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ABSTRACT

This document contains four Supplemental Texts:
S1: lists the ‘Data availability’, ‘Code availability’, ‘Evaluation metrics’ and ‘Parameter settings’.

S2: Results analyse of HER2 tumor data and parameter sensitivity analyse.

S3: describes a comparison between Gaussian kernel, Adaptive Gaussian kernel and Isolation kernel that can

be employed in KBC. Example comparison results are also provided.

S4: provides the KBC clustering outcome of an example single-cell resolution dataset
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Supplemental Text S1

Data availability
All original data supporting the findings of the study are publicly available online.

The human dorsolateral prefrontal cortex (DLPFC (Maynard et al. 20021))) datasets were downloaded from
spatialLIBD. It contains 12 sections, each with 3000-4000 spots, spanning six neural layers and the white matter.
The labels were manually annotated by the authors.

Mouse hippocampus Slide-seq V2 data were downloaded from the Broad Institute Single Cell portal. Following
Shang et al. 2022, we used the file "Puck_200115_08" in our study. The dataset contains approximately 23,000
genes and 53,000 spatial locations.

The HER?2 breast tumor dataset was downloaded from github: her?si. The dataset contains eight samples with
pathologist-annotated labels, and we used the H1 sample to demonstrate the detailed result. The sample sizes are
small, containing approximately 100-600 spots.

The Stereo-seq data of mouse olfactory bulb tissue was downloaded from github: SEDR _analyses.

The preprocessed spatial genomics datasets we used can be found at: https://github.com/IsolationKernel.

Code availability
The KBC software code is publicly available at https://github.com/IsolationKernel. The source code is released
under a non-commercial use license.

Other methods in the paper are available online, as follows:

SpatialPCA (https://github.com/shangll123/SpatialPCA),

* Stagate (https://github.com/zhanglabtools/STAGATE),

* BayesSpace (https://github.com/edward130603/BayesSpace),

SpaGCN (https://github.com/jianhuupenn/SpaGCN),


http://spatial.libd.org/spatialLIBD/
https://singlecell.broadinstitute.org/single_cell/study/SCP815/sensitive-spatial-genome-wideexpression-profiling-at-cellular-resolution#study-summary
https://github.com/almaan/her2st
https://github.com/JinmiaoChenLab/SEDR_analyses
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* stLearn (https://stlearn.readthedocs.io).

We followed their tutorials to preprocess the raw data and used the packages implemented by original authors

for each competing method to conduct the experiments.

Evaluation metrics
We have used two commonly used metrics in evaluating each clustering outcome of an algorithm. They are Ad-

justed Rank Index (ARI) and Normalized Mutual information (NMI), given as follows:
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where T denotes the ground-truth labels of data points, and P denotes the clustering labelled outcomes of data
points. a is the number of pairs of two points in the same group in both 7 and P; b is the number of pairs of two
points in different groups in both 7" and P; c is the number of pairs of two points in the same group in P but in
different groups in 7T'; and d is the number of pairs of two points in different groups in P but in the same group in
T. Cr and Cp are the numbers of clusters in 7" and P, respectively; and # is the number of points in T or P.

Both ARI and NMI range from O to 1, the larger the better.

Indeed, there is no universally good metric to assess the clustering outcome of a clustering algorithm (see
Section 6.9 in "Data mining: the textbook" (Aggarwal 2015)). That is why multiple metrics are often used in

assessing the clustering performance of different clustering algorithms.

Parameter settings
Table &1 shows parameter settings used in the experiments for all the methods. Each clustering algorithm is

configured with the same number of clusters which matches the ground-truth number of clusters in a dataset.



Table S1. Parameter search ranges used in the experiments.

Parameter search range

Gaussian kernel cc{2"me{-5,—-4,..,4,5}}
Isolation Kernel vy € {16,32,64,128},t = 100
KBC 1€ {0.054+0.1%alac {0,1,..,9}}
WL h=17
SpatialPCA pe € {9,12,15,18,21}
Walktrap knearest € {sqrt(n) —5,sqrt(n) +5}
Kmeans n_init € {5,10,15,20}
Mclust default
SpaGCN histology € {true, false},init € {"louvain”,”kmeans”}
Stagate rad_cutof f € {50,150, 160} default as in tutorial
stlearn default as in tutorial

BayesSpace pc € {7,9,12};init_method € {"mclust”,”kmeans”}

Table S2. Data transformation methods and clustering methods employed in each of the algorithms used in the

experiments
Data Transformation Initial Clusters Clustering
KBC WL or SpatialPCA Connected components KBC
SpatialPCA  SpatialPCA NA Walktrap
Stagate Graph attention auto-encoder NA Mclust
SpaGCN GCN Louvain or Kmeans Deep learning clustering
BayesSpace Bayesian statistical method Kmeans or Mclust Bayesian Clustering
SpatialMorphological gene .
Stlearn Expression (SME) normalization Kmeans/Louvain
52 Table 82 shows data transformation and clustering employed in each of the algorithms used in the experiments.

