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On Privacy Concerns in Genetic Research and in 
Genotype Imputation-related Tasks 
Arguably, protection of privacy of participants and families is one of the most challenging aspects of 
genetic data sharing. These ethical challenges are multidimensional and complex [1], e.g., usage for 
forensic purposes[2–4], and concerns about discrimination[5,6]. Public is becoming increasingly 
aware of the ethical and privacy implications around sharing genetic data, and regard privacy as one 
of the top factors while deciding who they share genetic data[7,8]. Numerous negative experiences, 
e.g., Havasupai Tribe[9,10], may undermine the trust in the research community due to lack of ethical 
reporting standards and insensitivity to cultural norms. Due to these concerns, datasets are often 
siloed in the central servers and are protected by data usage agreements and severely hamper 
collaborative research opportunities[11,12] even within the same consortia[13,14]. Although 
legislation such as GDPR in the EU and HIPAA[15] in the USA aim at protecting personal data, their 
interpretation is not clear about genetic data. For example, GDPR requires using new technological 
methods to make sure that the data is “irreversibly de-identified” unless consent is available for 
sharing identifiable data. However, even when consent is granted for sharing genomes, individuals 
may not consent to the downstream characterization of their genomes[16]. 

The main concerns around genomic privacy[17–20] are related to the re-identification of an individual 
by “singling-out” (GDPR) within a cohort. In the context of imputation outsourcing, the imputation 
server (which are sometimes referred to as the “processors”), and the data owners/controllers (query 
and reference data owners) must make sure to take the precautions to minimize the risks and 
evaluate them effectively. This is a very challenging process while individual level datasets (from both 
the client and the reference panel owners) are being shared with the imputation servers. 

Due to the high dimensional and complex correlative structure of genetic data [16,21,22], many 
routes are open for re-identification of individuals[19]. For example, only 100 carefully selected SNPs 
are sufficient to identify any individual[23]. The most famous attacks, including Homer’s t-
statistics[24], Sankararaman’s LRT[25] demonstrated that an individual’s participation in a genome-
wide association studies (GWAS) study can be reliably identified even when only allele frequencies 
of the study are known. These attacks were alarming at the time because of their simplicity and their 
applicability to summary statistics[26,27]. Further studies identified that participation in different 
studies can lead to linking attacks and reveal sensitive information[28,29] of participants and 
relatives[30,31]. Other attacks that make use of haplotype frequencies have been proposed to 
identify participation[32,33]. Recent studies demonstrated that genetic beacons[34] (where the 
existence of variants in a database are queried as yes/no answers) are vulnerable to Bustamante’s 
attacks[35] and more advanced attacks[36,37] where an adversary can identify participation of an 
individual in a beacon by adversarial querying, which may impact biobank scale databases. For 
example, the knowledge of the rare variant positions can be used to reveal participation in TOPMed 
panel using results obtained from TOPMed imputation server. One of the important factors that make 
these attacks possible is that they rely on a naive data-sharing model where raw data is made 
available to entities without a specific focus on a task such as genotype imputation. Furthermore, 
several studies showcased that the most well-known attacks are applied in very well-controlled 



scenarios and they lack of formal treatment of the false positive rates [38] when the assumptions are 
not satisfied [39].  

By far, the most popular genetic data sharing model is the restricted access model that model relies 
on users signing agreements for each new dataset. Differential privacy[40,41] (DP) approaches 
design privacy-preserving data release mechanisms where aggregate statistics from data are 
computed and noise is added to the released statistics to enable privacy. While DP provides strong 
privacy guarantees, the noise addition is a major drawback since a naive noise addition may corrupt 
certain data types (such as genotype data) to the extent that the data become unusable. Encryption-
based approaches are the most rigorous route to securely share genetic data albeit with low 
practicality and are applied to the field of genotype imputation[42,43], and association studies [44–
47], database sequence queries [48], and read mapping[49,50]. Methods such as homomorphic 
encryption[51,52] enable analyzing and processing encrypted data directly. There are, however, a 
substantial computational (requirement for reformulation of algorithms under cryptographic 
primitives [53]), storage (ciphertext expansion), and maintenance costs. Moreover, each algorithm 
must be re-implemented and optimized to efficiently analyze the encrypted data. Multiparty 
computation (MPC) based systems [54,55] provide cryptographic security by dividing data among 
multiple parties. MPC-based systems rely on heavy communication and computational 
requirements on the parties [46] and require algorithms to be redesigned with careful reformulation 
and parameter selection (circuit depth, ciphertext size) to ensure that algorithms can be executed 
efficiently. Consequently, HE and MPC methods are not widely adopted in the community, yet. 
Trusted execution environments (Intel SGX, AMD SEV) use security-by-engineering which are 
vulnerable to numerous attacks[56,57] and rely on trust on a corporate entity. Of note, Intel SGX is 
currently deprecated for client-side processors. Although several anonymization techniques 
exist[58,59], they require reformulation of specific tasks (e.g., relative searching) and may not be 
easily applicable to different high throughput tasks. 

