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Note 1. DigNet is robust to the noise of scRNA-seq data and the sparsity of GRN
DigNet’s robustness to scRNA-seq noise and sparse network structures can be explained by the following two points:
1) Noise Reduction in scRNA-seq Data: DigNet achieves noise reduction in scRNA-seq data through the iMetacell and Graph Transformer components. The iMetacell approach involves selecting representative cells and using KNN to identify surrounding neighbors, then averaging the expression levels of these cells and their neighbors. This method reduces random errors, smooths data fluctuations, enhances signal consistency, and improves data robustness. It effectively lowers the impact of technical noise and outliers in individual cells, providing more accurate and reliable expression data while removing data noise. The Graph Transformer uses a multi-head self-attention mechanism to focus on important feature information and ignore noisy data. Additionally, other layers in deep learning, such as normalization layers and residual connection layers, also contribute to noise reduction.
2) Discrete Diffusion Model: DigNet models network structures using the discrete diffusion model, which emphasizes signal transmission when handling network noise. This allows DigNet to capture and propagate local network structure information. The diffusion model’s capability to learn the prior distribution of GRN structures enables it to infer node degree distributions and network topological features, even with sparse network connections. Furthermore, the diffusion model involves multiple rounds of random link modification and recovery, enabling it to capture subtle differences in network structures and reveal potential regulatory links.
[bookmark: _Hlk179874879][bookmark: _Hlk179879339]Note 2. DigNet fills the gap in generating GRN
Traditional machine learning models encompass a wide range of techniques, including correlation-based models, information-theoretic models, regression models, tree models, dynamic models (such as Bayesian networks and differential equation models), and probabilistic graphical models. These models primarily focus on modeling "one-to-one" or "one-to-many" regulatory relationships between genes by calculating regulatory scores between gene pairs to predict GRNs. This can be summarized by the general equation:
	, 	(1)
[bookmark: _Hlk182907029]where represents the expression level of the target gene A,  is a function or model describing the regulatory relationship, indicating the regulatory influence of gene  on gene A, and  is the set of candidate regulatory genes. However, these methods often overlook the impact of the overall gene network structure on regulatory relationships and struggle to effectively learn graph information from the network (as illustrated in Supplementary Fig. S1A). Furthermore, the "one-to-many" modeling approach has limited capability in analyzing complex network structures, making it challenging to capture global regulatory patterns.
In the realm of deep learning models, existing methods can be categorized into unsupervised vector representation models (such as DeepSEM (Shu et al. 2021)) and supervised learning models (like GENELink (Chen and Liu 2022)). Unsupervised vector representation models learn embeddings of gene expressions and use linear weights or other computations to deduce regulatory relationships. Conversely, supervised learning models rely on known partial regulatory information to infer the remaining regulatory relationships (as depicted in Supplementary Fig. S1B). While these methods enhance GRN prediction performance to a certain extent, they either lack comprehensive network modeling or necessitate additional prior knowledge.
In contrast, DigNet, as a generative deep learning method rooted in diffusion models, exhibits remarkable innovation and distinct advantages. Instead of centering the reconstruction task on the latent representation of gene expressions, DigNet directly models and learns the structural information of GRNs. Specifically:
1) Global Structure Modeling Capability: DigNet leverages Markov properties, Bayesian rules, and a unique discrete network generation pattern to precisely match and generate clearer GRNs based on the network structure and gene expression profiles from previous time-steps. This ensures the thorough integration of global network structure information and gene expression profiles.
2) Deep Application of Graph Structure Information: DigNet captures network information through graph structures independently of prior regulatory information. By optimizing the network structure layer by layer, DigNet, as a pre-trained unsupervised model, can effectively learn from random network structures, thereby enhancing the model's generalization capability and accuracy.
3) Comprehensive Modeling of Regulatory Relationships: Beyond defining regulatory relationships through vector calculations, DigNet considers the impact of network structure, significantly boosting prediction accuracy and reliability.
In summary, DigNet bridge the gap in generating GRN structures centered on generative models. It complements existing algorithms that focus on “one-to-many” and “many-to-many” regulatory relationship modeling strategies, demonstrating significant innovation and necessity. Extensive benchmark test results further validate that DigNet outperforms existing methods in most cases, particularly in single-cell environments, showcasing its extensive potential and practical value in real-world applications.
Note 3. Advantages of DigNet based on diffusion model
Diffusion models have been successfully applied in various fields, such as WaveGrad, Stable Diffusion, and DALL-E2. In the study of gene regulatory networks, diffusion-based models have unique advantages. The following lists some reasons.
1) Rationale for Using Diffusion Models: We selected diffusion models primarily due to their excellent performance in generative models, especially in handling complex data structures and generating high-quality data. Diffusion models effectively capture the prior distribution of GRN and can generate corresponding network structures based on gene expression data. The DigNet model is developed based on the original DDPM model by Ho et al. (Ho et al. 2020) and the D3PM model by Austin et al. (Austin et al. 2021). Each step of the diffusion process needs to satisfy the Markov property. Using Markov chains, the model efficiently links the current state to the previous state while disregarding influences from other states. By combining Markov chains and Bayesian inference, the model ensures statistical stability and control during the denoising process. This approach not only enhances the model’s understanding of the data but also improves the accuracy and reliability of the generated data, ensuring high-quality results.
2) Multi-step focus process: Given the complex regulatory interactions between genes, generating a network that matches gene expression profiles in a single step is extremely challenging. When generating complex gene networks, the diffusion model decomposes the generation process into multiple time steps, progressively refining and enhancing network connections. This significantly reduces the reliance on the accuracy of single time-step predictions. Each time step transitions to the next state via a Markov chain, where each step only needs to complete a small portion of the link inference task, thus simplifying and breaking down the overall task. This step-by-step logic not only improves the operational precision of the model but also enhances the quality and utility of the generated networks, providing an alternative method for generating GRN.
3) Network Information Propagation: When processing network structure noise, diffusion models emphasize signal propagation, enabling them to capture and transmit local network structure information. Additionally, diffusion models can integrate local information into the global network architecture, helping to reveal both direct and indirect relationships among genes. This capability is crucial for constructing accurate and comprehensive gene regulatory networks.