3 The initial clusters of KBC (in step 1 in Algorithm 1) is obtained as connected components by using the standard

o

s+ ‘concomp’ function in Matlab, where each connect component is an initial cluster.

55 Table 83 summarizes the graph embedding methods used with KBC, and the datasets in which they have been

applied.

n
(2]

Table S3. The graph embedding methods used with KBC in the experiments.

SpatialPCA+KBC Second Ablation Study: DLPFC Fig. 3&5
Simulated datasets Fig. S1
WL+KBC HER?2 tumor, mouse hippocampus, DLPFC Fig. 7,8 &9
Simulated datasets, mouse olfactory bulb ~ Fig. S1, S2, S3, S4, S5, S6, S7 & S8
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Supplemental Text S2

Further analysis of the KBC clustering outcomes of the HER2 tumor data

This section examines two key discrepancies between the ground-truth labels (Figure KTA) and the clusters identi-
fied by KBC (Figure K1B). For the first discrepancy, we divided the cells into several sub-groups with labels 1, 2,
and 3 (Figure KIIC), and conducted differential expression analyses (with seurat package) on regions 1, 2, and 3:
comparing three pairs of regions: 2 versus 1, 2 versus 3, and 1 & 2 versus 3. We labeled regions 4, 5, and 6 for the
second discrepancy and conducted differential expression analyses comparing three pairs of regions: 5 VS. 6, 4 VS.
6, and 4 VS. 5. In each differential expression analysis, we took the union of all significant genes (adjusted p-value
< 0.05 under the Wilcoxon Rank-Sum test) and visualized their expression patterns through heatmaps. They are

shown in Figures K1ID and STIE, respectively.

Note that, in Figure 1D, there is only one significant gene, TIMP1, detected when comparing the region-pair
1 VS. 2. However, we detected 7 and 35 significant genes when comparing 2 VS. 3, and 1 & 2 VS. 3, respectively;
and the example top ranked genes are SI00A9, HLA.B & B2M and IL7R, C7orf73 & LCP1, respectively. In short,
regions 1 & 2 exhibit similar gene expression patterns, both of which differ significantly from region 3. This is

consistent with the clustering outcome of KBC.

In Figure KTE, we detected 11, 6, and 4 differentially expressed genes when comparing three pairs of regions:
5VS.6,4VS. 6,and 4 VS. 5, respectively. Examples of top ranked genes are IGHA1, PFN1, APOD for the first
pair; SCGB2A2, CFD, APOD for the second pair; and PFN1, PIEZO1, IGHA1 for the third pair. Note that region
6 has been identified by KBC (in Figure K1IB) as a cluster differs from region 4 but belongs to the same cluster as
region 5. In contrast, the ground-truth labels shown in Figure KTA indicate that region 6 belongs to the same group
as region 4 but differs from region 5. The significant differences in genes among these three regions indicate that

there are ambiguities in clustering, partially explaining the second discrepancy.

The above two discrepancies between KBC'’s clustering outcomes and the ground-truth labels provide a ground

for further examination to ascertain whether there is a mistake in data collection or human labeling.
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Figure S1. Further analysis of the KBC clustering outcomes of the HER2 tumor data. A, the ground-truth labels.
B, the clusters predicted by the KBC clustering method. C, the sub-groups 1-6 obtained by comparing the
ground-truth regions and KBC predicted regions. D, the differentially expressed genes by comparing regions 1, 2
and 3, shown in C. E, the differentially expressed genes by comparing regions 4, 5 and 6, shown in C.

Sensitivity to the number of principal components used

We have used 15 principal components in the data processing thus far. Here we examine the effect of this number
on the clustering performance on both the simulated HVG and SVG datasets. Figure 82 shows that WL+KBC
produces similar clustering outcomes regardless of the number of principal components selected (between 9 to 21)

during preprocessing.

