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Algorithm S1: The protein-maximization algorithm pairing Liftoff and miniprot gene loci

# Inputs:

- lifton gene: An instance of the LiftOn class, which stores gene information.

- locus: A Feature instance from the gffutils package representing a genomic locus.

- ref db, liftoff db, miniprot db: FeatureDB instances from the gffutils package for reference,
liftoff, and miniprot annotations, respectively.

- m id trans dict: Dictionary mapping reference transcript IDs to lists of miniprot transcript IDs.
- tree dict: Dictionary mapping reference chromosome IDs to IntervalTree instances.

tgt fai: Fasta instance from the pyfaidx package, storing target genome sequences.

- ref proteins, ref trans: Fasta instances from the pyfaidx package, storing reference protein

and transcript sequences, respectively.

- features dict: Dictionary mapping reference feature IDs to Lifton feature instances.

- ENTRY FEATURE: Boolean flag indicating if the current feature is the root feature for lifting over.

Returns:
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- lifton gene: Updated or new lifton gene instance with processed data.

# Process liftoff annotation and create lifton gene instance
function protein maximization(lifton gene, locus, ref db, liftoff db, m id trans_dict, miniprot_ db,
tree_dict, tgt_fai, ref proteins, ref trans, features_dict, ENTRY_ FEATUR=False):
exon children = liftoff db.children(locus, featuretype='exon', level=1l, order_by='start')
if lifton gene is None and ENTRY FEATURE: # LiftOn gene initialization
lifton_gene, ref gene_id, ref trans_id =initialize_lifton_gene (locus, ref_db, tree_dict, features_dict)

if lifton_gene.ref gene_id is None: return None

if len(exon_children) == 0: # processing features without exons

parent feature = lifton gene if ENTRY FEATURE else lifton gene.add feature (deepcopy (locus)
features = liftoff db.children(locus, level=1)
for feature in features:

lifton_gene = protein maximization (parent_ feature, feature, ref db, liftoff db, m_id trans_dict,

miniprot db, tree_dict, tgt_fai, ref proteins, ref trans, features_dict)
else: # processing features with exons

if ENTRY FEATURE:

ref trans_id = ref gene_id
else:

ref gene_id, ref trans_id = lifton utils.get ref ids_ liftoff (features_dict,

lifton_gene.entry.id, locus.id)

lifton_trans, cds_num = lifton_add trans_exon_cds(lifton_gene, locus, ref db, liftoff db, ref trans_id)
if cds_num > 0:

liftoff aln = LiftOn_liftoff alignment (lifton_trans, locus, ref proteins

miniprot_aln, valid = LiftOn_miniprot_alignment (locus, m id trans dict, miniprot db, ref proteins)

if liftoff aln.identity < 1 and valid:

cds_list = chaining_algorithm(liftoff aln, miniprot_aln, tgt_fai)
lifton_gene.update_cds_list (lifton_trans.entry.id, cds_list)

lifton_gene.orf search protein(lifton_trans.entry.id, ref trans_id, tgt_fai, ref proteins, ref trans)

return lifton gene

# Iterate through Liftoff features, pair them with corresponding miniprot transcripts, and run the protein-
maximization algorithm.
for feature in features:
for locus in liftoff db.features_of_ type(feature):
lifton_gene = protein maximization (None, locus, ref db.db connection, liftoff db, m_id trans_dict,

miniprot_db, tree_dict, tgt_fai, ref proteins, ref trans, features_dict, True)



Algorithm S2: Mapping CDS boundaries onto a protein alignment

# Inputs:

# - cds lens (list of integers): Lengths of coding sequences.

# - cds protein aln boundary (list): List of tuples, each representing the start and end boundary of a CDS in
# protein coordinates. - (cds start, cds end)

# - cigar 1ls (list): List of tuples, each representing the length and type - (cigar len, cigar symbol)

# Map the CDS boundaries onto proteins
function get cds_protein boundary(cds_lens):
cds_cumulative = [sum(cds_lens[:i+1]) for i in range(len(cds_lens))]

cds_cumulative_div

= [x / 3 for x in cds cumulative]
cds_protein_ boundary = {}
for idx in range(len(cds_cumulative div)):
start = cds_cumulative div[idx - 1] if idx > 0 else 0
end = cds_cumulative div[idx]
cds_protein boundary[idx] = (start, end)

return cds_protein_boundary

# Adjust the CDS boundaries on protein-to-protein alignments.
function adjust_cds_protein boundary(cds_protein_aln boundary, D_accum_len, length):

0

cds_boundary_shift =
for i, (cds_start, cds_end) in enumerate(cds_protein aln boundaries) :
if (cds_start <= D_accum_len) and (cds_end >= D_accum_len):
# Adjust CDS boundaries
cds_boundary_shift += length
cds_end += length
cds_protein_aln boundary[i] = (cds_start, cds_end)

return cds_protein_aln_boundary

# Map CDS boundaries onto a protein alignment

cds_protein boundary = get_cds_protein_boundary(cds_lens)

D_accum_len = 0

cds_protein_aln boundary = cds_protein boundary.copy ()

for length, symbol in cigar ls:

if symbol == "D":

# Deletion in CIGAR string => (longer protein sequence in the extract Liftoff or miniprot proteins)
cds_protein_aln boundary = adjust_cds_protein boundary(cds_protein_aln boundary, D _accum len, length)

D _accum_len += length



Algorithm S3: The chaining algorithm

# Inputs:
#
#
#

# The main LiftOn chaining algorithm.

function chaining algorithm(liftoff aln, miniprot_aln,

1 children, m_children
m_c_idx,

cds_list,

1 c idx, m c idx last,

ref aa liftoff count,

while m c idx != - 1)