Synthetic datasets have been explored as a potential approach that can be useful for protecting 
privacy[60] in collaborative studies. In these approaches, synthetic datasets are generated at each 
collaborating entity. In this framework, the entities generate a representative synthetic dataset using 
their local sensitive datasets. In the analysis, synthetic datasets are used instead of the original 
sensitive datasets. The privacy of participants is protected since the sensitive datasets are never 
used in analysis. In genomics, synthetic datasets are used for protecting reference panels in 
genotype imputation[61,62], and for analysis of ancestral simulations[63,64]. While these 
approaches provide means for generating synthetic datasets, privacy is still not explicitly introduced 
into the synthetic data generation models. For example, RESHAPE[61] uses a sampling procedure to 
build a “mosaicized” panel starting from the reference datasets. RESHAPE assumes to provide 
privacy to the subjects in the reference panel, which can be shared publicly and can be used as 
imputation panels. However, the allele frequencies and coordinates for the variants at the rare and 
ultra-rare category (including singletons that leak immediate membership information) are 
preserved in the synthetic data, which may make the synthetic datasets vulnerable to well-known re-
identification attacks. Given the dominating number of rare variants in datasets, censoring or 
budgeting these variants does not effectively protect the data[35,65], and would severely decrease 
utility since most of the variants would be censored. There are currently methodological gaps that 
can provide flexible privacy protections while also enabling efficient calculations. 



 

Impact of Proxy Generation Parameters on Imputation 
Accuracy 
We studied the impact of proxy panel generation parameters on the imputation protocol accuracy. 
For this test, we randomly divided the 661 subjects into two panels (330 and 331 subjects) in African 
population (AFR) of The 1000 Genomes Project, and extracted the 16,114 variants on chromosome 
22 of Illumina Duo v3 array to be used as the typed variants. We imputed the 201,040 untyped variant 
genotypes on first AFR panel using the second AFR panel as the reference panel. Each parameter 
was varied while other parameters are held constant at default values (Methods). Imputation 
accuracy is estimated using genotype level R2 metric. 

Hash Weight Selection. We first varied the parameters for random weight selection for 1st, 2nd, and 3rd 
degree components of the rolling hash. Among these, 1st degree components had the most impact 
on the accuracy while 2nd and 3rd degree component selection probabilities did not change the 
accuracy substantially (Supplemental Fig. S1a, 1b, 1c). We chose to keep 2nd and 3rd degree weights 
to increase complexity of the hashing function. We also observed that the minimum number hash 
weights did not make a substantial difference in accuracy (Supplemental Fig. S1d). Interestingly, we 

observed that increasing the variant selection weight parameter (𝑁𝑒
(𝑤)), which increases probability 

of using more local variants for hashing each variant, decreases imputation accuracy (Supplemental 
Fig. S4e). This result suggests that spreading the haplotype information across hashed alleles (lower 
variant selection parameter) increases the accuracy of imputation. The rolling hash window size 
(𝑛𝑣𝑖𝑐) also has a strong impact on accuracy (Supplemental Fig. S4f). We observed that increasing 
hashing window size increased accuracy up to 13 variants (𝑛𝑣𝑖𝑐 = 6) and accuracy decreased at 15-
variant vicinity. This suggests that spreading the allelic information on longer windows can increase 
accuracy. As expected, when the hashing window length becomes too large, the LD information in 
proxy reference panel may become spread adversely for accurate imputation.  

Variant and Genetic Map anonymization Parameters. We assessed the two parameters that are used 
for anonymizing the genetic map distances (𝜎𝑔) and untyped variant permutation filter window 
length. We observed that increasing 𝜎𝑔  decreases accuracy (Supplemental Fig. S1g), especially 
between 𝜎𝑔 = 0.01 and 𝜎𝑔 = 0.05. The untyped variant permutation window size did not make a 
substantial difference in accuracy (Supplemental Fig. S1h). This supports our expectation that HMM-
based imputation tools are insensitive to the permutation of untyped variants when they are 
permuted between the surrounding typed variants.  

Comparison of Proxy Panels with Original Panels 
In this section, we compare the proxy panel and the original panel with respect to their simple 
statistics. Since entities would have access to only the proxy panel, the comparisons presented here 
would not be possible by an adversarial honest-but-curious entity, which is the main adversarial 



model we are focusing on. We, however, compare the original panel and proxy panels to highlight 
how well the proxy panels reflect the original panels that they were derived from.  

Each haplotype in the proxy haplotype panel is generated by 1) resampling, 2) hashing of the typed 
variants alleles and 3) partitioning and permutation of the untyped variants (only for the reference 
site), 4) Protection of the variant positions and genetic maps. We first asked whether the proxy 
haplotypes leak information about the original panel at the level of variants. We compared the proxy 
panel and the original panel in terms of genotype and variant-variant linkages.  

Comparison of genotypes and haplotype frequencies in original and proxy panels. We first assessed 
the correlation between the original variant genotypes. We extracted the genotypes of 661 individuals 
in AFR population of the 1000 Genomes Project and divided the panel into 2 subpanels comprising 
330 and 331 subjects. We used the first panel (original panel) and generated the corresponding proxy 
panel with the same number of subjects. The second panel is used as a matching control (holdout) 
panel. For each variant, we correlated the original panel genotypes (alternate allele dosage) with the 
genotypes of the proxy panel among individuals. We observed no significant correlation between the 
genotypes of the original and the proxy panel (Supplemental Fig. S4a). Further, the genotype 
correlations of original-vs-proxy did not exhibit any enrichment compared to the correlations of 
original-vs-holdout panel. This is expected because the resampling step breaks one-to-one 
correspondence between subjects. When we remove resampling step in proxy panel generation (Fig. 
Supplementary S4a), the distribution of correlations exhibits a large variance. This is also expected 
since for some variants, the hashing may involve a small number of surrounding variants due to 
random hashing weight selection (Methods) which leads to high correlation to the original variant 
alleles. 

