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Algorithm S1: The protein-maximization algorithm pairing Liftoff and miniprot gene loci 

# Inputs:  

#   - lifton_gene: An instance of the LiftOn class, which stores gene information.  

#   - locus: A Feature instance from the gffutils package representing a genomic locus.  

#   - ref_db, liftoff_db, miniprot_db: FeatureDB instances from the gffutils package for reference,  

#     liftoff, and miniprot annotations, respectively.  

#   - m_id_trans_dict: Dictionary mapping reference transcript IDs to lists of miniprot transcript IDs.  

#   - tree_dict: Dictionary mapping reference chromosome IDs to IntervalTree instances.  

#   - tgt_fai: Fasta instance from the pyfaidx package, storing target genome sequences.  

#   - ref_proteins, ref_trans: Fasta instances from the pyfaidx package, storing reference protein  

#     and transcript sequences, respectively.  

#   - features_dict: Dictionary mapping reference feature IDs to Lifton_feature instances.  

#   - ENTRY_FEATURE: Boolean flag indicating if the current feature is the root feature for lifting over.  

# Returns:   

#   - lifton_gene: Updated or new lifton_gene instance with processed data. 

 

# Process liftoff annotation and create lifton_gene instance 

function protein_maximization(lifton_gene, locus, ref_db, liftoff_db, m_id_trans_dict, miniprot_db,  

                              tree_dict, tgt_fai, ref_proteins, ref_trans, features_dict, ENTRY_FEATUR=False):  

    exon children = liftoff_db.children(locus, featuretype='exon', level=1, order_by='start') 

    if lifton_gene is None and ENTRY_FEATURE:  # LiftOn gene initialization 

        lifton_gene, ref_gene_id, ref_trans_id =initialize_lifton_gene(locus, ref_db, tree_dict, features_dict)  

        if lifton_gene.ref_gene_id is None: return None 

 

    if len(exon_children) == 0:  # processing features without exons 

        parent_feature = lifton_gene if ENTRY_FEATURE else lifton_gene.add_feature(deepcopy(locus))  

        features = liftoff_db.children(locus, level=1)  

        for feature in features:  

            lifton_gene = protein_maximization(parent_feature, feature, ref_db, liftoff_db, m_id_trans_dict,  

                                    miniprot_db, tree_dict, tgt_fai, ref_proteins, ref_trans, features_dict)  

    else:  # processing features with exons 

        if ENTRY_FEATURE:  

            ref_trans_id = ref_gene_id 

        else:  

            ref_gene_id, ref_trans_id = lifton_utils.get_ref_ids_liftoff(features_dict,  

                                                                         lifton_gene.entry.id, locus.id)  

        lifton_trans, cds_num = lifton_add_trans_exon_cds(lifton_gene, locus, ref_db, liftoff_db, ref_trans_id)  

        if cds_num > 0:  

            liftoff_aln = LiftOn_liftoff_alignment(lifton_trans, locus, ref_proteins) 

            miniprot_aln, valid = LiftOn_miniprot_alignment(locus, m_id_trans_dict, miniprot_db, ref_proteins) 

            if liftoff_aln.identity < 1 and valid: 

                cds_list = chaining_algorithm(liftoff_aln, miniprot_aln, tgt_fai) 

                lifton_gene.update_cds_list(lifton_trans.entry.id, cds_list) 

        lifton_gene.orf_search_protein(lifton_trans.entry.id, ref_trans_id, tgt_fai, ref_proteins, ref_trans) 

    return lifton_gene 

 

 

# Iterate through Liftoff features, pair them with corresponding miniprot transcripts, and run the protein-

maximization algorithm. 

for feature in features: 

    for locus in liftoff_db.features_of_type(feature): 

        lifton_gene = protein_maximization(None, locus, ref_db.db_connection, liftoff_db, m_id_trans_dict,  

                                 miniprot_db, tree_dict, tgt_fai, ref_proteins, ref_trans, features_dict, True) 



Algorithm S2: Mapping CDS boundaries onto a protein alignment 

# Inputs: 

#   - cds_lens (list of integers): Lengths of coding sequences. 

#   - cds_protein_aln_boundary (list): List of tuples, each representing the start and end boundary of a CDS in 

#     protein coordinates. – (cds_start, cds_end) 

#   - cigar_ls (list): List of tuples, each representing the length and type – (cigar_len, cigar_symbol) 

 