(length (m_children)
length (m_children)

if m c idx
1 _c_idx,
else if m c idx < length(m children)

m_c_idx, ref aa miniprot count =

else:

mc, 1 c=

m_children[m c idx],

ref aa miniprot count,

or 1 c idx !
- 1 and 1 c idx <
ref aa liftoff count = push cds idx(l_c_idx,
- 1 and 1 _c idx ==

push_cds_idx(m _c_idx, miniprot aln,

tgt_ fai):

liftoff aln.cds_children, miniprot aln.cds children
1 c idx_last = 0,

0, 0, 0

chains

1, 0, 0, ]

(length (1 _children)
(length (1 _children)
liftoff aln,

(length (1_children)

- 1):

1 children[l c_idx]

if ref aa liftoff count < ref aa miniprot count:

1 c idx, ref aa liftoff count =

push _cds_idx (1l c idx,

liftoff aln,

else if ref aa liftoff count > ref aa miniprot count:

m_c idx, ref aa miniprot count = push cds idx(m_c_idx, miniprot aln,
else:
if 1 ¢ idx > 0 and m ¢ _idx > 0 and m c.end == 1 c.end:
cdss = process m 1 children(m c idx, m c idx last, miniprot aln,

cds_list += cdss

m c_idx last, 1 c_ idx last

1 c idx, ref aa liftoff count =

m_c_idx, ref aa miniprot count

1 c idx, m c_idx =

1l c idx + 1, mc idx + 1

cds_list += process m 1 children(m_c_idx, m _c_idx last, miniprot_aln,

chains)

return cds_list, chains

liftoff aln,

push _cds_idx (1l c idx,

tgt_fai, chains)

m c idx, 1 c_ idx
liftoff aln,

push_cds_idx(m _c idx, miniprot_aln,

1 c idx,

1):

1 c idx_last,

- liftoff aln: An instance of Lifton Alignment class, storing Liftoff parasail protein alignment information
- miniprot aln: An instance of Lifton Alignment, storing parasail miniprot parasail protein alignment information

- tgt fai: An Fasta instance from the pyfaidx package, storing target genome sequences

ref aa liftoff count)

1):

ref aa miniprot count)

ref aa liftoff count)

ref aa miniprot count)

1 c idx, 1 c idx last,

ref aa liftoff count)

ref aa miniprot count)

liftoff aln, tgt_fai,

# Calculate the accumulated amino acids in the alignments and group the CDSs together for processing.

function push cds_idx (c_idx, lifton_aln):

aa_start = 0
aa_end = lifton_aln.cdss_protein aln boundaries([c_idx][1]
aa_end = ceil(aa_end)

ref count 0

for i, letter in enumerate(lifton aln.ref seg[aa start:aa end]):
if letter != "-":
ref count += 1
c idx += 1
return ref count, c_idx

# Process the grouped Liftoff and miniprot CDSs

function process m_ 1 children(m_c_idx, m_c_idx last, miniprot_aln,

chains) :

m_aa_start, m_aa_end

1 aa_start, 1 aa _end

m_matches, m length =
ceil (m_aa_end))

1 matches, 1 length
ceil (1l _aa _end))
cds_1s

m matches / m _length > 1 matches / 1 length)

get _partial id fraction(liftoff aln.ref aln,

create lifton entries(m_c_idx, m_c_idx last, miniprot_aln,

1 c idx,

1 c idx,

1 c idx last,

get protein boundary(liftoff aln.cdss protein aln boundaries,

get _partial id fraction(miniprot aln.ref aln, miniprot _aln.query aln,

liftoff aln.query aln,

1 c idx last,

# Calculate the accumulated amino acids in the reference protein alignment

liftoff aln, tgt_fai,

get protein boundary(miniprot aln.cdss_protein aln boundaries, m c_idx last, m c_idx)

1 c idx last, 1 c_idx)

floor(m_aa start)

floor (1l _aa start),

liftoff aln, tgt fai,

chains.append(if m matches / m_length > 1 matches / 1 length then "miniprot" else "Liftoff")

return cds_1ls



Algorithm S4: Calculating protein and DNA sequence identity score

Inputs:
- reference (string): The traceback reference alignment result.

#

#

# - target (string): The traceback target alignment result.

# - start (int): O-based index of the start of the protein segment.
#

- end (int): O-based index of the end of the protein segment.

# Calculate the partial protein sequence identity score for chaining algorithm
function get partial id fraction(reference, target, start, end):
matches, gaps_in_ref = 0, 0
for i, letter in enumerate (reference[start:end]):
if letter == '-':
gaps_in_ref += 1
if letter == target[i + start]:

matches += 1

if target[i + start] == "*":
break
total length = (end - start) - gaps_in ref # Longer protein without premature stop codon is not penalized

if total_length ==
return matches, 1

return matches, total_length

# Calculate the full-length protein sequence identity score
function get AA id fraction(reference, target):

matches, gaps_in_ref = 0, 0
for i, letter in enumerate (reference):
if letter == '-':

gaps_in_ref += 1
if letter == target[i + start]:

matches += 1

if target[i + start] == "*":
break
if max(len(reference), len(target)) == 0:

return matches, 1
# Gap-compressed sequence identity
total length = max(len(reference), len(target)) - gaps_in_ ref
return matches, total length

# Calculate the full-length transcript DNA sequence identity score
function get DNA id fraction(reference, target):

matches = 0
# BLAST identity
for i, letter in enumerate (reference):

if letter == target([i]:
matches += 1
if max(len(reference), len(target)) == 0:

return matches, 1
return matches, max(len(reference), len(target))