4) Effective Noise Handling: DigNet addresses noise through two procedures. The first, guided by the diffusion model, is network structure denoising (i.e., network structure recovery). The second involves a graph transformer model for denoising the gene expression profiles. Most deep-learning-based algorithms, such as DeepSEM and DeepMAPS, focus on removing technical noise and outliers from gene expression profiles or optimizing node features through graph neural networks. In contrast, the diffusion model focuses on modeling network structure, removing false-positive regulatory relationships and recovering true regulatory relationships. Compared to some specific denoising methods, diffusion models offer an alternative and more systematic approach to handling noise.
5) Scalability and Interpretability: Diffusion models are highly scalable. By incorporating more techniques and information, DigNet can be intricately extended to handle multi-omics data or other network structure generation tasks in our future research. Furthermore, in other scenarios, diffusion models can replace the deep learning process in the reverse phase with more specialized network architectures. The strong learning capabilities of deep learning combined with the specialized statistical background of diffusion models complement each other, resulting in network inference that are more biologically meaningful and interpretable.
6) Controllability and predictability of the generation process: The reversible generation process of the diffusion model ensures that each step can be precisely calculated and controlled, greatly enhancing the model’s predictability and controllability. Additionally, the model can incorporate external information, such as gene expression profiles, to further guide the generation process, ensuring that the generated data is not only of high quality but also closely related to actual biological information.
Overall, using diffusion models for generating gene regulatory networks offers effective approaches in handling data noise, capturing complex network structures, scalability, and biological interpretability. Therefore, we adopted the diffusion model-based DigNet as our proposed GRN generation tool.
DigNet was initially designed to pre-train with existing GRN environments and generated target GRN in similar cellular contexts. Although diffusion models offer many advantages, their training process requires special attention, particularly in constructing a labeled training dataset. Since there is no gold standard network for real data, we constructed a custom cell-specific GRN that inevitably includes some false positives. This is a common challenge in machine learning models for inferring GRN from data. To address this issue, we designed an ensemble framework for DigNet to generate a probability value (confidence score) for each regulatory link, allowing users to select reliable network structures based on these probabilities, as demonstrated in our case studies. With sufficient training data, DigNet could potentially achieve even better performance. Although the Markov property may reduce computational efficiency, the performance improvements make the model competitive. We are aware of existing research aimed at improving the computational efficiency of diffusion models, such as DDIM (Song et al. 2020) and Consistency Models (Song et al. 2023).
[bookmark: _Hlk179876613][bookmark: _Hlk179879379]Note 4. Modeling GRN from a global perspective
By “Global level reconstruction of GRN”, we refer to the context of complex GRN, when considering the regulatory influence of one gene on others, it is crucial to also consider the influence of other genes (expression levels or regulatory relationships) on that gene. This forms an interconnected and interdependent network system.
As illustrated in Supplementary Fig. S2A-D, we categorized the inference of regulatory relationships into four scenarios: (1) considering only the expression levels of the regulatory gene and the target gene (Supplementary Fig. S2A), with some algorithms also modeling the expression levels of other genes; (2) including the neighboring genes of either the regulatory gene and/or the target gene to enhance the accuracy of network inference (Supplementary Fig. S2B); (3) accounting for the direct impact of both shared and independent neighbors on the regulatory and target genes (Supplementary Fig. S2C); (4) this process directly generates a network by globally considering all gene regulations simultaneously, rather than inferring individual pair links (Supplementary Fig. S2D).
Most existing methods can simulate scenarios (1) to (3) as shown in Supplementary Fig. S2A-C, relying predominantly on the expression levels of genes or their neighbors. Although these methods can infer regulatory relationships through simplified local structures, their capabilities are limited when dealing with complex, multi-tiered, system-level GRN. Our DigNet algorithm employs a multi-step, progressive optimization process that considers the global interactions within the entire regulatory network, thereby enabling a more comprehensive simulation of the complex regulatory relationships among all genes.
GRN are inherently highly complex, global systems characterized by long-distance regulatory interactions, as evidenced by numerous studies (Levine and Davidson 2005; Davidson and Erwin 2006; Barabási et al. 2011; Thompson et al. 2015). The rationale behind considering all nodes within the network rather than isolating individual or common neighbors, is grounded in the following considerations:
1) Comprehensive Gene Expression Analysis: Recent research underscores the interdependent of gene expressions, rendering it impractical to delineate independent expressions. Irrespective of whether regression models or advanced frameworks like DigNet are employed, incorporating the gene expression data of all nodes is imperative.
2) Holistic Network Structure Consideration: While regulatory relationships involving immediate or shared neighbors may hold precedence in specific contexts, other regulatory factors beyond first-order neighbors can exert indirect and direct influences on the target gene. In unsupervised learning paradigms, the distinction between neighboring and non-neighboring nodes heavily learns on model assumptions, posing significant risks of error unless the model possesses some regulatory insights.
DigNet tackles this challenge through a sophisticated weight learning strategy that dynamically adjusts and prioritizes nodes or edges pertinent to the task. Specifically, the Transformer encoder’s multi-head self-attention mechanism facilitates the learning of neighbor information for nodes. Furthermore, the diffusion model's unique progressive denoising approach enables the network structure at each time step to seamlessly integrate global information. Additionally, the multi-head self-attention mechanism embedded within the multi-layer Transformer architecture further amplifies the capability to capture global network influences. Consequently, DigNet not only acknowledges the potential influence of neighboring nodes but also preserves the integrity of the global network.
The core of DigNet’s ability to generate global network architecture lies in its graph structure diffusion process and multi-time-step progressive optimization strategy. The diffusion of graph structures provides a platform for generating comprehensive networks globally. The multi-time-step progressive optimization allows the model to holistically consider previously inferred network structures. After multiple time-step optimizations, DigNet can generate high-quality, integrated gene regulatory networks.
The importance of reconstructing global nodes from a modeling perspective has been delineated above. Given the absence of true labels in unsupervised learning, directly assessing the impact of considering only (partial) neighbors is infeasible. Therefore, beyond the benchmark experiments detailed in the manuscript, we devised supplementary control experiments to validate the superiority of generating global networks over traditional algorithms from a network topology perspective. Using SCENIC, a high-performing tool, as an illustrative example, SCENIC computes regulatory coefficients between each target gene and all regulatory factors using random forests and subsequently assembles them into a network. These experiments utilized T cell data from samples S33-S60 referenced in the manuscript, encompassing 27 genes of interest.