Sensitivity to the parameters y and 7 in KBC
KBC has two parameters ¥ (sample size to build Isolation Kernel) and 7 (similarity threshold used in KBC) which

shall be tuned for a dataset. Here we investigate their sensitivity on the simulated datasets. Figure 83 shows that
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Figure S2. Sensitivity to the number of principal components used in WL+KBC in terms of ARI and NMI on
the HVG and SVG simulated datasets. Each point in a plot is based on the median score out of the 12 sections.

so KBC is not very sensitive to these parameter settings, especially when y € [8,32] and 7 € [.4,.6].
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Figure S3. Sensitivity to the KBC parameters y and 7 in terms of ARI and NMI on the HVG and SVG
simulated datasets. Each point in a plot is based on the median score out of the 12 sections.



o0 Sensitivity to the parameter /2 in WL
91 We have used & = 7 in WL for all experiments. Here we examine the sensitivity of this parameter on the simulated

HVG and SVG datasets. Figure 84 shows that WL+KBC produces similar clustering outcomes regardless of the
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Figure S4. Sensitivity to the number of WL parameter 4 used in WL+KBC in terms of ARI and NMI on the
HVG and SVG simulated datasets (slice 151671). The number of principal components used in WL is set to 15, v
and 7 of KBC are set to 16 and 0.5, respectively.

92

93 parameter & setting in between 3 and 11.
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Supplemental Text S3

IKBC versus GKBC & AGKBC
We have used a recently introduced Isolation Kernel (Ting et al. 201R) in KBC in this paper. However, KBC admits

a commonly used kernel such as Gaussian kernel or Adaptive Gaussian kernel (Zelnik-Manor et al. Z0O05).

Gaussian Kernel and Adaptive Gaussian Kernel
For any point x,y € R¢, Gaussian kernel is defined as:

—[lx— I
laame dIy

Koly) = exp(— 5

where ¢ denotes the bandwidth of Gaussian Kernel.

Note that Isolation Kernel is a data dependent kernel which derives its feature map from a dataset directly, and
it has no closed form expression. In contrast, Gaussian kernel, like most other commonly used kernels, is a data
independent kernel, which has a closed form expression.

Adaptive Gaussian Kernel (Zelnik-Manor et al. 20039) is defined as follows:

(_”x_yH2>

K (x,y) = exp s
XYy

)

where 0, is the distance between x and k-th nearest neighbor of x.
We refer to Isolation Kernel-based, Gaussian Kernel-based and Adaptive Gaussian Kernel-based KBCs as

IKBC, GKBC and AGKBC, respectively. We use the simulated SVG dataset in the comparison.

Comparison results

The clustering result of the comparison on the simulated SVG dataset (as used in the Supplemental Text S2) is
summarized in Fig. §3. It shows that IKBC produces better clustering outcomes than GKBC and AGKBC. AGKBC

and GKBC perform comparably (having similar median ARI and NMI). It shows that though AGK is adaptive to
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local density, AGK is sensitive to the parameter k setting because it relies on k nearest neighbor distance which
prevents it to adapt to a complex distribution with varied densities (see the discussion of this issue in Bandaragoda

et al. 20TR; Y Zhu et al. 2O2T).
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Figure S5. A comparison of IKBC versus GKBC & AGKBC. Violin plots on the simulated SVG dataset for all
12 tissue slices in terms of ARI and NMI. The white point is the median value of the 12 results. All methods use
the WL embedding here.

Figure 88 shows an example comparison of GK, AGK, and IK on one slice of the simulated SVG dataset. The
first row shows the similarity matrix of each kernel via heatmap, where the (i, j) value in the matrix represents the

similarity (as measured by a kernel) between the i-th point and the j-th point.

From the similarity matrix of GK, we can see that the pink cluster has the highest density (because of the highest
similarity), while the adjacent yellow cluster has very low density. As a result of the huge difference in density
between the two neighboring clusters, GKBC extends the pink cluster to swallow the yellow cluster (shown in the
second and third rows). The data-dependent AGK and IK reduce the density difference between the two clusters.
This enables AGKBC and IKBC to avoid over-extending the pink cluster. But AGK has made an adverse effect that
the blue and yellow (and also the green) clusters become very similar (see the outer box enclosing the three inner
boxes in the similarity matrix of AGK), causing AGKBC to largely merge the three clusters. The final outcome is
that GKBC and AGKBC have similar ARI/NMI (see the results in the caption). In contrast, the similarity matrix of

