Supplementary Algorithms of

Combining DNA and protein alignments to improve genome
annotation with LiftOn

Kuan-Hao Chao® %", Jakob M. Heinz3, Celine Hoh" 2, Alan Mao" % *, Alaina Shumate> 4,
Mihaela Pertea'> >4, and Steven L Salzberg'> 243"

"Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
2Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
SDepartment of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA

“Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
SDepartment of Biostatistics, Johns Hopkins University, Baltimore, MD 21211, USA

“corresponding authors: kh.chao@cs.jhu.edu, salzberg@jhu.edu

mailto:kh.chao@cs.jhu.edu
mailto:salzberg@jhu.edu

Algorithm S1: The protein-maximization algorithm pairing Liftoff and miniprot gene loci

Inputs:

- lifton gene: An instance of the LiftOn class, which stores gene information.

- locus: A Feature instance from the gffutils package representing a genomic locus.

- ref db, liftoff db, miniprot db: FeatureDB instances from the gffutils package for reference,
liftoff, and miniprot annotations, respectively.

- m id trans dict: Dictionary mapping reference transcript IDs to lists of miniprot transcript IDs.
- tree dict: Dictionary mapping reference chromosome IDs to IntervalTree instances.

tgt fai: Fasta instance from the pyfaidx package, storing target genome sequences.

- ref proteins, ref trans: Fasta instances from the pyfaidx package, storing reference protein

and transcript sequences, respectively.

- features dict: Dictionary mapping reference feature IDs to Lifton feature instances.

- ENTRY FEATURE: Boolean flag indicating if the current feature is the root feature for lifting over.

Returns:

FHOH H H R W W H H W K KW K
|

- lifton gene: Updated or new lifton gene instance with processed data.

Process liftoff annotation and create lifton gene instance
function protein maximization(lifton gene, locus, ref db, liftoff db, m id trans_dict, miniprot_ db,
tree_dict, tgt_fai, ref proteins, ref trans, features_dict, ENTRY_ FEATUR=False):
exon children = liftoff db.children(locus, featuretype='exon', level=1l, order_by='start')
if lifton gene is None and ENTRY FEATURE: # LiftOn gene initialization
lifton_gene, ref gene_id, ref trans_id =initialize_lifton_gene (locus, ref_db, tree_dict, features_dict)

if lifton_gene.ref gene_id is None: return None

if len(exon_children) == 0: # processing features without exons

parent feature = lifton gene if ENTRY FEATURE else lifton gene.add feature (deepcopy (locus)
features = liftoff db.children(locus, level=1)
for feature in features:

lifton_gene = protein maximization (parent_ feature, feature, ref db, liftoff db, m_id trans_dict,

miniprot db, tree_dict, tgt_fai, ref proteins, ref trans, features_dict)
else: # processing features with exons

if ENTRY FEATURE:

ref trans_id = ref gene_id
else:

ref gene_id, ref trans_id = lifton utils.get ref ids_ liftoff (features_dict,

lifton_gene.entry.id, locus.id)

lifton_trans, cds_num = lifton_add trans_exon_cds(lifton_gene, locus, ref db, liftoff db, ref trans_id)
if cds_num > 0:

liftoff aln = LiftOn_liftoff alignment (lifton_trans, locus, ref proteins

miniprot_aln, valid = LiftOn_miniprot_alignment (locus, m id trans dict, miniprot db, ref proteins)

if liftoff aln.identity < 1 and valid:

cds_list = chaining_algorithm(liftoff aln, miniprot_aln, tgt_fai)
lifton_gene.update_cds_list (lifton_trans.entry.id, cds_list)

lifton_gene.orf search protein(lifton_trans.entry.id, ref trans_id, tgt_fai, ref proteins, ref trans)

return lifton gene

Iterate through Liftoff features, pair them with corresponding miniprot transcripts, and run the protein-
maximization algorithm.
for feature in features:
for locus in liftoff db.features_of_ type(feature):
lifton_gene = protein maximization (None, locus, ref db.db connection, liftoff db, m_id trans_dict,

miniprot_db, tree_dict, tgt_fai, ref proteins, ref trans, features_dict, True)

Algorithm S2: Mapping CDS boundaries onto a protein alignment

Inputs:

- cds lens (list of integers): Lengths of coding sequences.

- cds protein aln boundary (list): List of tuples, each representing the start and end boundary of a CDS in
protein coordinates. - (cds start, cds end)

- cigar 1ls (list): List of tuples, each representing the length and type - (cigar len, cigar symbol)

Map the CDS boundaries onto proteins
function get cds_protein boundary(cds_lens):
cds_cumulative = [sum(cds_lens[:i+1]) for i in range(len(cds_lens))]

cds_cumulative_div

= [x / 3 for x in cds cumulative]
cds_protein_ boundary = {}
for idx in range(len(cds_cumulative div)):
start = cds_cumulative div[idx - 1] if idx > 0 else 0
end = cds_cumulative div[idx]
cds_protein boundary[idx] = (start, end)

return cds_protein_boundary

Adjust the CDS boundaries on protein-to-protein alignments.
function adjust_cds_protein boundary(cds_protein_aln boundary, D_accum_len, length):

0

cds_boundary_shift =
for i, (cds_start, cds_end) in enumerate(cds_protein aln boundaries) :
if (cds_start <= D_accum_len) and (cds_end >= D_accum_len):
Adjust CDS boundaries
cds_boundary_shift += length
cds_end += length
cds_protein_aln boundary[i] = (cds_start, cds_end)

return cds_protein_aln_boundary

Map CDS boundaries onto a protein alignment

cds_protein boundary = get_cds_protein_boundary(cds_lens)