# Map the CDS boundaries onto proteins 

function get_cds_protein_boundary(cds_lens): 

    cds_cumulative = [sum(cds_lens[:i+1]) for i in range(len(cds_lens))] 

    cds_cumulative_div = [x / 3 for x in cds_cumulative] 

    cds_protein_boundary = {} 

    for idx in range(len(cds_cumulative_div)): 

        start = cds_cumulative_div[idx - 1] if idx > 0 else 0 

        end = cds_cumulative_div[idx] 

        cds_protein_boundary[idx] = (start, end) 

    return cds_protein_boundary 

 

 

# Adjust the CDS boundaries on protein-to-protein alignments. 

function adjust_cds_protein_boundary(cds_protein_aln_boundary, D_accum_len, length): 

    cds_boundary_shift = 0 

    for i, (cds_start, cds_end) in enumerate(cds_protein_aln_boundaries): 

        if (cds_start <= D_accum_len) and (cds_end >= D_accum_len): 

            # Adjust CDS boundaries 

            cds_boundary_shift += length 

            cds_end += length 

        cds_protein_aln_boundary[i] = (cds_start, cds_end) 

    return cds_protein_aln_boundary 

 

 

# Map CDS boundaries onto a protein alignment 

cds_protein_boundary = get_cds_protein_boundary(cds_lens) 

D_accum_len = 0 

cds_protein_aln_boundary = cds_protein_boundary.copy() 

for length, symbol in cigar_ls: 

    if symbol == "D": 

        # Deletion in CIGAR string => (longer protein sequence in the extract Liftoff or miniprot proteins) 

        cds_protein_aln_boundary = adjust_cds_protein_boundary(cds_protein_aln_boundary, D_accum_len, length) 

    D_accum_len += length 

 
  



Algorithm S3: The chaining algorithm 

# Inputs: 

#   - liftoff_aln: An instance of Lifton_Alignment class, storing Liftoff parasail protein alignment information 

#   - miniprot_aln: An instance of Lifton_Alignment, storing parasail miniprot parasail protein alignment information 

#   - tgt_fai: An Fasta instance from the pyfaidx package, storing target genome sequences 

 

# The main LiftOn chaining algorithm. 

function chaining_algorithm(liftoff_aln, miniprot_aln, tgt_fai): 

    l_children, m_children = liftoff_aln.cds_children, miniprot_aln.cds_children 

    m_c_idx, l_c_idx, m_c_idx_last, l_c_idx_last = 0, 0, 0, 0 

    cds_list, ref_aa_liftoff_count, ref_aa_miniprot_count, chains = [], 0, 0, [] 

 

    while m_c_idx != (length(m_children) - 1) or l_c_idx != (length(l_children) - 1): 

        if m_c_idx == length(m_children) - 1 and l_c_idx < (length(l_children) - 1): 

            l_c_idx, ref_aa_liftoff_count = push_cds_idx(l_c_idx, liftoff_aln, ref_aa_liftoff_count) 

        else if m_c_idx < length(m_children) - 1 and l_c_idx == (length(l_children) - 1): 

            m_c_idx, ref_aa_miniprot_count = push_cds_idx(m_c_idx, miniprot_aln, ref_aa_miniprot_count) 

        else: 

            m_c, l_c = m_children[m_c_idx], l_children[l_c_idx] 

            if ref_aa_liftoff_count < ref_aa_miniprot_count: 

                l_c_idx, ref_aa_liftoff_count = push_cds_idx(l_c_idx, liftoff_aln, ref_aa_liftoff_count) 

            else if ref_aa_liftoff_count > ref_aa_miniprot_count: 

                m_c_idx, ref_aa_miniprot_count = push_cds_idx(m_c_idx, miniprot_aln, ref_aa_miniprot_count) 

            else: 

                if l_c_idx > 0 and m_c_idx > 0 and m_c.end == l_c.end: 

                    cdss = process_m_l_children(m_c_idx, m_c_idx_last, miniprot_aln, l_c_idx, l_c_idx_last,  

