
Supplementary Algorithms of

Combining DNA and protein alignments to improve genome
annotation with LiftOn

Kuan-Hao Chao1, 2, *, Jakob M. Heinz3, Celine Hoh1, 2, Alan Mao1, 2, 4, Alaina Shumate2, 4,
Mihaela Pertea1, 2, 4, and Steven L Salzberg1, 2, 4, 5, *

1Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
2Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
3Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA

4Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
5Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21211, USA

*corresponding authors: kh.chao@cs.jhu.edu, salzberg@jhu.edu

mailto:kh.chao@cs.jhu.edu
mailto:salzberg@jhu.edu

Algorithm S1: The protein-maximization algorithm pairing Liftoff and miniprot gene loci

Inputs:

- lifton_gene: An instance of the LiftOn class, which stores gene information.

- locus: A Feature instance from the gffutils package representing a genomic locus.

- ref_db, liftoff_db, miniprot_db: FeatureDB instances from the gffutils package for reference,

liftoff, and miniprot annotations, respectively.

- m_id_trans_dict: Dictionary mapping reference transcript IDs to lists of miniprot transcript IDs.

- tree_dict: Dictionary mapping reference chromosome IDs to IntervalTree instances.

- tgt_fai: Fasta instance from the pyfaidx package, storing target genome sequences.

- ref_proteins, ref_trans: Fasta instances from the pyfaidx package, storing reference protein

and transcript sequences, respectively.

- features_dict: Dictionary mapping reference feature IDs to Lifton_feature instances.

- ENTRY_FEATURE: Boolean flag indicating if the current feature is the root feature for lifting over.

Returns:

- lifton_gene: Updated or new lifton_gene instance with processed data.

Process liftoff annotation and create lifton_gene instance

function protein_maximization(lifton_gene, locus, ref_db, liftoff_db, m_id_trans_dict, miniprot_db,

 tree_dict, tgt_fai, ref_proteins, ref_trans, features_dict, ENTRY_FEATUR=False):

 exon children = liftoff_db.children(locus, featuretype='exon', level=1, order_by='start')

 if lifton_gene is None and ENTRY_FEATURE: # LiftOn gene initialization

 lifton_gene, ref_gene_id, ref_trans_id =initialize_lifton_gene(locus, ref_db, tree_dict, features_dict)

 if lifton_gene.ref_gene_id is None: return None

 if len(exon_children) == 0: # processing features without exons

 parent_feature = lifton_gene if ENTRY_FEATURE else lifton_gene.add_feature(deepcopy(locus))

 features = liftoff_db.children(locus, level=1)

 for feature in features:

 lifton_gene = protein_maximization(parent_feature, feature, ref_db, liftoff_db, m_id_trans_dict,

 miniprot_db, tree_dict, tgt_fai, ref_proteins, ref_trans, features_dict)

 else: # processing features with exons

 if ENTRY_FEATURE:

 ref_trans_id = ref_gene_id

 else:

 ref_gene_id, ref_trans_id = lifton_utils.get_ref_ids_liftoff(features_dict,

 lifton_gene.entry.id, locus.id)

 lifton_trans, cds_num = lifton_add_trans_exon_cds(lifton_gene, locus, ref_db, liftoff_db, ref_trans_id)

 if cds_num > 0:

 liftoff_aln = LiftOn_liftoff_alignment(lifton_trans, locus, ref_proteins)

 miniprot_aln, valid = LiftOn_miniprot_alignment(locus, m_id_trans_dict, miniprot_db, ref_proteins)

 if liftoff_aln.identity < 1 and valid:

 cds_list = chaining_algorithm(liftoff_aln, miniprot_aln, tgt_fai)

 lifton_gene.update_cds_list(lifton_trans.entry.id, cds_list)

 lifton_gene.orf_search_protein(lifton_trans.entry.id, ref_trans_id, tgt_fai, ref_proteins, ref_trans)

 return lifton_gene

Iterate through Liftoff features, pair them with corresponding miniprot transcripts, and run the protein-

maximization algorithm.

for feature in features:

 for locus in liftoff_db.features_of_type(feature):

 lifton_gene = protein_maximization(None, locus, ref_db.db_connection, liftoff_db, m_id_trans_dict,

 miniprot_db, tree_dict, tgt_fai, ref_proteins, ref_trans, features_dict, True)

Algorithm S2: Mapping CDS boundaries onto a protein alignment

Inputs:

- cds_lens (list of integers): Lengths of coding sequences.