[bookmark: _Hlk182907570]As illustrated in Supplementary Fig. S2E, SCENIC predictions for each edge incorporate noise and false positives (as depicted in Supplementary Fig. S2F). We selected the top  edges with the highest importance scores from SCENIC’s output (where  is equivalent to the number of edges predicted by DigNet) to construct a novel network, shown in Supplementary Fig. S2G. The visualization results suggest that the network predicted by DigNet is clearer and exhibits superior connectivity. Additionally, both networks were fitted to a power-law distribution, yielding a fitted parameter  of 3.13 for DigNet and 7.02 for SCENIC, which indicates that DigNet’s network aligns more closely with scale-free network characteristics.
Furthermore, we assessed the generated networks based on metrics including the number of connected nodes, Eigenvector Centrality (EC), Betweenness Centrality (BC), and Closeness Centrality (CC), as shown in Supplementary Fig. S2H-K. The results underscore that DigNet-generated networks surpass SCENIC in connectivity, core node identification, network robustness, and information transmission efficiency.
Therefore, integrating benchmark experiments and network topology analysis, the global network generation approach proposed by DigNet demonstrates superior and more reliable network reconstruction capabilities.
[bookmark: _Hlk179874772][bookmark: _Hlk179879369]Note 5. Details of the baseline GRN inference algorithms
DigNet is specifically designed for generating gene regulatory network directly from single-cell transcriptomic data, thus applying to different contexts and scenarios. In many cases, single-omics data, such as transcriptomic data, are relatively more accessible and cost-effective than multi-omics data. Additionally, RNA sequencing technology is also relatively mature. Therefore, single-omics data still hold advantages for specific research applications. Taking into account various factors such as modeling types, model performance, and the types of applicable omics data, we have ultimately selected 11 state-of-the-art tools and 2 baseline methods for performance comparison (Supplementary Table S7). 
Given the abundance of excellent inference tools available, it is challenging to compare against all of them. Therefore, we have selected the 13 most prominent and widely used algorithms for our comparison study. These include, but not limited to, ARACNE (Margolin et al. 2006), context likelihood of relatedness (CLR) (Faith et al. 2007), DeepSEM (Shu et al. 2021), GENIE3 (Huynh-Thu et al. 2010), GRISLI (Aubin-Frankowski and Vert 2020), Lag-based Expression Association for Pseudotime-series (LEAP) (Specht and Li 2017), PIDC (Chan et al. 2017), SCENIC (Aibar et al. 2017), SCODE (Matsumoto et al. 2017), SINCERITIES (Papili Gao et al. 2018), and Tigress (Haury et al. 2012), as well as methods grounded in the Pearson Correlation Coefficient (PCC) and Mutual Information (MI). Notably, several of these algorithms necessitate cellular temporal information as input, which we estimated using Monocle v3 (Cao et al. 2019) to ensure a fair and comprehensive comparison. Below are the experimental details pertaining to the aforementioned algorithms:
1) ARACNE: It formulates GRN by assessing information entropy between genes, effectively eliminating false-positive regulatory relationships. By defining gene regulatory interactions as statistical dependencies (correlations) within gene expression profiles, ARACNE filters out non-significant network structures based on MI and statistical consistency analysis.
2) CLR: Sharing similar principles with ARACNE, CLR expands upon correlation networks to discern transcriptional regulations between genes. By incorporating an adaptive background correction to minimize spurious correlations and indirect effects, CLR computes MI between each gene pair within their respective network contexts. ARACNE and CLR are implemented through the R package ‘minet’, maintaining default parameters settings.
3) DeepSEM: As a versatile tool for single-cell data analysis, DeepSEM accomplishes its tasks by scrutinizing differential modules within a deep neural network architecture. For GRN reconstruction, it inputs gene expression profiles into a variational autoencoder, deriving regulatory relationships between TF genes and their target genes from the output layer. We implemented the DeepSEM algorithm following the tutorial available at https://github.com/HantaoShu/DeepSEM.
4) GRISLI: The method infers cell velocity vector fields from scRNA-seq data, modeling the dynamics of cellular trajectories through ordinary differential equations (ODEs). By estimating cell velocities, GRISLI tranforms the ODE optimization problem into a straightforward convex regression task, enhancing computational efficiency. GRISLI is executed in MATLAB, accessible from https://github.com/PCAubin/GRISLI, utilizing recommended parameters for optimal performance.
5) LEAP: Commencing with pseudo-time-ordered datasets, LEAP computes gene regulatory probabilities leveraging Pearson correlation coefficients across time windows of varying lag intervals. The resulting asymmetric correlation network allows LEAP to generate directed networks. The implementation utilizes the R package ‘LEAP’ with all parameters set to their default values.
6) PIDC: Leveraging MI and partial information decomposition, PIDC dissects gene regulatory information across three or more variables, differentiating between redundant and synergistic interactions. It pinpoints critical regulatory relationships for each gene by applying a threshold. In our numerical experiments, we executed the inference task with the Julia package of ‘NetworkInference’ provided by the original authors.
7) GENIE3: Originally tailored for large-scale transcriptomic data, GENIE3 reframes the GRN inference problem as a feature selection task, identifying groups of genes that influence the expression levels of target genes. Employing random forests, GENIE3 operates independently for each gene and achieved remarkable performance in the DREAM4 challenges. In our experiments, we implemented GENIE3 using the ‘runGenie3’ function within the R package ‘SCENIC’, maintaining default parameter settings.
8) SCENIC: SCENIC incorporates two algorithms, GENIE3 and GRNBoost2. For GRN inference, we focus on the performance of GRNBoost2, which serves as a swift alternative to GENIE3. GRNBoost2’s early stopping strategy significantly enhances its network inference capabilities. The GRNBoost2 algorithm is implemented through the Python package ‘arboreto’.
9) SCODE: SCODE employs an ODE model to mimic the temporal dynamics of gene expression under the regulation of GRN. Each equation captures the evolution of a gene, with coefficients representing regulatory influences from other genes. Specifically, SCODE was implemented using the R source code available at https://github.com/hmatsu1226/SCODE.
