat(stage2_df_list)
 if len(stage2_df) == 0:
 stage2_predict.append("NA")
 stage2_confidence.append("NA")

 else:
 fungi_percent = len(stage2_df.query('predict == "fungi"'))/len(stage1_df)
 protozoa_percent = 1 - fungi_percent

 if fungi_percent > protozoa_percent:
 if fungi_percent > s2:
 stage2_predict.append("fungi")
 stage2_confidence.append(fungi_percent)
 else:
 stage2_predict.append("undetermined")
 stage2_confidence.append("NA")

 elif fungi_percent == protozoa_percent:
 stage2_predict.append("undetermined")
 stage2_confidence.append("NA")

 else:
 if protozoa_percent > s2:
 stage2_predict.append("protozoa")
 stage2_confidence.append(protozoa_percent)
 else:
 stage2_predict.append("undetermined")
 stage2_confidence.append("NA")

 bin_predict_out = pd.DataFrame.from_dict({"bin":bin_list, "stage1_prediction":stage1_predict, "stage1_confidence":stage1_confidence, "stage2_prediction":stage2_predict, "stage2_confidence":stage2_confidence })
 return bin_predict_out

 def write_to_fasta(final_output):
 prokaryotes = list(final_output.query('stage1_prediction == "prokaryotes"').sequence_id)
 eukaryotes = list(final_output.query('stage1_prediction == "eukaryotes"').sequence_id)
 protozoa = list(final_output.query('stage2_prediction == "protozoa"').sequence_id)
 fungi = list(final_output.query('stage2_prediction == "fungi"').sequence_id)

 with open(f"{output_dir}/{fasta_filename_trailing_removed}_GutEuk_prokaryotes.fasta", "w") as prokaryotes_out:
 with open(f"{output_dir}/{fasta_filename_trailing_removed}_GutEuk_eukaryotes.fasta", "w") as eukaryotes_out:
 with open(f"{output_dir}/{fasta_filename_trailing_removed}_GutEuk_protozoa.fasta", "w") as protozoa_out:
 with open(f"{output_dir}/{fasta_filename_trailing_removed}_GutEuk_fungi.fasta", "w") as fungi_out:
 records = SeqIO.parse(f"{input_fasta}", "fasta")
 for record in records:
 if record.id in prokaryotes:
 SeqIO.write(record, prokaryotes_out, "fasta")
 elif record.id in eukaryotes:
 SeqIO.write(record, eukaryotes_out, "fasta")
 if record.id in protozoa:
 SeqIO.write(record, protozoa_out, "fasta")
 elif record.id in fungi:
 SeqIO.write(record, fungi_out, "fasta")

 preprocessing_start = time.time()
 if input_bin:
 # preprocessing/formating
 Bins = glob.glob(f"{input_fasta}/*.fa") + glob.glob(f"{input_fasta}/*.fasta") + glob.glob(f"{input_fasta}/*.fna")
 for Bin in Bins:
 bin_basename = re.search(r"(.*).(fa|fasta|fna)$", Bin.split("/")[-1]).group(1)
 Bin = re.search(r"(.*).(fa|fasta|fna)$", Bin).group(1) + ".fasta"
 try:
 os.mkdir(f"{tmp_dir}/{bin_basename}")
 except FileExistsError:
 pass

 preprocessing_bin_dir(Bins, tmp_dir, min_length, threads)
 preprocessing_end = time.time()
 logging.info(f"Preprocessing finished in {preprocessing_end - preprocessing_start:.2f} secs")

 # prediction
 prediction_start = time.time()
 for bin_dir in glob.glob(f"{tmp_dir}/*"):
 utils.prediction_bin(bin_dir)
 bin_level_predict_out = generate_final_output_for_bins(tmp_dir)
 bin_level_predict_out.to_csv(f"{output_dir}/{fasta_filename}_GutEuk_output.csv", index = None)

 else:
 # unzip {input_fasta} if zipped
 if input_fasta.endswith(".gz"):
 copy = f"cp {input_fasta} {tmp_dir}"
 gunzip = f"gunzip {tmp_dir}/{fasta_filename}"
 subprocess.run(copy, shell=True, check=True, text=True)
 subprocess.run(gunzip, shell=True, check=True, text=True)
 fasta_filename = fasta_filename.strip(".gz")
 input_fasta = os.path.join(tmp_dir, fasta_filename)
 else:
 copy = f"cp {input_fasta} {tmp_dir}"

 seqlength = {}
 records = SeqIO.parse(input_fasta, "fasta")
 for record in records:
 seqid = str(record.id)
 seqlen = len(record.seq)
 seqlength[seqid] = seqlen

 seqlength_df = pd.DataFrame.from_dict(seqlength, orient = "index").reset_index(names = "sequence_id").rename(columns = {0:"contig_length"})

 preprocessing(input_fasta, tmp_dir, threads, min_length)
 preprocessing_end = time.time()
 logging.info(f"Preprocessing finished in {preprocessing_end - preprocessing_start:.2f} secs")

 prediction_start = time.time()
 prediction(tmp_dir)
 final_output_tmp = generate_final_output(tmp_dir)
 final_output_tmp['sequence_id'] = final_output_tmp['sequence_id'].astype(str)
 seqlength_df['sequence_id'] = seqlength_df['sequence_id'].astype(str)
 final_output = pd.merge(final_output_tmp, seqlength_df, on = "sequence_id")
 final_output.to_csv(f"{output_dir}/{fasta_filename_trailing_removed}_GutEuk_output.csv", index = None)
 if to_fasta:
 write_to_fasta(final_output)

 prediction_end = time.time()
 logging.info(f"Prediction finished in {prediction_end - prediction_start:.2f} secs")

 # clearn up, remove tmp dir
 try:
 shutil.rmtree(f"{tmp_dir}")
 except Exception as e:
 print(f"Unexpected error: {e}")

 end_time = str(datetime.now()).split('.')[0]
 time_spent_end = time.time()

 logging.info(f"Start: {start_time}")
 logging.info(f"End: {end_time}")
 logging.info(f"Time spent: {time_spent_end - time_spent_start:.2f}")

if __name__ == "__main__":
 main()

from Bio import SeqIO
from Bio.Seq import Seq

def remove_telomeres(input_fasta, output_fasta, telomere_seq="TTAGGG"):
 """
 Removes telomere sequences from the start and end of sequences in a FASTA file.

 Parameters:
 input_fasta (str): Path to the input FASTA file.
 output_fasta (str): Path to the output FASTA file with telomeres removed.
 telomere_seq (str): Telomere repeat sequence (default: "TTAGGG").
 """
 telomere_len = len(telomere_seq)
 reverse_complement = str(Seq(telomere_seq).reverse_complement())

 with open(output_fasta, "w") as output_handle:
 for record in SeqIO.parse(input_fasta, "fasta"):
 seq = str(record.seq)

 # Remove telomeres from the start
 while seq.startswith(telomere_seq) or seq.startswith(reverse_complement):
 seq = seq[telomere_len:]

 # Remove telomeres from the end
 while seq.endswith(telomere_seq) or seq.endswith(reverse_complement):
 seq = seq[:-telomere_len]

 # Update the sequence and write to the output
 record.seq = Seq(seq)
 SeqIO.write(record, output_handle, "fasta")

 print(f"Telomeres removed. Processed sequences saved to {output_fasta}.")

Example usage
#remove_telomeres("input.fasta", "output_no_telomeres.fasta", telomere_seq="TTAGGG")