- cds_protein_aln_boundary (list): List of tuples, each representing the start and end boundary of a CDS in

protein coordinates. – (cds_start, cds_end)

- cigar_ls (list): List of tuples, each representing the length and type – (cigar_len, cigar_symbol)

Map the CDS boundaries onto proteins

function get_cds_protein_boundary(cds_lens):

 cds_cumulative = [sum(cds_lens[:i+1]) for i in range(len(cds_lens))]

 cds_cumulative_div = [x / 3 for x in cds_cumulative]

 cds_protein_boundary = {}

 for idx in range(len(cds_cumulative_div)):

 start = cds_cumulative_div[idx - 1] if idx > 0 else 0

 end = cds_cumulative_div[idx]

 cds_protein_boundary[idx] = (start, end)

 return cds_protein_boundary

Adjust the CDS boundaries on protein-to-protein alignments.

function adjust_cds_protein_boundary(cds_protein_aln_boundary, D_accum_len, length):

 cds_boundary_shift = 0

 for i, (cds_start, cds_end) in enumerate(cds_protein_aln_boundaries):

 if (cds_start <= D_accum_len) and (cds_end >= D_accum_len):

 # Adjust CDS boundaries

 cds_boundary_shift += length

 cds_end += length

 cds_protein_aln_boundary[i] = (cds_start, cds_end)

 return cds_protein_aln_boundary

Map CDS boundaries onto a protein alignment

cds_protein_boundary = get_cds_protein_boundary(cds_lens)

D_accum_len = 0

cds_protein_aln_boundary = cds_protein_boundary.copy()

for length, symbol in cigar_ls:

 if symbol == "D":

 # Deletion in CIGAR string => (longer protein sequence in the extract Liftoff or miniprot proteins)

 cds_protein_aln_boundary = adjust_cds_protein_boundary(cds_protein_aln_boundary, D_accum_len, length)

 D_accum_len += length

Algorithm S3: The chaining algorithm

Inputs:

- liftoff_aln: An instance of Lifton_Alignment class, storing Liftoff parasail protein alignment information

- miniprot_aln: An instance of Lifton_Alignment, storing parasail miniprot parasail protein alignment information

- tgt_fai: An Fasta instance from the pyfaidx package, storing target genome sequences

The main LiftOn chaining algorithm.

function chaining_algorithm(liftoff_aln, miniprot_aln, tgt_fai):

 l_children, m_children = liftoff_aln.cds_children, miniprot_aln.cds_children

 m_c_idx, l_c_idx, m_c_idx_last, l_c_idx_last = 0, 0, 0, 0

 cds_list, ref_aa_liftoff_count, ref_aa_miniprot_count, chains = [], 0, 0, []

 while m_c_idx != (length(m_children) - 1) or l_c_idx != (length(l_children) - 1):

 if m_c_idx == length(m_children) - 1 and l_c_idx < (length(l_children) - 1):

 l_c_idx, ref_aa_liftoff_count = push_cds_idx(l_c_idx, liftoff_aln, ref_aa_liftoff_count)

 else if m_c_idx < length(m_children) - 1 and l_c_idx == (length(l_children) - 1):

 m_c_idx, ref_aa_miniprot_count = push_cds_idx(m_c_idx, miniprot_aln, ref_aa_miniprot_count)

 else:

 m_c, l_c = m_children[m_c_idx], l_children[l_c_idx]

 if ref_aa_liftoff_count < ref_aa_miniprot_count:

 l_c_idx, ref_aa_liftoff_count = push_cds_idx(l_c_idx, liftoff_aln, ref_aa_liftoff_count)

 else if ref_aa_liftoff_count > ref_aa_miniprot_count:

 m_c_idx, ref_aa_miniprot_count = push_cds_idx(m_c_idx, miniprot_aln, ref_aa_miniprot_count)

 else:

 if l_c_idx > 0 and m_c_idx > 0 and m_c.end == l_c.end:

 cdss = process_m_l_children(m_c_idx, m_c_idx_last, miniprot_aln, l_c_idx, l_c_idx_last,