We next compared the allele frequency of each variant in the original and proxy panels. We observed 
there is virtually no correlation between allele frequencies of variants in the original and proxy panels 
(Supplemental Fig. S4b). As expected, holdout panel exhibits very high concordance to the original 
panel in allele frequencies. (Supplemental Fig. S4c)  

Variant-variant Linkage and Local Haplotype Frequency Concordance between Original and Proxy 
Panels. We next calculated the Pearson R2 coefficient between genotypes of variant pairs in a sliding 
window of 500 variants to estimate the linkage patterns in original and proxy panels. We observed 
that the variant-variant correlation patterns do not exhibit clear concordance although there is 
significant correlation of (Pearson R=0.33) (Supplemental Fig. S4d). It should be noted that the 
linkage concordance between the original and control panels is much clearer (Supplemental Fig. 
S4e) (Pearson R=0.99). We next compared the local haplotype counts (haplotype comprising k-typed 
variants) between the original, proxy, and the control panels by extracting the k-mers (k=11) in sliding 
windows and calculating the number of unique k-mers in each window. Although there is a small 
correlation between the number of unique k-mers at each position of the proxy and original panels 
(Pearson R=0.01), the concordance is much weaker (Supplemental Fig. S4f, S4g) than the two 
matching panels (Supplemental Fig. S4h, S4i). In particular, we observed that the proxy panel harbor 
an excess of unique k-mers per position compared to the original panel. This result demonstrates 
that random hashing increases the entropy of the k-mer (local haplotype) distribution at each 
position.  



Population Stratification of Proxy-Panels. We finally performed Principal Component Analysis (PCA) 
using the proxy panel genotypes to evaluate how well the population-level information is reflected in 
proxy panels in comparison to the original panel. In this analysis, we first extracted the genotypes of 
the 1000 Genomes Project from the EUR, AFR, and EAS populations and performed PCA on the 
original genotypes and the proxy genotypes. When the sampling step is performed, PCA did not 
provide any information about the ancestry of the proxy panels (Supplemental Fig. S4j). When we 
generated the proxy panel without the resampling step, the proxy panel separated into 3 distinct 
clusters. This is expected because sampling shuffles the haplotypes into mosaics and ancestry 
information is lost among the sampled mosaic haplotypes. To assess if it is possible to match the 
subjects to each other when sampling is not used, we aligned the SNPs by their chromosomal order 
and we merged proxy and original genotype matrices into a pooled genotype matrix and performed 
PCA on the pooled matrix. This shows that the original and proxy panels separate into 6 distinct 
clusters (Each corresponding to an ancestral group in original and proxy panels) with no clear mixing 
between them. 

Overall, these results indicate that proxy panels do not leak substantial first order (allele frequencies) 
or second order information (variant linkage or population stratification) about the original sensitive 
panels and it is unlikely to perform re-identification using proxy panels without a malicious intent 
(e.g., stealing hashing parameters). Application of Homer’s t-statistic and LRT attacks are not 
immediately possible on proxy panels since variant coordinates are obfuscated and the genotypes 
are hashed. We also hypothesize that linking attacks (matching each subject in proxy panel to an 
external panel) are unlikely when sampling step is used because each proxy-haplotype is a random 
mosaic of the original haplotypes. 

On Protection of Variant positions and Genetic maps by 
ProxyTyper 
Homer(Homer et al. 2008) and LRT-type re-identification attacks(Sankararaman et al. 2009) attacks 
require matching the variant positions between the reference panel and the mixture panel so that 
attack statistics can be calculated for identifying a target individual with known genotypes. To ensure 
that the proxy variant positions are not directly linkable to external panels, ProxyTyper obfuscates the 
variant positions by replacing variant positions to be distributed uniformly on an anonymous 
chromosome with length of, by default, 108 nucleotides. Even though the variant positions are 
obfuscated, genetic maps can be aligned to public sources to match them and reveal exact 
locations. To protect the genetic maps that are shared among the sites, ProxyTyper perturbs the maps 
by noise addition with a user-specified deviation 𝜎𝑚𝑎𝑝, measured in centiMorgans (cM). For example, 
given 𝜎𝑚𝑎𝑝 = 0.05 𝑐𝑀, corresponds to approximately 50 kilobases (1 megabase/cM) of perturbation 
to the position of the variant. ProxyTyper generates anonymized genetic maps only for the typed 
variants (other entries in the original map are discarded) because untyped variant genetic maps are 
interpolated by imputation software from typed variants. It should be noted that imputation tools do 
not require variant coordinates when genetic maps are available. This is expected since imputation 
HMMs work on executing Li-Stephens model using the genetic distances and coordinates (in base 
pairs) are not needed. The coordinate anonymization for typed and untyped variants is basically a 



one-to-one mapping between original and anonymized coordinates. ProxyTyper stores these in 
extended BED files. The anonymized genetic maps for typed variants (in anonymized coordinates) 
are stored in Plink formatted genetic distance map files. 

The main objective of coordinate and genetic map anonymization mechanism is protection at a local 
scale, i.e., local perturbation of the variants to make sure variants cannot be exactly pinpointed. Note 
that this mechanism does not protect the coordinates at a global manner since even the total genetic 
length (in centiMorgans) of the chromosomes leak the chromosome identity. After assigning the 
chromosome, approximate positions can be assigned by aligning the noise genetic distance to 
publicly available genetic maps. Although the public genetic maps can be used for roughly aligning 
and de-anonymizing the proxy panel coordinates, it is not likely to perform a perfect match. 

