
Supplementary Fig. S1. GRN tool summary examples and analysis of generative models. (A) When inferring the regulatory relationship between genes, the network structure encompassing other genes can exert an influence on this relationship. (B) Unsupervised vector representation models leverage neural networks to learn embedding information of gene expression and subsequently derive regulatory relationships between TF and their targets through various operations. In contrast, graph neural networks model neighboring information based on prior regulatory relationships, enabling them to deduce new regulatory relationships or eliminate false positives in regulatory relationships. (C), (D) and (E) are the network framework diagrams for the VAE, GAN, and Flow models, respectively, where the parts made transparent indicate that they are used only in the training processes. (F) Evaluation of F1-score results for DigNet and the three other generative models in the synthetic datasets. (G) Evaluation of F1-score results for DigNet and 10 other state-of-the-art methods in the breast cancer.

Supplementary Fig. S2. Examples of GRN tools and evaluation of the DigNet model's network properties. (A)-(C) are examples of GRN tools involving the sequential inference of each link between gene pairs. (D) represents an example of a GRN tool for the simultaneous generation of a global gene regulatory network. (E) The fully connected network derived from the predictions results of SCENIC. (F) Visualization of the results generated by DigNet. (G) The predictions results of SCENIC after pruning. (H)-(K) Comparison analysis of the number of connected nodes, Eigenvector Centrality (EC), Betweenness Centrality (BC), and Closeness Centrality (CC) between DigNet’s and SCENIC’s predictions.

Supplementary Fig. S3. Statistical results of gene expression values in normal/tumor breast tissues, in which highly differentially expressed genes are marked. (A) The breast cancer pathway. (B) The T cell receptor signaling pathway.

Supplementary Fig. S4. The specific gene regulatory network in breast cancer T cells.

Supplementary Fig. S5. Ablation test of DigNet modules and parameters. (A) The impact of different  values in KNN on model. (B) The impact of the number of Meta-cells on the model. (C) PCA, Ensemble and Meta-cell ablation experiments. One of the modules is removed in each experiment. (D) DigNet performance under different noise ratios (10 GRN with different sizes). (E) Run time analysis.

Supplementary Fig. S6. The generative principle and network architecture of DigNet.  (A) A schematic representation of the process for generating the next time-step network during the testing phase of DigNet, which involves network inference and Bayesian inference simultaneously. (B) The network architecture of the Graph Transformer. (C) The internal workings of the Multi-Head Self-Attention mechanism.

Supplementary Fig. S7. Performance analysis of Meta-cell and framework for synthetic datasets. (A) Comparison of Algorithms with and without Meta-cell Preprocessing (DigNet consistently uses Meta-cell). (B) is the detailed expansion of (A). (C) Framework for the creation of the simulation dataset.

Supplementary Fig. S8. Analysis and evaluation of the simulated datasets containing scale-free networks. (A) Distribution of gene counts in simulated datasets with scale-free degree distribution networks. (B) Evaluation of AUROC results for DigNet on simulated datasets (scale-free networks) with different sizes of gene scales. (C) Comparison of AUROC, AUPRC, and F1-score results between DigNet and the other state-of-the-art methods in the scale-free simulated data. 

Supplementary Fig. S9. Performance evaluation of DigNet on large-scale datasets and DREAM Challenge datasets. (A) and (B) DigNet and other baseline algorithms on large-scale synthetic GRNs and on the DREAM 3/4 challenge datasets. (C) Detailed evaluation and comparison of WGCNA and DigNet performance on the DREAM3/4 Challenge datasets.