10) SINCERITIES: Leveraging temporal scRNA-seq data, SINCERITIES reconstructs directed gene regulatory relationships by analyzing the temporal shifts in gene expression distributions. It initially computes the Kolmogorov-Smirnov distance between marginal gene expressions across consecutive time points, integrating Granger causality to assess regulatory interactions between TF and target genes. The R package can be accessed at https://github.com/CABSEL/SINCERITIES.
11) Tigress: Employing Lasso regression, Tigress models gene expression as a function of transcription factors governed by constraint coefficients. Through sparse variable selection, Tigress precisely identifies the TFs that regulate specific target genes. By means of multiple resampling, Tigress selects TF-gene regulatory pairs with high occurrence rates as the definitive regulatory relationships. Tigress excelled in the DREAM5 challenges, and we obtained its source code from https://github.com/jpvert/tigress, configuring the number of LARS steps to 5.
12) The implementation of MI and PCC utilizes the Python packages ‘sklearn’ and ‘numpy’ respectively.
Despite the availability of numerous unsupervised GRN inference tools, the development of DigNet is driven by several critical factors:
1) Untapped Potential of Generative Models: Pre-trained and generative models have demonstrated significant potential in GRN reconstruction and can be adapted for broader applications.
2) Modeling Complex Global Network Structures: The intricate multi-faceted nature of GRNs necessitates models that consider not only gene pair regulatory relationships but also the feedback and response of the entire network structure to the cellular environment. Currently, few unsupervised algorithms can generate complete network structures directly.
3) Accuracy and Robustness Requirements: Existing models lack the accuracy and robustness necessary for complex biological research. As such, they are inadequate for supporting these needs fully.
Given these challenges, DigNet is designed to address them effectively. Compared with these algorithms, DigNet has the following advantages: 1). Previous generative models for GRN mostly generated the prior distribution of gene expression profiles and then employed various methods to obtain the corresponding regulatory networks. However, DigNet models the graph structure, learning the prior distribution of GRN, thus generating gene regulatory networks from scRNA-seq data directly. 2). Benefiting from the multi-time-step task decomposition strategy in DigNet, the diffusion process constructs a global and coordinated network structure among genes, considering the influence of directly and indirectly related nodes (edges) when defining regulatory scores, forming a stable network architecture.
While it does have limitations, such as longer runtime and some randomness in network generation, few models can simultaneously meet these requirements.
Note 6. Compilation of a T cell-specific gene set
We have curated a comprehensive gene set of interest for T cells by integrating pivotal gene sets derived from three distinct methodologies:
1) Differential expression gene (DEG) sets were sourced from human breast cancer samples (E-MTAB-8107) and their normal counterparts (GSE195665). From these analyses, we extracted the top 150 genes exhibiting the most significant differential expression (see Supplementary Table S8).
2) We further analyzed DEG sets comparing normal and tumor tissues within human breast immune cell samples sourced from GSE114725. Similarly, the top 150 genes with the most significant differential expression were selected and included (refer to Supplementary Table S9).
3) [bookmark: _Hlk182908098]To enrich our gene set, we mined the KEGG database for the breast cancer pathway (ID: hsa05224) and the T cell receptor signaling pathway (ID: hsa04660). We then filtered out genes that were consistently under-expressed in both pathways across the E-MTAB-8107, GSE195665, and GSE114725 datasets. The expression profile of these genes in E-MTAB-8107 is illustrated in Supplementary Fig. S3A and S3B (with details in Supplementary Table S10).
Collectively, we obtained a gene set encompassing 346 genes of particular interest for T cells in the context of breast cancer (please refer to Supplementary Table S11 for the complete list).
Note 7. Deconvolution of TCGA Breast Cancer RNA-seq Data
The RNA-seq data (Level 3) for breast cancer from TCGA is retrieved from the publicly accessible UCSC Xena database (https://xena.ucsc.edu), accompanied by the corresponding clinical information. This dataset encompasses 1,218 samples, segmented into 1,097 primary tumor tissues, 7 metastatic tumor tissues, and 114 normal breast tissues sourced from tumor-adjacent regions. Each sample contains sequencing results for 20,501 genes, which have undergone log-transformed () for normalization. Recognizing the limitations of bulk sequencing in isolating T cell-specific gene expression profiles, we applied the ARIC method for deconvolution (Zhang et al. 2022). 
As a precursor, we identified highly variable genes specific to each cell type, utilizing breast cancer single-cell RNA-seq (scRNA-seq) data as decomposition anchors (see Supplementary Table S12). Subsequently, we fed the gene list and comprehensive gene expression data into the ARIC algorithm to decipher the expression patterns of diverse cell types within each sample. The reference profiles for each cell type were sourced from CIBERSORT (Newman et al. 2019). 
To derive single-cell gene expression profiles, we multiplied the estimated T cell proportions for each sample by their respective gene expression values. These single-cell-like data were subsequently leveraged for downstream classification and survival analysis.
Note 8. Multivariable Cox survival analysis
Prior to performing survival analysis on the deconvolved results derived from TCGA bulk sequencing data, we initially screened out samples with missing survival time records. For a predefined panel of prognostic genes, we employed the Cox proportional hazards model to quantify the contribution of each gene by calculating its respective coefficient (Cox 1972). Furthermore, we devised a prognostic risk score (PRS) model that integrate the cumulative effects of multiple genes on patient survival outcomes:
	,	(1)
where  denotes the total number of prognostic genes,  represents the expression level of gene, and  is the Cox regression coefficient associated with gene . Subsequently, using the median  score as a cutoff, we stratified the samples into high-risk and low-risk groups. The analysis was executed in R, leveraging the ‘survival’, ‘survminer’, and ‘coxph’ packages for statistical computations and visualization.
[bookmark: _Hlk179878674][bookmark: _Hlk179879401]Note 9. Advantages of DigNet over graph neural network models
There are numerous GNN-based algorithms available, including DeepMAPS (Ma et al. 2023), GLUE (Cao and Gao 2022), GENELink (Chen and Liu 2022) and CEFCON (Wang et al. 2023). These methods typically rely on a pre-constructed initial graph to facilitate the training and prediction processes. However, the quality of the initial graph significantly impacts the final predicted GRN structure. Often, these initial graphs are based on partially known regulatory relationships or constructed by integrating multi-omics data (such as ATAC-seq). This dependence limits their applicability in GRN inference when only gene expression profile data is available.