Steps of ProxyType’d Genotype Imputation Protocols 
Phased Query Protocol (Fig 3b). Given a phased panel, the query initiates the protocol by sending 
the typed variants to the reference site (e.g., a BED file). The reference site initializes the parameters 
for the augmentation, hashing, permutation, and coordinate anonymization mechanisms and sends 
them to the query site. Sites then execute following mechanisms in the order:  

1) Resample haplotypes: Resampling is performed independently on query and reference sites. This 
step does not require communication between the sites or the mechanism parameters. The 
resampled panel size is selected based on the underlying panel size.  

2) Augment, hash, permute typed variants: Typed variants are first augmented. By default, 
ProxyTyper performs 3 recursive augmentations and augments each typed variant within 2 tags in the 
vicinity. Variants are hashed using 11 typed variant vicinity and permuted within 7 typed variant 
vicinity where in each window is permuted with 20% probability.  

3) Anonymize coordinates and genetic maps for all variants: The coordinate system is anonymized 
to a chromosome with length 100 megabases. The genetic map is anonymized with the default noise 
level.  

4) Untyped Variant Partitioning at the Reference Site: The reference site generates the parameters 
for the untyped variant partitioning mechanism and stores them locally. 

5) Imputation on the Server: The query and reference proxy panels and the anonymized genetic map 
are sent to the imputation server (Fig. 3b), which executes Beagle and sends the imputed panel for 
the proxy query panel back to the query site. Note that although the query panel is phased, it is sent 
as an unphased panel to the imputation server. 

6) Local Re-Imputation on Query Site: As the query proxy panel was generated starting from the 
resampled query panel (Step 1 above), the imputed genotypes do not correspond to the original 
query subjects. To map the imputed genotypes back to the original panel, the query panel performs 
Steps 2 and 3 on the original query panel (without resampling step) and use this encoded panel as 
input to perform a local re-imputation. In the local re-imputation, the panel downloaded from the 
imputation server is used as the reference panel option. 



The phased protocol can be simplified using two subprotocols in Fig. 3a, which demonstrates the 
mechanisms can be used as building blocks of different subprotocols and larger protocols. Note that 
These steps are implemented into a complete phased query protocol in ProxyTyper’s codebase with 
the default parameters described above. 

Unphased Query Protocol (Fig 3c). When the query panel is unphased, haplotype resampling is 
used only on the reference site. To protect typed variants, sites use augmentation (by default 4 
recursive augmentations) followed by permutation mechanisms (by default 9-typed variant long 
permutation windows with 50% permutation on each window). Coordinates and genetic maps are 
anonymized as phased protocol. The reference site on the resampled panels uses the untyped 
variant partitioning to protect untyped variation positions and genotypes. Since the query site does 
not use resampling in the unphased query protocol, The imputed panel returned from Imputation 
Server is used as it is, which renders the unphased query protocol simpler than the phased query 
protocol, offering a simpler protocol. 

From participant privacy perspective, phased query protocol is more privacy preserving than the 
unphased protocol since it uses resampling on the query panel. Further, the query and reference site 
alleles are hashed, which adds another layer of protection. Unphased query protocol relies mainly 
on augmentation followed by a stronger permutation mechanism.  

Practical Attack Routes to Proxy Panels generated by 
ProxyTyper 
No data protection scheme is perfectly secure, even when the encryption/hashing keys are 
protected. We therefore strongly recommend protecting the proxy panels from public access. 

We discuss a pipeline that we would use to attack a proxy panel generated by ProxyTyper. We assume 
that the adversary has following:  

1) Access to public resources such as 1000 Genomes Project, dbSNP, UCSC Genome Browser, 
etc.  

2) Gained access to a proxy panel built by ProxyTyper’s protocol,  
3) Adversary is incentivized to decode proxy panels. 

Selection of Attack Reference Panel: The most feasible attacks would start with an “attack-
reference panel” because the genomic coordinates are not available to the adversary. By far, the 
most feasible panel for this is the 1000 Genomes Project panel, which is public.  

Coordinate Matching by Aligning Anonymized Genetic Maps to Public Genetic Maps: Next, the 
coordinates must be matched between the attack-reference panel and the proxy panel. It would be 
unlikely to accurately do a 1-to-1 mapping of the variants in the proxy panel to the variants in the 
attack-reference panel because ProxyTyper uses typed variant augmentations and randomized local 
permutations. Thus, the most practical way to perform matching is where the attacker will map 
approximately where each proxy variant is on the attack-reference panel by aligning the anonymized 
genetic maps to a publicly available genetic maps (e.g., HAPMAP’s genetic maps).  



Frequency Analysis on the Haplotype Frequencies: Finally, the reference panel is compared with 
the proxy panel with a frequency analysis (the standard attack mode for ciphertext-only-attacks, i.e., 
when only ciphertext is available to an attacker or cryptanalyst) to decode the hashed alleles using 
decoding HMM, which has at least the same computational complexity as imputation. Note that, in 
this setup, what the adversary decodes are not the variants in the proxy panel but the variants in the 
attack-reference panel. This is because the coordinate mapping from attack-reference to the proxy 
panel does not reveal exact mappings of each variant to the adversary. In other words, the adversary 
could only decode which variants they have in the attack-reference panel. This has certain 
implications on the risks and design of future protection mechanisms: 

1) The decoded variants would not reveal the actual variants in the sensitive panel; they would 
only reveal the variants on the attack-reference panel. One could argue that this is a different 
type of smaller risk of leakage since actual sensitive variants are still not directly accessible 
by the adversary, i.e., the adversary decodes a “projection” of the sensitive panel on the 
attack-reference panel.  