 liftoff_aln, tgt_fai, chains)

 cds_list += cdss

 m_c_idx_last, l_c_idx_last = m_c_idx, l_c_idx

 l_c_idx, ref_aa_liftoff_count = push_cds_idx(l_c_idx, liftoff_aln, ref_aa_liftoff_count)

 m_c_idx, ref_aa_miniprot_count = push_cds_idx(m_c_idx, miniprot_aln, ref_aa_miniprot_count)

 l_c_idx, m_c_idx = l_c_idx + 1, m_c_idx + 1

 cds_list += process_m_l_children(m_c_idx, m_c_idx_last, miniprot_aln, l_c_idx, l_c_idx_last, liftoff_aln, tgt_fai,

chains)

 return cds_list, chains

Calculate the accumulated amino acids in the alignments and group the CDSs together for processing.

function push_cds_idx (c_idx, lifton_aln):

 aa_start = 0

 aa_end = lifton_aln.cdss_protein_aln_boundaries[c_idx][1]

 aa_end = ceil(aa_end)

 ref_count = 0 # Calculate the accumulated amino acids in the reference protein alignment

 for i, letter in enumerate(lifton_aln.ref_seq[aa_start:aa_end]):

 if letter != "-":

 ref_count += 1

 c_idx += 1

 return ref_count, c_idx

Process the grouped Liftoff and miniprot CDSs

function process_m_l_children(m_c_idx, m_c_idx_last, miniprot_aln, l_c_idx, l_c_idx_last, liftoff_aln, tgt_fai,
chains):

 m_aa_start, m_aa_end = get_protein_boundary(miniprot_aln.cdss_protein_aln_boundaries, m_c_idx_last, m_c_idx)

 l_aa_start, l_aa_end = get_protein_boundary(liftoff_aln.cdss_protein_aln_boundaries, l_c_idx_last, l_c_idx)

 m_matches, m_length = get_partial_id_fraction(miniprot_aln.ref_aln, miniprot_aln.query_aln, floor(m_aa_start),

ceil(m_aa_end))

 l_matches, l_length = get_partial_id_fraction(liftoff_aln.ref_aln, liftoff_aln.query_aln, floor(l_aa_start),

ceil(l_aa_end))

 cds_ls = create_lifton_entries(m_c_idx, m_c_idx_last, miniprot_aln, l_c_idx, l_c_idx_last, liftoff_aln, tgt_fai,

m_matches / m_length > l_matches / l_length)

 chains.append(if m_matches / m_length > l_matches / l_length then "miniprot" else "Liftoff")

 return cds_ls

Algorithm S4: Calculating protein and DNA sequence identity score

Inputs:

- reference (string): The traceback reference alignment result.

- target (string): The traceback target alignment result.

- start (int): 0-based index of the start of the protein segment.

- end (int): 0-based index of the end of the protein segment.

Calculate the partial protein sequence identity score for chaining algorithm

function get_partial_id_fraction(reference, target, start, end):

 matches, gaps_in_ref = 0, 0

 for i, letter in enumerate(reference[start:end]):

 if letter == '-':

 gaps_in_ref += 1

 if letter == target[i + start]:

 matches += 1

 if target[i + start] == "*":

 break

 total_length = (end - start) - gaps_in_ref # Longer protein without premature stop codon is not penalized

 if total_length == 0:

 return matches, 1

 return matches, total_length

Calculate the full-length protein sequence identity score

function get_AA_id_fraction(reference, target):

 matches, gaps_in_ref = 0, 0
 for i, letter in enumerate(reference):
 if letter == '-':

 gaps_in_ref += 1

 if letter == target[i + start]:

 matches += 1

 if target[i + start] == "*":

 break

 if max(len(reference), len(target)) == 0:
 return matches, 1
 # Gap-compressed sequence identity
 total_length = max(len(reference), len(target)) - gaps_in_ref
 return matches, total_length

Calculate the full-length transcript DNA sequence identity score

function get_DNA_id_fraction(reference, target):

 matches = 0
 # BLAST identity
 for i, letter in enumerate(reference):
 if letter == target[i]:
 matches += 1
 if max(len(reference), len(target)) == 0:
 return matches, 1
 return matches, max(len(reference), len(target))