In contrast, DigNet demonstrates notable advantages in the following aspects:
1) Elimination of Pre-constructed Initial Graph Dependence: Unlike existing GNN-based methods, DigNet independently constructs initial graphs without relying on known regulatory relationships or multi-omics data. Instead, it autonomously builds and optimizes the initial graph through its unique generation mechanism. This capability allows DigNet to effectively perform GRN inference even in the absence of prior knowledge or multi-omics data.
2) Diffusion Model-Based Generation Strategy: DigNet employs a discrete diffusion model that utilizes a multi-time-step progressive denoising process. Starting from a random graph, it iteratively eliminates false positive regulatory relationships and incorporates correct ones. This process enhances the accuracy and stability of GRN reconstruction while effectively integrating global network structure information, ensuring the consistency of the generated network.
3) Unsupervised Earning and Pre-training Capabilities: DigNet is a pre-trained unsupervised model that captures the latent structure and distribution characteristics of GRNs from large-scale training data. This feature grants its stronger adaptability and generalization ability in single-cell-omics data environments, overcoming the dependency of many GNN methods on labeled data or initial graphs.
4) Comprehensive Consideration of Global Network Information: While many GNN methods integrate global information through message-passing mechanisms, DigNet captures and utilizes the complex relationships within the global network more comprehensively through its multi-layer Transformer structure and Bayesian inference methods. This results in superior performance in identifying core regulatory genes and enhancing network robustness.
In summary, DigNet significantly improves GRN inference performance through its advantages, including not relying on pre-constructed initial graphs, adopting diffusion model-based generation strategies, possessing unsupervised learning and pre-training capabilities, and comprehensively considering global network information. These strengths make DigNet a highly innovative and indispensable tool in the field of gene regulatory network reconstruction.
[bookmark: _Hlk182906364]Note 10. DigNet limitations and future expansion
Despite DigNet’s robust generative capabilities, it is subject to certain constraints: (1). As a pre-trained model, DigNet necessitates substantial training data to undergo the full training process, particularly if pre-trained parameters are not readily available. We encourage researchers to curate personalized training sets adhering to the procedures outlined in the paper and leverage the GitHub tutorial for training and generation tasks. (2). DigNet excels on high-performance computing platforms equipped with parallel processing capabilities, which markedly accelerate its efficiency. However, this may pose challenges for environments with limited computational resources. (3). DigNet is designed specifically for generating GRN from scRNA-seq data and may not generalize well to other types of omics data due to its specialized design and training.
Moreover, multi-omics data, such as chromatin accessibility, proteomics, and epigenomics, can potentially enhance the proposed model. Various multi-omics algorithms, like Dictys, FigR, SCENIC+, CellOracle, and Pando, have demonstrated excellent performance, as discussed in the review by Badia-i-Mompel et al (Badia-i-Mompel et al. 2023). Currently, we are actively developing a version of DigNet suitable for processing multi-omics data. However, this is not a straightforward task, as it requires significant adjustments and improvements to DigNet’s neural network architecture and diffusion model objectives.
Specifically, we have the following concerns regarding the development of a multi-omics version of DigNet: (1) Heterogeneity: There is significant heterogeneity between multiple omics data at different scales and cell states. (2) Noise: Single-cell level multi-omics data still contains a substantial amount of noise during quantification. (3) Data Integration: It is crucial to carefully consider each type of omics data to provide personalized information from different perspectives, rather than merely concatenating features.
Overall, inferring GRN from multi-omics data is a very promising approach and theoretically superior to using single-omics data. We are committed to meeting these challenges and actively developing this aspect of DigNet for generating gene regulatory network from multi-omics data.
Note 11. Hyperparameter presets
In configuring the model’s hyperparameters, we have deliberated on three aspects:
1) Diffusion Framework and Training Parameters: Drawing from prior knowledge, we established the number of time-steps at 1,000. For model training, the batch size is tailored to 60 for simulated data and 15 for real-world cases, maintaining minimal impact on model performance. Following each batch’s training, we executed backpropagation and optimization of the model parameters. The maximum total iterations are set to 5,000, with validation performed every 200 iterations. Employing ‘AdamW’ from the Torch framework, we initialize the learning rate of . The learning rate undergoes a decay by a factor of 0.95 every 100 iterations, utilizing the ‘StepLR’ method, ensuring it does not drop below . When initiating a new task, we recommend a learning rate within the range of  to, adjusting the batch size according to available computational resources, and adopting default values for the remaining parameters.
2) Graph Transformer Parameters: After rigorous validation using simulated data, we have optimized the transformer architecture to consist of two layers, incorporating a multi-head self-attention mechanism with four heads. The Graph transformer seamlessly encodes three distinct input types: gene expression profiles, GRN, and temporal embedding. Specifically, for gene expression profiles, the transformer utilizes 64 hidden nodes, while the subsequent connected linear layer module comprises 128 nodes. In contrast, for the GRN, the hidden and linear layer nodes are set to 32 and 64, respectively. For the temporal embedding module, the hidden and linear layers are set to 16 and 32 nodes, respectively. We advise utilizing the default parameters for datasets comparable in scale to those studied herein. However, in cases where data quality is suboptimal or the GRN scale significantly exceeds ours, we recommend enhancing the complexity of the Graph transformer architecture to accommodate these variations.
3) Parameters of Other Modules: Prior to neural network training, data undergoes feature extraction through a PCA module, with 30 principal components empirically determined for our experiments. This number is adaptable, contingent upon the individual components’ contribution rates. At the culmination of DigNet, an ensemble module is incorporated to elevate network performance and mitigate diversity. This module operates on an average voting system, with the count of sub-learners fixed at 30. Within the iMetacell module, the K-Nearest-Neighbors (KNN) algorithm utilizes 20 neighbors, resulting in a total of 100 iMetacell s. The intricate workings of the iMetacell algorithm are comprehensively outlined in Algorithm 1.
During the initialization phase of the reverse process, we randomly sampled from a fixed prior distribution each time, rather than using a fixed seed to obtain a fixed value. This sampling method is a distinctive feature of discrete diffusion models, as starting from a chaotic random state allows for the possibility of obtaining more optimal structures. Furthermore, we have generated 10 simulated datasets and conducted ablation experiments to delve into the parameters and components that exert a significant impact on our model’s performance (see Supplementary Table S13). During the training process, we adhered to a principled approach by modifying only one hyperparameter at a time, while employing the recommended default values for the rest. Additionally, we analyzed the model’s efficacy and robustness with varying iMetacell scales, employing S53 T cells as a case study (Supplementary Fig. S5A and S5B). To keep an optimal balance between model performance and robustness, we consistently set k to 20 for KNN and iMetacell counts to 100 across all datasets in this study. When users apply DigNet to datasets of diverse scales, it is advisable to adopt a cross-validation-based approach to identify the most suitable parameter configuration.