2) Any deviations between the attack-reference panel and the original sensitive panel will lead 
to differences in haplotype frequencies and will lead to low decoding accuracy. This means 
that resampling mechanisms can aim at slightly shifting haplotype frequencies such that 
public panels are not similar in haplotype frequencies to the resampled panels. The simplest 
strategy to accomplish this is to “dope” a small fraction of randomly selected haplotypes 
from different ancestries (e.g. from the 1000 Genomes Project haplotypes) while resampling.  

3) The strategy in (2) also makes it more challenging to perform the membership inference 
attacks (e.g., Homer et al. t-test) since the resampled panels are diverged from the publicly 
available reference panels.  

Below, we present a decoding HMM that performs a more complete frequency analysis by taking into 
account the continuity of the haplotypes and test its accuracy on a well-controlled dataset. 

Viterbi Decoding of Attack on Typed Variants and Likelihood Ratio Test 
Reidentification  
We describe the Viterbi decoding algorithm that is used for decoding the hashed alleles in the proxy 
panels. Decoding algorithm is similar to an imputation HMM that decodes the hashed (proxy) alleles 
in a proxy panel by combining a frequency analysis of proxy panel k-mers with reference panel k-
mers. It should be noted that the k-mer length in decoding is independent of the proxy panel 
generation k-mer lengths. 

Inputs: The adversary has access to a proxy panel that is being decoded. Adversary uses a public 
reference panel to estimate the frequencies of the cleartext k-mers and match them at each k-mer. 
It should also be noted that the proxy panel’s variant coordinates are anonymized, i.e., adversary 
needs to predict the positions of the typed variants. Rather than predicting the positions of variants, 
we assumed that the attacker approximately predicts where the variants are using, for example, LD 
statistics. To simulate this, we divided the 87,960 typed variants into 2 equal sized sets by assigning 
every 1st variant to the first set and every 2nd variant to the second set, i.e., the variants sets are 
interleaved with respect to each other. Coordinates of the 1st variant set are used for the proxy panel 
and those of the 2nd set is used for the reference panel. Simply put, this corresponds to the attacker 



using an interleaved set of variants for the attack. The proxy panel is generated from a sample of 100 
subjects from the AFR populations in the 1000 Genomes Project. For decreasing computational 
complexity, we focused on a region of 100 megabases (chr1:10,000,000-110,000,000), which 
contains 19,379 variants. The reference panel (in comprises the genotypes of 461 subjects. We also 
used a hold-out panel of 100 subjects that are used as a control panel. 

Transition and Emission Probabilities: The decoding HMM uses a modification of the Li-Stephens 
model[66] that is used in imputation methods. The decoding HMM runs on the coordinates of the 
reference panel and uses each reference haplotype as a state in the Markov model. The transition 
probability at each position is assigned using the genetic distances and the consecutive k-mer 
concordance. At reference variant position 𝑖, the transition probability is defined as: 

𝜏𝑖
(𝐿𝑆)(𝑗′ → 𝑗) =

{
 
 

 
 

𝑝𝑟𝑒𝑐𝑜𝑚𝑏 =

(1 − exp (−4 × 𝑁𝑒
(𝑑𝑒𝑐)

×
(Δ𝑔[𝑖] − Δ𝑔[𝑖 − 1])

𝑁𝑟𝑒𝑓
))

𝑁𝑟𝑒𝑓
, 𝑗 ≠ 𝑗′

 1 − (𝑁𝑟𝑒𝑓 − 1) × 𝑝𝑟𝑒𝑐𝑜𝑚𝑏 , 𝑗 = 𝑗′

 

which is described by Li-Stephens model. Note that the transition does not rely on the haplotype 
indices (i.e., states) except for the staying on the same state, i.e., all same state transitions are 

assigned the same probability. 𝑁𝑒
(𝑑𝑒𝑐) is set to default value of 106. We modify this transition 

probability to introduce the concordance of haplotype frequencies: 

𝜏𝑖
(𝐻𝑎𝑝𝐹𝑟𝑒𝑞)(𝑗′ → 𝑗) = 𝜏𝑖

(𝐿𝑆)(𝑗′ → 𝑗) ×
exp (−1 × |𝑓(𝐻̃[𝑖−𝑘,𝑖+𝑘],𝑗′) − 𝑓 (𝐻[𝑖−𝑘,𝑖+𝑘],𝑗

(𝑟𝑒𝑓)
)| ) 

Ξ
,   

where 𝑘 denotes the vicinity length (i.e., total k-mer length is (2𝑘 + 1)) and Ξ denotes the 
normalization factor over all haplotypes. Above equation integrates concordance of the allele 

frequencies between the proxy panel (𝑓(𝐻̃[𝑖−𝑘,𝑖+𝑘],𝑗′)) and the reference panel (𝑓 (𝐻[𝑖−𝑘,𝑖+𝑘],𝑗
(𝑟𝑒𝑓)

)) to the 

transition score. We further need to introduce the constraint on consistency of the consecutive k-
mers on the current haplotype (i.e., state 𝑗) state and previous state (state 𝑘) at variant position 𝑖 − 1:  

𝜏𝑖
(𝐷𝑒𝑐)(𝑗′ → 𝑗) = 𝜏𝑖

(𝐻𝑎𝑝𝐹𝑟𝑒𝑞)(𝑗′ → 𝑗) × exp(−𝜅𝑐𝑜𝑛𝑐 ×
|𝐻
[𝑖−𝑘,𝑖−1+𝑘],𝑗′
(𝑟𝑒𝑓)