                                                liftoff_aln, tgt_fai, chains) 

                    cds_list += cdss 

                    m_c_idx_last, l_c_idx_last = m_c_idx, l_c_idx 

                l_c_idx, ref_aa_liftoff_count = push_cds_idx(l_c_idx, liftoff_aln, ref_aa_liftoff_count) 

                m_c_idx, ref_aa_miniprot_count = push_cds_idx(m_c_idx, miniprot_aln, ref_aa_miniprot_count) 

    l_c_idx, m_c_idx = l_c_idx + 1, m_c_idx + 1 

    cds_list += process_m_l_children(m_c_idx, m_c_idx_last, miniprot_aln, l_c_idx, l_c_idx_last, liftoff_aln, tgt_fai, 

chains) 

    return cds_list, chains 
 

 

# Calculate the accumulated amino acids in the alignments and group the CDSs together for processing. 

function push_cds_idx (c_idx, lifton_aln): 

    aa_start = 0 

    aa_end = lifton_aln.cdss_protein_aln_boundaries[c_idx][1] 

    aa_end = ceil(aa_end) 

    ref_count = 0  # Calculate the accumulated amino acids in the reference protein alignment 

    for i, letter in enumerate(lifton_aln.ref_seq[aa_start:aa_end]):   

        if letter != "-": 

            ref_count += 1 

    c_idx += 1 

    return ref_count, c_idx 

 

 

# Process the grouped Liftoff and miniprot CDSs 

function process_m_l_children(m_c_idx, m_c_idx_last, miniprot_aln, l_c_idx, l_c_idx_last, liftoff_aln, tgt_fai, 
chains): 

    m_aa_start, m_aa_end = get_protein_boundary(miniprot_aln.cdss_protein_aln_boundaries, m_c_idx_last, m_c_idx) 

    l_aa_start, l_aa_end = get_protein_boundary(liftoff_aln.cdss_protein_aln_boundaries, l_c_idx_last, l_c_idx) 

    m_matches, m_length = get_partial_id_fraction(miniprot_aln.ref_aln, miniprot_aln.query_aln, floor(m_aa_start), 

ceil(m_aa_end)) 

    l_matches, l_length = get_partial_id_fraction(liftoff_aln.ref_aln, liftoff_aln.query_aln, floor(l_aa_start), 

ceil(l_aa_end)) 

    cds_ls = create_lifton_entries(m_c_idx, m_c_idx_last, miniprot_aln, l_c_idx, l_c_idx_last, liftoff_aln, tgt_fai, 

m_matches / m_length > l_matches / l_length) 

    chains.append(if m_matches / m_length > l_matches / l_length then "miniprot" else "Liftoff") 

    return cds_ls 

 

  



Algorithm S4: Calculating protein and DNA sequence identity score 

# Inputs: 

#   - reference (string): The traceback reference alignment result.  

#   - target (string): The traceback target alignment result.  

#   - start (int): 0-based index of the start of the protein segment.  

#   - end (int): 0-based index of the end of the protein segment. 

 

# Calculate the partial protein sequence identity score for chaining algorithm 

function get_partial_id_fraction(reference, target, start, end): 

    matches, gaps_in_ref = 0, 0 

    for i, letter in enumerate(reference[start:end]): 

        if letter == '-': 

            gaps_in_ref += 1 

        if letter == target[i + start]: 

            matches += 1 

        if target[i + start] == "*": 

            break 

    total_length = (end - start) - gaps_in_ref # Longer protein without premature stop codon is not penalized  

      if total_length == 0: 

        return matches, 1 

    return matches, total_length 

 

 

# Calculate the full-length protein sequence identity score 

function get_AA_id_fraction(reference, target): 

    matches, gaps_in_ref = 0, 0 
    for i, letter in enumerate(reference): 
        if letter == '-': 

            gaps_in_ref += 1 

        if letter == target[i + start]: 

            matches += 1 

        if target[i + start] == "*": 

            break 

    if max(len(reference), len(target)) == 0:   
        return matches, 1 
    # Gap-compressed sequence identity 
    total_length = max(len(reference), len(target)) - gaps_in_ref 
    return matches, total_length 
 

 

# Calculate the full-length transcript DNA sequence identity score 

function get_DNA_id_fraction(reference, target): 

    matches = 0 
    # BLAST identity 
    for i, letter in enumerate(reference): 
        if letter == target[i]: 
            matches += 1 
    if max(len(reference), len(target)) == 0:   
        return matches, 1 
    return matches, max(len(reference), len(target)) 

 