[bookmark: _Hlk182908196]In the simulation data, the iMetacell strategy was not used due to the limitation on the number of cells. Next, we redesigned the ablation experiments for these three modules using T cells from 5 breast cancer samples to elucidate their specific contributions. Specifically, we sequentially removed each module while retaining the other two, and used the complete model with all modules as the baseline. The results indicate that, evaluated by AUROC, the iMetacell module had the smallest contribution, while the Ensemble module had the largest contribution (Supplementary Fig. S5C). Evaluated by AUPRC, the Ensemble module had the smallest contribution, while the PCA module had the largest impact. Overall, each of the three modules had varying degrees of positive or negative contributions, but their combination balanced and enhanced the model’s performance effectively.
[bookmark: _Hlk179879165]Note 12. The strategy of DigNet for eliminating false positives in GRN reconstruction
The occurrence of false positive regulatory interactions in DigNet stems from random initialization and probabilistic sampling. We mitigate this issue through an extensive denoising process that involves reducing the weights of the neural network over an extended period. Specifically, at each iteration, DigNet constructs a network structure based on gene expression profiles and a multi-head self-attention mechanism, potentially including false positive regulatory interactions similar to those from previous iterations. To counter this, we utilize multiple nonlinear layers to decrease the influences of false positive regulatory interactions in both networks and enhance the focus on accurate regulatory relationships through a multi-layer Transformer mechanism. Pre-training on extensive datasets allows DigNet to more accurate align gene expression profiles with network structures. Through iterative sampling and optimization, edges with low matching scores (representing false positives) gradually diminish, while edges with higher scores (indicating true regulatory relationships) persist.
The false positive regulatory interactions in DigNet emerge due to random initialization and probabilistic sampling, which we systematically address through multiple denoising stages. This process evaluates the alignment between network connections and gene expression profiles using a pre-trained model. It is worth noting that DigNet, along with DeepMAPS and DeepSEM, cannot fully eliminate false positive regulatory interactions due to inherent model limitations and data noise.
Despite DigNet’s robust generative capabilities, it is subject to certain constraints: (1). As a pre-trained model, DigNet necessitates substantial training data to undergo the full training process, particularly if pre-trained parameters are not readily available. We encourage researchers to curate personalized training sets adhering to the procedures outlined in the paper and leverage the GitHub tutorial for training and generation tasks. (2). DigNet excels on high-performance computing platforms equipped with parallel processing capabilities, which markedly accelerate its efficiency. However, this may pose challenges for environments with limited computational resources. (3). DigNet is designed specifically for generating GRN from scRNA-seq data and may not generalize well to other types of omics data due to its specialized design and training.
Moreover, multi-omics data, such as chromatin accessibility, proteomics, and epigenomics, can potentially enhance the proposed model. Various multi-omics algorithms, like Dictys, FigR, SCENIC+, CellOracle, and Pando, have demonstrated excellent performance, as discussed in the review (Badia-i-Mompel et al. 2023). Currently, we are actively developing a version of DigNet suitable for processing multi-omics data. However, this is not a straightforward task, as it requires significant adjustments and improvements to DigNet’s neural network architecture and diffusion model objectives.
Specifically, we have the following concerns regarding the development of a multi-omics version of DigNet: (1) Heterogeneity: There is significant heterogeneity between multiple omics data at different scales and cell states. (2) Noise: Single-cell level multi-omics data still contains a substantial amount of noise during quantification. (3) Data Integration: It is crucial to carefully consider each type of omics data to provide personalized information from different perspectives, rather than merely concatenating features.
Overall, inferring GRN from multi-omics data is a very promising approach and theoretically superior to using single-omics data. We are committed to meeting these challenges and actively developing this aspect of DigNet for generating gene regulatory network from multi-omics data.
Note 13. Effect of  initialization
1). What is :
In the forward process,  is the known, fixed clean network used to train the model from time-step 0 to T.  is a random network with a marginal distribution. The training process requires a clean network (as ) and matching expression profiles to complete the entire process. During the reverse recovery process,  is the network to be generated, which is obtained by sampling from the random, marginal distribution network  and then generating the network from time-step T to 0.
2). How to obtain the initial network :
DigNet is a pre-trained model. Once the model is trained, all tests are conducted during the reverse recovery process. This requires a certain amount of datasets to adjust the neural network parameters. In the simulated datasets,  is the synthetic network, known as the gold standard network, and the corresponding gene expression profiles are obtained through the SERGIO algorithm. In real datasets, all  networks are constructed using algorithms based on the RegNetwork gene regulation repository and gene expression values (Celiku et al. 2019; Browaeys et al. 2020; Pratapa et al. 2020). This construction method includes not only public regulatory knowledge but also high co-expression information from the gene expression profiles.
3). Does different initialization of  significantly affect the final results:
[bookmark: _Hlk182908312]Theoretically, an accurate ensures a more reasonable training process. Therefore, we aim for the preset  to contain as little noise as possible, as a poor  may lead to uncontrolled generated results. In real data,  is a predefined background gene network. In the simulated datasets,  is unique and fixed, while in real cases, it is defined using a combination of knowledge bases and co-expression, making it common, effective, and able to match the gene expression profiles to a certain extent. To discuss under different levels of noise, we designed a comparison framework based on the simulated datasets with varying proportions of noise. Using the total number of edges as a basis, we modified a portion of the regulatory edges/links to false positive edges. The specific proportions of modified edges were set to 30%, 20%, 15%, 10%, and 5%, respectively (Supplementary Fig. S5D). The results indicate that DigNet maintains a certain level of robustness against varying scales of noise, with the AUPRC values showing only a slight decrease as the noise increases.