−𝐻[𝑖−𝑘,𝑖−1+𝑘],𝑗
(𝑟𝑒𝑓)

|

(2𝑘 + 1)
) 

where we score the distance between the overlapping substrings of the two k-mers at positions [𝑖 −
1 − 𝑘, 𝑖 − 1 + 𝑘] and [𝑖 − 𝑘, 𝑖 + 𝑘]. The modifications in the equations constrain the concordance 
between the frequencies of the reference panel and the proxy panel, and also the concordance of 
the emitted reference panel k-mers between current haplotype and the previous haplotype. This way 
HMM can follow haplotypes with concordant consecutive k-mers by making transitions between 
them.  𝜅𝑐𝑜𝑛𝑐  denotes a weight that tunes the weight of k-mer concordance between two positions. 
This value is set as: 

𝜅𝑐𝑜𝑛𝑐 = −8.8 × (2𝑘 + 1) 

which penalizes every additional mismatch between the consecutive k-mers by 10−4, which is the 
default mismatch score in BEAGLE for allelic errors.  



𝜏𝑖
(𝐷𝑒𝑐)(𝑖 → 𝑗) denotes the overall probability of making the transition from state (i.e., haplotype) 𝑖 to 

state 𝑗 given the query k-mer and the reference k-mers at the current typed variant position. Note that 

this transition probability takes into account (1) the recombination rates (𝜏𝑖
(𝐿𝑆)(𝑗′ → 𝑗)), (2) the k-mer 

frequency concordance (𝜏𝑖
(𝐻𝑎𝑝𝐹𝑟𝑒𝑞)), (3) Continuity of the k-mers by comparing the overlapping 

substrings in the k-mers (𝜏𝑖
(𝐷𝑒𝑐)(𝑗′ → 𝑗)).  

Scoring Matrix Calculation. Given a reference panel haplotype that consists of 𝑛𝑣𝑎𝑟  variants, we 
allocate 𝑛𝑣𝑎𝑟 × 𝑁𝑟𝑒𝑓  matrix of probability scores, denoted by 𝑆. We initialize the scoring matrix at the 
first variant position uniformly. At state (i.e., haplotype) 𝑗, the initialization is performed as: 

𝑆0,𝑗 =
1

𝑁𝑟𝑒𝑓
 

At variant position 𝑖 > 0, the score at state (i.e., haplotype) 𝑗 is calculated by evaluating all state 
transitions at the previous variant position 𝑖 − 1: 

𝑆𝑖,𝑗 = max

(

 
 

𝑆𝑖,1 × 𝜏𝑖
(𝐷𝑒𝑐)(1 → 𝑗),

𝑆𝑖,2 × 𝜏𝑖
(𝐷𝑒𝑐)(2 → 𝑗),
…

𝑆𝑖,𝑁𝑟𝑒𝑓 × 𝜏𝑖
(𝐷𝑒𝑐)

(𝑁𝑟𝑒𝑓 → 𝑗))

 
 

 

This recursion is calculated starting from 𝑖 = 1 to 𝑖 = 𝑛𝑡𝑦𝑝𝑒𝑑  for all reference haplotypes 𝑗 < 𝑁𝑟𝑒𝑓. 
For each proxy haplotype, the scoring matrix is calculated and the final score matrix is traced back 
using Viterbi algorithm to identify the highest scoring haplotype sequence over the reference 
haplotypes. The Viterbi path is basically a path through the haplotypes of the reference panel. The 
final decoded allele sequence is obtained by using the allele in the middle of the k-mer window. 

Reidentification of individuals within decoded proxy panel using LRT Attack. After the alleles are 
decoded, we use the decoded haplotype matrix as a pool in which a target individual with known 
genome is searched. The adversary uses the same reference panel used for performing the re-
identification attack. The LRT attack statistic is calculated as described in Sankararaman et. al. 
(Supplementary Information page 25 in [25]) by comparing the allele frequencies of variants between 
the pool and the reference dataset. LRT statistic is calculated as:  

𝐿 = ∑ [ℎ𝑗 × log (
𝑝̃𝑗

𝑝𝑗
) + (1 − ℎ𝑗) × log (

1 − 𝑝̃𝑗

1 − 𝑝𝑗
)]

1≤𝑗≤𝑀

 

where ℎ𝑗 ∈ {0,1} denotes the binary allele value at 𝑗𝑡ℎ  variant, 𝑝̃𝑗  denotes the frequency of alternate 
allele (ℎ𝑗 = 1) in the pool and 𝑝𝑗  denotes the frequency of alternate allele in the reference panel. LRT 
statistics are calculated for all decoded haplotypes. 

We evaluated three case scenarios to calculate the re-identification statistics that are shown in 
Supplemental Figure S5: 

1) Use decoded proxy panel as the pool (Actual attack scenario, Supplemental Fig. S5b): This is 
the basic scenario when proxy panel is used for protecting the panel. Adversary tries to 
identify if an individual with known genotypes is in the decoded panel. 



2) Use the cleartext original panel as the pool (Baseline scenario with original data for pool 
panel with no protection, Supplemental Fig. S5c): This is the baseline attack scenario where 
adversary has access to the cleartext sensitive panel and tries to identify individual’s 
participation in the panel.  

3) Use the cleartext resampled original panel as the pool (Control case scenario with sampled 
mosaic panel without allele hashing as the pool panel, Supplemental Fig. S5d): This scenario 
evaluates the participation prediction when only resampling is used.  