IK has four clear boxes depicting the four clusters (except the green cluster), enabling IKBC to correctly produce

10
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Figure S6. Results of the further ablation studies on three kernels and their associated KBC clustering outcomes
in the original space and the reduced 2-D space by UMAP (Mclnnes et al. Z01R) derived from the graph
embedded space on the simulated SVGs (tissue slice 151671 of DLPFC dataset). GKBC, AGKBC and IKBC have
ARI =0.68, 0.62 and 0.75, respectively; and NMI = 0.63, 0.62 and 0.71, respectively.

these four clusters (with one caveat—see the next paragraph).

Note that none of the three algorithms could correctly cluster the green cluster because the number of points
is very small. This has caused each of three clustering algorithms to split one cluster into two clusters. Compared
with the other two methods, IKBC produced better blue, yellow and red clusters, having the highest NMI and ARI

among the three methods.

In summary, a data independent kernel, while faithfully reveals the density of each cluster, the resultant clus-
tering algorithm would bias towards high density clusters. This bias often yields a dense cluster to encroach on a
neighboring cluster with low density, merging the two clusters as a result. The data dependent AGK attempts to
correct this bias by using a single parameter k via a k-nearest-neighbor method. However, in a complex distribution

with many clusters of varied densities in the embedded space (as in the example shown in Figure §8), it failed to

11



135 adapt well to all clusters. It corrected one (pink) cluster and over-corrected the blue and yellow clusters. The data

136 dependent IK has none of the issues mentioned above.
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Figure S7. Results of the further ablation studies on three kernels and their associated KBC clustering outcomes
in the original space and the reduced 2-D space by UMAP derived from the graph embedded space on the
simulated SVGs (tissue slice 151672 of DLPFC dataset). GKBC, AGKBC and IKBC have ARI = 0.6, 0.57 and
0.68, respectively; and NMI = 0.56, 0.58 and 0.63, respectively.
137 The second example shown in Figure 87 has similar outcomes as in the first example (shown in Figure S8).
138 One key exception is: AGKBC produced a slightly different clustering outcome: the pink cluster was split into two

139 while the yellow cluster was correctly clustered, and it has encroached into the largest red cluster in quite a few

140 scatter small regions.

12
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Supplemental Text S4

KBC clustering of an example single cell resolution dataset
Our clustering method KBC and all other stand-alone clustering methods (like Kmeans & Mclust) are applica-
ble to datasets generated by spatial transcriptomics technologies with cellular resolutions. Here we validated
KBC'’s ability in identifying tissue structures on the mouse olfactory bulb (Chen et al. 2027), a widely used model
tissue with the laminar organization. This SRT dataset was generated by Stereo-seq, a newly emerging spatial
transcriptomics technology that could achieve the cellular or subcellular spatial resolution by DNA nanoball pat-
terned array chips (Chen et al. 2022). The Stereo-seq data of mouse olfactory bulb tissue was downloaded from:
https://github.com/JinmiaoChenLLab/SEDR _analyses. Xu et al. 0074 has annotated the laminar organization of
coronal mouse olfactory bulb in the DAPI-stained image, containing the rostral migratory stream (RMS), granule
cell layer (GCL), internal plexiform layer (IPL), mitral cell layer (MCL), external plexiform layer (EPL) and ol-
factory nerve layer (ONL) (Figure S8A). Following the same preprocessing procedure used for other datasets, we
normalized the raw data with SCTransform (Choudhary et al. 2027), select a set of spatially variable genes (SVGs)
with SPARK-X (J Zhu et al. 20211). We then conducted the experiments on the processed data.

As shown in Figure 88, the results from KBC mirrored the laminar organization well and the identified regions
matched the annotated layers. As shown in Figure S8C, KBC clearly recognized the narrow tissue structure MCL,
compared to Stagate, which was further validated by the expression of mitral cell marker Gabral. Note that, for

this dataset, KBC and SpatialPCA produced similar results.

13
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Figure S8. Application of KBC to the mouse olfactory bulb Stereo-seq data. A, Laminar organization of the
mouse olfactory bulb annotated using the DAPI-stained image. B, Spatial domains identified by SpatialPCA and
KBC in the mouse olfactory bulb Stereo-seq data. KBC uses the WL embedding here. C, Visualization of the
spatial domains identified by KBC (first row) and the corresponding marker gene expressions (second row).
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