Note 14. Machine configuration and runtime analysis
The DigNet model was executed on a machine with an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz, augmented by an NVIDIA RTX A6000 GPU featuring 48GB of memory to expedite both the training and generation processes. We conducted a comprehensive runtime analysis across varying scales, spanning from 100 to 500 genes. To accomplish this, we generated five distinct sets of simulated datasets, each tailored to a specific GRN node count range: 10–100, 101–200, 201–300, 301–400, and 401–500. Each set comprised 50 training sets and 10 test sets, ensuring a robust evaluation.
To facilitate a clear observation of model’s runtime behavior, we initially set the ensemble size to 1. It is noteworthy that as the ensemble size increases, parallel processing methodologies can be employed to further optimize computational efficiency. After training the model for an identical number of epochs, we recorded the time taken by DigNet to compute GRN for the test sets across the different scales (see Supplementary Fig. S5E). The analysis provides valuable insights into the scalability and performance characteristics of DigNet under varying conditions.
Note 15. iMetacell algorithm for processing scRNA-seq data
[bookmark: _Hlk182908414]iMetacell is a commonly used single-cell preprocessing tool that groups single-cell data into representative cell clusters (Please kindly see references (Hickey et al. 2023; Pan et al. 2024; Renz et al. 2024)), where cells within each cluster have highly similar gene expression profiles. This method simplifies the data, reduces noise, and improves the resolution of cell states and transcriptional activities. The cell-specific gene regulatory networks constructed by DigNet are based on these cell populations, reflecting the regulatory patterns of the entire population within a specific cell type, rather than constructing a regulatory network for each individual cell. iMetacell preprocessing is also performed based on each cell type, which not only mitigates the impact of scRNA-seq technical noise but also enhances the features of the resulting cell clusters (refer to Algorithm 1).
Specifically, we utilized the K-nearest neighbors (KNN) algorithm as the core to divide each cell and its nearest neighbors into a subset. Initially, we formulated a comprehensive subset for all cells, encompassing each cell alongside its nearest neighbors. Subsequently, through iterative filtering of redundant neighbors across subsets, we selected a specified number of subsets with significant variability. These clusters of cellular subsets exhibit strong heterogeneity and elucidate the diverse states of cells from various perspectives (Morabito et al. 2023). Under the assumption that smaller subsets of cells with similar RNA profiles exhibit lower heterogeneity, they can be regarded as equivalent sampling results within a certain distribution (Ben-Kiki et al. 2022). Consequently, we aggregated these smaller subsets into virtual cells based on neighborhood consolidation, mimicking the effect of “bulk” sequencing. The synthesized virtual cell, termed as a “iMetacell”, aims to mitigate technical noise and restore the biologically significant signals from small cell clusters to the greatest extent possible (Baran et al. 2019). Thus, if a dataset can be sufficiently represented by a few non-overlapping iMetacells, it becomes feasible to reduce the data size while preserving the integrity of overall information.
Therefore, the preprocessing results from iMetacell can be used as input for DigNet to obtain cell-specific gene regulatory networks. This integration allows DigNet to leverage the denoised and enhanced cell clusters provided by the iMetacell approach, resulting in more accurate and biologically relevant regulations specific to each cell type.
[bookmark: _Hlk182908420]This approach is only applied to real cases. In simulation cases, where cell numbers are sufficient and data quality is high, the iMetacell technique is not employed. In designing our experiments, we considered whether to apply iMetacell preprocessing to other algorithms to ensure fair comparisons. As a result, we conducted experiments with and without iMetacell preprocessing for these algorithms, using either raw data or z-score normalized data. Overall, after applying iMetacell preprocessing, 7/10 algorithms showed improvement in AUROC evaluation, and 6/10 algorithms demonstrated enhancement in AUPRC evaluation (Supplementary Fig. S7A). We also conducted a detailed comparison of all results (Supplementary Fig. S7B). Considering both AUROC and AUPRC metrics, we decided to use iMetacell preprocessing for all algorithms, as it generally improves model performance under most conditions.
Note 16. Detailed construction of the synthetic datasets
Prior to the generation of networks, we initialized the number of genes, denoted as, by randomly sampling values between 10 and 100 for inclusion in each individual network. Subsequently, a subset of these nodes was randomly assigned as the role of transcription factors (TF), while the remaining nodes represent genes. The network edges were then randomly connected, adhering strictly to the following three criteria: 1) Ensuring sparsity by maintaining the number of edges between  and; 2) Eliminating self-loops; and 3) Preserving regulatory directionality between TF and target genes. Using this framework, we constructed a total of 200 Gene Regulatory Networks (GRN) for the purpose of training DigNet. Additionally, another 100 GRN were developed for performance evaluation.
Furthermore, taking into account the hypothesis that large biological networks may exhibit scale-free characteristics (Albert 2005; Han et al. 2013), we synthetically generated an additional 300 scale-free networks using the Barabási–Albert model, removing any circular or erroneous edges. These networks were subsequently processed through the SERGIO algorithm (Dibaeinia and Sinha 2020) under default settings to produce count data reflecting gene expression profiles. Specifically, SERGIO simulated the gene expression data for 100 cells per GRN, all within the same cell type (Supplementary Fig. 7C). We extracted all these networks and their corresponding gene expression profiles to evaluate the performance of DigNet alongside other algorithms.
Moreover, we conducted a statistical analysis of the gene counts in these scale-free networks and delved into how these count influence AUROC values (Supplementary Fig. 8A and 8B). Our findings reveals a significant correlation between the number of genes and AUROC values in scale-free networks, with AUROC tending to decrease as the gene counts rises, contrasting with observations from random networks. Furthermore, we compared and analyzed DigNet against ten other models on datasets comprising these scale-free networks (Supplementary Fig. 8C). Across three evaluation metrics, DigNet consistently demonstrated superior performance, outperforming the current state-of-the-art methods.
Note 17. Large-scale synthetic networks and DREAM challenge data incorporation
To test the performance of DigNet in large-size networks, we have expanded our analysis to include a substantial dataset featuring networks with 100 to 500 nodes, adhering to the same design method outlined in Note 1. To generate gene expression profiles for this enlarged dataset, we utilized SERGIO, incorporating anomaly counts (at a probability of 0.01) and dropout events, leveraging its default settings to mimic real technical noise. Notably, algorithms such as SINCERITIES, Tigress, and MI were not considered in this discussion due to their non-functional status or excessively prolonged runtimes. Our findings reveal that even when confronted with networks containing up to 500 nodes, DigNet demonstrates the capacity to generate comparatively reliable networks (refer to Supplementary Fig. S9A for details). Furthermore, we have made these networks and datasets available at GitHub (https://github.com/zpliulab/DigNet).