Application of the Viterbi Decoding of Proxy Alleles and Re-identification 
Attacks 
Our previous results indicate that there is small but significant correlation linkage of consecutive 
variants in original and proxy panels (Supplemental Fig. S5a). The main risk for re-identification in the 
proxy-panels will stem from decoding of the proxy-alleles to infer the original panel by matching the 
haplotype frequencies using an external panel, followed by a re-identification attack such as an LRT 
attack. This requires an adversary to decode the hash function weights at every variant, which is 
unlikely without external knowledge (e.g., stolen or leaked parameters which may lead to known-
plaintext attacks). We assume that the adversary only has access to the proxy panel haplotype matrix 
with some knowledge of the hashing function such as the size of vicinity window but does not know 
the weights of hashing. While it is not immediately available, the size of vicinity window used for 
hashing could potentially be inferred from the proxy panel’s k-mer frequency statistics.  

One attack for decoding the proxy panels can make use of two properties of the hash function: Firstly, 
hashing of consecutive variants use overlapping windows, i.e., if the adversary can guess the original 
k-mers at a position, these k-mers can be used to make a better decoding prediction for the next 
variant. Secondly, the k-mer frequencies between the proxy panel and original panel are somewhat 
concordant, e.g., a high frequency k-mer in the original panel is likely a high frequency k-mer in proxy 
panel and vice versa. Thus, the adversary does not have to infer the weights of the hash function but 
try to match the k-mers based on their similarity in proxy and reference frequencies to decode and 
map the proxy k-mers back to original k-mers while using the k-mer at previous position as a 
constraint and perform a frequency analysis attack[67]. This process can be implemented in an HMM 
(similar to genotype imputation) while considering the recombination rates (estimated from genetic 
distances) as further constraints on the decoded alleles. 

To test the viability of this attack, we implemented a modified version of the Li-Stephens hidden 
Markov model that can decode the k-mers in proxy haplotypes by comparing their frequencies in the 
proxy panel to those in a separate reference dataset (Methods). While decoding a proxy haplotype, 
HMM starts from the first variant. At each variant on the proxy haplotype, HMM constrains the 
possible reference k-mers in comparison with the previous position, and the frequency concordance 
between the proxy haplotype’s k-mers and the original k-mers, and integrates the recombination 
frequencies (i.e. haplotype switch) using the genetic distances. Finally, it assigns a score to each 
reference haplotype that quantifies the likelihood that the original alleles are emitted from the 
respective reference haplotype. After all haplotypes are scored for all variants, Viterbi decoding is 
used to trace back the highest scoring decoded allele sequence for the proxy haplotype. Given that 
each variant is independently hashed, this procedure will find the haplotypes with largest joint 



probabilistic score that combines the haplotype frequency concordance between the proxy panel 
and the reference panel, and the recombination rates of consecutive SNPs. 

Of note, the computational resources for executing this HMM is at least as large as a Viterbi-based 
imputation HMM. Furthermore, the state reduction techniques[68] are not directly applicable to the 
proxy-decoding HMM because the state-switching probabilities rely on both the variant location and 
the k-mer concordance. Therefore, unlike Homer’s attack and LRT attacks, which can be easily 
performed by honest-but-curious entities, proxy-decoding attacks require large computational 
resources with a malicious intent. 

To test accuracy of the re-identification using decoded proxy panels, we divided the 661 subjects in 
AFR population of the 1000 Genomes Project into three panels. The first panel (100 subjects) is used 
to generate a proxy panel. The second panel (461 subjects) is used as the reference panel for proxy-
decoding and LRT attack. The third panel (100 subjects) is held out as a control for the baseline LRT 
attack on non-matching individuals (control panel). We focused on the 87,960 variants on 
chromosome 1. Since the variants used by the proxy panels are obfuscated, we divided the variants 
into two categories by assigning every other variant to the proxy panel and the remaining variants to 
the reference panel such that the panels contained 43,980 non-overlapping variants. This way, we 
assume that the attacker approximately guesses the positions of the proxy panel variants. To 
decrease computational requirements, we focused on the variants between 10-100 million base 
pairs, which results in 19,379 variants. We generated the proxy panel for the first panel and decoded 
the proxy-haplotypes using the reference panel. We next evaluated the accuracy of the decoded 
alleles (for proxy panel variants) by calculating the concordance of the known original panel alleles 
and the decoded alleles. As a baseline control, we shuffled the decoded panel subjects and 
calculated the average allelic difference between shuffled decoded panel and the first panel. 
Overall, the proxy-decoding procedure does provide improvement of around 7% over control (30% vs 
23%) (Supplemental Fig. S5a) when small hashing window length is used (hashing with 7-mers). As 
the hashing window length is increased to 17-mers, the accuracy of decoded proxy is 3% lower than 
control (30% vs 27%) (Supplemental Fig. S5a). 

LRT Attack using Decoded Proxy Panel. We next used the proxy decoded alleles of the proxy panel 
in LRT-based re-identification attack. For this, we used the decoded proxy panel as a pool in which 
the adversary tries to re-identify an individual whose genome is available. The reference panel (461 
subjects) used for decoding is again used as the reference panel for the LRT-based attack. For each 
original panel subject, we calculate the LRT statistic. As a control to individuals in the pool (original 
panel), we calculated the LRT statistic for the subjects in the held-out control panel (100 subjects), 
who did not participate in the pool. When the LRT statistics are compared, we did not find a clear 
separation between the distribution of LRT scores for the original panel subjects and the control 
panel subjects (Supplemental Fig. 5b). When we applied LRT on the cleartext panels (no proxy 
panels), the test statistic clearly distinguishes the original and control panels for re-identifiability 
(Supplemental Fig. S5c). We also calculated LRT test on the sampled original panel without hashing, 
i.e., usage of mosaic haplotypes only and observed that original panel can be easily distinguished 
from control panel (Supplemental Fig. S5d). However, the test may be miscalibrated (LRT statistic is 
below 0 for approximately half of the original panel subjects). This result demonstrates the 
importance of using the allele hashing while sharing haplotype datasets. We also observed that when 
the population of the reference panel in LRT attack does not match to the ancestry of the proxy panel, 



it is challenging to calibrate LRT attack to re-identify individuals. This is concordant with previous 
studies that highlighted the importance of matching ancestry of the reference panel to the target 
individual and the pool that is being tested[38,39]. Unless the adversary has the knowledge of exact 
ancestral groups of the individuals in proxy panel, we expect that the re-identification will be more 
challenging than our approach. Notably, our previous results show that a PCA analysis does not 
immediately reveal ancestral status of subjects in the proxy panel (Supplemental Fig. S4j). This 
renders it more challenging for an adversary to build a reference panel for re-identification purposes.  

Emission Probability and Imputation-based Attacks on 
RESHAPE’d panels 
RESHAPE uses a sampling approach to generate mosaicize’d panels from phased panels. The 
sampling relies on one parameter of RESHAPE, which is the number of generations. The number of 
generations tunes the number of recombinations that are used in samplings. It is expected that the 
higher number of generations should provide strong privacy protections. In the imputation accuracy 
tests, we used number of generations set to 128, which was deemed to be a strong protection 
parameter in the RESHAPE study. 

Emission Probabilities of RESHAPE’d reference panels can re-identify 
individual participation. 
Similar to the previous decoding attack scenario on ProxyTyper, we asked whether the participation 
of individuals can be identified when we are given a RESHAPE’d panel. For this, we implemented a 
forward algorithm to calculate the emission probability of a phased genome. This is very simple 
algorithm that calculates the total probability over all of the Markov chain paths using Li-Stephens 
recombination probabilities.  

To test this simple emission probability test, we randomly selected 5000 subjects from the Haplotype 
Reference Consortium panel, which represent the reference panel that will be protected via 
RESHAPE. We also selected 200 subjects from the reference panel that we will use as the positive 
set from within the protected reference panel. We next selected 200 subjects as the holdout 
(negative) set from HRC panel, which does not overlap with the 5,000 subject reference panel.  

We selected 20,000 random variants from the region 20:10,000,000-20,000,000 region. We first ran 
RESHAPE to protect the 5,000 subject reference panel using number of generations set to 128 
generations. We calculated the emission probabilities of every subject in positive and negative 
panels (400 subjects in total) using the RESHAPE’d panel as the reference panel, which is shown in 
Supplemental Figure 6a.  We observe a clear separation between the positive and negative panels.  

Simple Statistics may Inadvertently be used to re-identify individual 
Participation. 
The emission probability attack we demonstrated above may be deemed too complex for an honest-
but-curious entity.  



We therefore asked if there are simpler statistics that can inadvertently leak information to a curious 
entity. We first emphasize that the emission probabilities that we calculated above ae based on the 
forward algorithm, which is very efficiently calculated within imputation tools such as BEAGLE. In 
fact, BEAGLE performs forward-backward calculations much more efficiently than our 
implementation. These forward-backward variables are used to calculate the posterior probabilities 
of imputed alleles. Using an educated guess, we reasoned that the emission probabilities should 
correlate with the emission probabilities from a simple BEAGLE run.  

To test this expectation, we used 10,000 subjects and 150,000 variants and ran RESHAPE using the 
number of generations in the set {128, 256, 512}. From within 10,000 subjects, we randomly selected 
1,000 subjects as the positive subjects. We similarly selected 1,000 non-overlapping subjects as the 
holdout negative subject set.  

For each of the positive/negative panel, we set randomly selected 75,000 variants aside as typed 
variants and ran BEAGLE to impute the remaining 75,000 variant variants where the positive and 
negative sets were used as the panels with typed variants and the RESHAPE’d panel with 10,000 
subjects (with 150,000 variants) as the reference panel.  

We finally wrote an awk script to calculate the average of the total imputed allele frequency (which 
is a floating-point value between 0 and 2) for each subject, which are shown as box plots in 
Supplemental Figure S6b. It can be seen that there is strong separation between the average imputed 
allele frequencies of the variants of positive and negative subjects. As expected, the positive subjects 
have substantially higher imputed allele frequencies compared to the negative set. This is expected 
since subjects in the positive set have their genome integrated into the RESHAPE’d panel. Thus, when 
we use the RESHAPE’d panel as a reference, the imputed probabilities are much higher for the 
subjects who were in the RESHAPE’d panel compared to the subjects who were not included in the 
RESHAPE’d panel (i.e., negative panel.) Interestingly, we observe a strong separation for 256 
generations (Supplemental Figure S6c) and separation is still observed for 512 generations 
(Supplemental Figure S6d). Overall, these results indicate that releasing the coordinates and alleles 
of variants may inadvertently lead to an attack surface that can be used to leak information that may 
be deemed privacy breaching. 

We do not consider any further linking attacks since these would not accomplish any reasonable 
purpose. We, however, do believe plaintext release of variant coordinates and alleles can be 
problematic under numerous known genealogy data probing attacks for re-identifying individuals. 
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