Furthermore, we have incorporated performance assessments of all benchmark algorithms across the DREAM3 and DREAM4 challenges, encompassing a comprehensive set of 25 distinct challenges. These challenges encompass both gene perturbation data and time-series data, with our selection of gene expression profiles from the time-series data tailored to DigNet’s specific applicability. To establish a robust gold standard training set, we used the real E. coli and Yeast networks from GeneNetWeaver (GNW), constructing a comprehensive collection of 200 subnetworks, each containing 10, 50, and 100 nodes, leveraging both breadth-first search and random walk strategies. All subnetworks were rigorously ensured connectivity, with isolated nodes excluded and self-loop edges removed.
Based on these subnetworks, we employed GNW to generate training datasets, incorporating 21 time points (adhering to the challenge constraints) and utilizing both ODE and SDE models, augmented with noise (coefficient of 0.05) to simulate realistic conditions. Recognizing the potential impact of the limited number of time points on model performance, we reiterated this process fourfold, resulting in a total of 84 time points for training and validation purposes.
For evaluating DigNet’s performance, we consistently utilized the same 84 time points sourced from the DREAM 3/4 challenges for network generation. To uphold a fair comparison, we mandated that the other benchmark algorithms also employed both 21 and 84 time points for network inference, ultimately selecting the maximum achieved performance as the representative metric (refer to Supplementary Fig. S9B for visualization).
At the level of bulk RNA sequencing data, the co-expression network generated by WGCNA is widely used. Next, we carefully compare the DigNet and WGCNA models. The results indicate that DigNet performs comparably to WGCNA on the majority of datasets (Supplementary Fig. S9C). This suggests that, in addition to scRNA-seq, DigNet can also serve as an alternative for bulk-level data analysis.
Note 18. Preprocessing breast cancer single-cell gene expression profile data
To demonstrate the capability of DigNet, we use breast cancer as a representative example and expand our case study. We employ real BRCA scRNA-seq data sourced from Qian et al. (Qian et al. 2020). This dataset encompasses multiple types of cancer, but for the purpose of our proof-of-concept study, we selectively utilize the BRCA sequencing results. Cell classification is based on the subtype identification results provided by Qian et al., with a focus on two crucial immune cell types (T cells and B cells), along with cancer cells. To ensure the reliability of our GRN inference results, we exclude samples from the selected three subtypes where the cell count falls below 100. This rigorous filtering yields a refined set of five samples: sc5rJUQ033 (S33), sc5rJUQ039 (S39), sc5rJUQ042 (S42), sc5rJUQ053 (S53), and sc5rJUQ060 (S60). In addition, cancer cells from sample S60 are excluded from our experimental analysis to maintain focus on the immune cell populations.
Furthermore, we filtered out cells and genes with over 95% missing values from the gene expression profiles, ultimately retaining a total of 3,811 cells across the three distinct cell types. Recognizing that single-cell dropout events significantly impact cell quality, we individually performed single-cell data imputation on the gene expression profiles of all samples using SAVER (Huang et al. 2018). This vital step enhances data quality and ensures that subsequent analyses rely on more complete and accurate gene expression profiling information.
Note 19. Construction of cell-specific gene regulation background networks
To the best of our knowledge, most of gene regulations recorded in current knowledge-bases such as RegNetwork are common and non-specific. Most studies only quantify a few single-cell-specific gene regulations to explain certain biological issues, without forming a unified standard. Public regulatory links stored in databases are meaningful, and cell-specific transcriptomic data indicate cell-specific gene regulatory links (Badia-i-Mompel et al. 2023; Schäfer et al. 2024). Therefore, combining public knowledge-bases and data-driven approaches, we constructed custom cell-specific GRN for breast cancer based on previous experiences (Greene et al. 2015; Grubman et al. 2019; Schleiss et al. 2021). These are not gold-standard networks but rather approximate substitutes of containing cell-specific information, which we refer to as background gene regulatory networks.
Some experiments rely on public knowledge-bases (e.g., RegNetwork) to construct background gene networks, but these methods overlook cell heterogeneity (Celiku et al. 2019; Pratapa et al. 2020). Thus, we used the transcriptomic gene profiling data at the single-cell level to add highly correlated regulatory relationships as cell-specific regulations and to eliminate false-positive regulatory links. Although this method cannot fully reproduce gold standard gene regulatory networks, it can reflect regulatory information at the single-cell level to a certain extent. Additionally, to minimize the impacts of subjective addition or deletion of edges of gene regulation, we designed the proportion of public knowledge-base links in the constructed background gene network to be around 70% (the exact value may fluctuate based on data quality and gene expression information).
Specifically, we utilized an updated version of RegNetwork (Liu et al. 2015) to build the original reference network and extracted edges with high PCC and high MI values from the gene expression profiles, thereby forming the cell-specific gene reference networks The number of data-driven connections in the specified network is artificially limited to no exceed 50%. Furthermore, we employed the PC-CMI (Zhang et al. 2012) algorithm to remove redundant regulatory interactions and improve the network specificities. It is used to eliminate the false-positive gene regulations based on a first-order neighbor analysis and a conditional mutual information (CMI) threshold of 0.001. Then, we dissected the refined reference gene network into 342 pathway subnetworks according to KEGG annotations, where gene sets in pathways with fewer than 10 or more than 200 genes are discarded. In numerical experiments, DigNet was tested on the hsa05224 breast cancer pathway, while utilizing the remaining pathways for training. This approach ensures the collection of highly accurate networks that are both grounded in established prior knowledge and tailored to single-cell conditions. The employment of PC-CMI for network pruning results in reducing the false positives in the reference network, ensuring that the final networks are both reliable and relevant for single-cell analysis. The tests on specific pathways provide a justifiable method for validating the effectiveness of DigNet in unraveling and understanding gene regulatory relationships at the pathway level.
Although our constructed cell-specific GRN contain noise, our goal is to demonstrate the effectiveness of DigNet in broader applications of generating GRN directly from gene expression data, including the generation of GRN in disease contexts. We also validated the model performance through extensive simulations, as they provide evaluations that are unattainable with real data.
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