D_accum_len = 0

cds_protein_aln boundary = cds_protein boundary.copy ()

for length, symbol in cigar ls:

if symbol == "D":

Deletion in CIGAR string => (longer protein sequence in the extract Liftoff or miniprot proteins)
cds_protein_aln boundary = adjust_cds_protein boundary(cds_protein_aln boundary, D _accum len, length)

D _accum_len += length

Algorithm S3: The chaining algorithm

Inputs:
#
#
#

The main LiftOn chaining algorithm.

function chaining algorithm(liftoff aln, miniprot_aln,

1 children, m_children
m_c_idx,

cds_list,

1 c idx, m c idx last,

ref aa liftoff count,

while m c idx != - 1)

(length (m_children)
length (m_children)

if m c idx
1 _c_idx,
else if m c idx < length(m children)

m_c_idx, ref aa miniprot count =

else:

mc, 1 c=

m_children[m c idx],

ref aa miniprot count,

or 1 c idx !
- 1 and 1 c idx <
ref aa liftoff count = push cds idx(l_c_idx,
- 1 and 1 _c idx ==

push_cds_idx(m _c_idx, miniprot aln,

tgt_ fai):

liftoff aln.cds_children, miniprot aln.cds children
1 c idx_last = 0,

0, 0, 0

chains

1, 0, 0,]

(length (1 _children)
(length (1 _children)
liftoff aln,

(length (1_children)

- 1):

1 children[l c_idx]

if ref aa liftoff count < ref aa miniprot count:

1 c idx, ref aa liftoff count =

push _cds_idx (1l c idx,

liftoff aln,

else if ref aa liftoff count > ref aa miniprot count:

m_c idx, ref aa miniprot count = push cds idx(m_c_idx, miniprot aln,
else:
if 1 ¢ idx > 0 and m ¢ _idx > 0 and m c.end == 1 c.end:
cdss = process m 1 children(m c idx, m c idx last, miniprot aln,

cds_list += cdss

m c_idx last, 1 c_ idx last

1 c idx, ref aa liftoff count =

m_c_idx, ref aa miniprot count

1 c idx, m c_idx =

1l c idx + 1, mc idx + 1

cds_list += process m 1 children(m_c_idx, m _c_idx last, miniprot_aln,

chains)

return cds_list, chains

liftoff aln,

push _cds_idx (1l c idx,

tgt_fai, chains)

m c idx, 1 c_ idx
liftoff aln,

push_cds_idx(m _c idx, miniprot_aln,

1 c idx,

1):

1 c idx_last,

- liftoff aln: An instance of Lifton Alignment class, storing Liftoff parasail protein alignment information
- miniprot aln: An instance of Lifton Alignment, storing parasail miniprot parasail protein alignment information

- tgt fai: An Fasta instance from the pyfaidx package, storing target genome sequences

ref aa liftoff count)

1):

ref aa miniprot count)

ref aa liftoff count)

ref aa miniprot count)

1 c idx, 1 c idx last,

ref aa liftoff count)

ref aa miniprot count)

liftoff aln, tgt_fai,

Calculate the accumulated amino acids in the alignments and group the CDSs together for processing.

function push cds_idx (c_idx, lifton_aln):

aa_start = 0
aa_end = lifton_aln.cdss_protein aln boundaries([c_idx][1]
aa_end = ceil(aa_end)

ref count 0

for i, letter in enumerate(lifton aln.ref seg[aa start:aa end]):
if letter != "-":
ref count += 1
c idx += 1
return ref count, c_idx

Process the grouped Liftoff and miniprot CDSs

function process m_ 1 children(m_c_idx, m_c_idx last, miniprot_aln,

chains) :

m_aa_start, m_aa_end

1 aa_start, 1 aa _end

m_matches, m length =
ceil (m_aa_end))

1 matches, 1 length
ceil (1l _aa _end))
cds_1s

m matches / m _length > 1 matches / 1 length)

get _partial id fraction(liftoff aln.ref aln,

create lifton entries(m_c_idx, m_c_idx last, miniprot_aln,

1 c idx,

1 c idx,

1 c idx last,

get protein boundary(liftoff aln.cdss protein aln boundaries,

get _partial id fraction(miniprot aln.ref aln, miniprot _aln.query aln,

liftoff aln.query aln,

1 c idx last,

Calculate the accumulated amino acids in the reference protein alignment

liftoff aln, tgt_fai,

get protein boundary(miniprot aln.cdss_protein aln boundaries, m c_idx last, m c_idx)

1 c idx last, 1 c_idx)

floor(m_aa start)

floor (1l _aa start),

liftoff aln, tgt fai,

chains.append(if m matches / m_length > 1 matches / 1 length then "miniprot" else "Liftoff")

return cds_1ls

Algorithm S4: Calculating protein and DNA sequence identity score

Inputs:
- reference (string): The traceback reference alignment result.

#

#

- target (string): The traceback target alignment result.

- start (int): O-based index of the start of the protein segment.
#

- end (int): O-based index of the end of the protein segment.

Calculate the partial protein sequence identity score for chaining algorithm
function get partial id fraction(reference, target, start, end):
matches, gaps_in_ref = 0, 0
for i, letter in enumerate (reference[start:end]):
if letter == '-':
gaps_in_ref += 1
if letter == target[i + start]:

matches += 1

if target[i + start] == "*":
break
total length = (end - start) - gaps_in ref # Longer protein without premature stop codon is not penalized

if total_length ==
return matches, 1

return matches, total_length

Calculate the full-length protein sequence identity score
function get AA id fraction(reference, target):

matches, gaps_in_ref = 0, 0
for i, letter in enumerate (reference):
if letter == '-':

gaps_in_ref += 1
if letter == target[i + start]:

matches += 1

if target[i + start] == "*":
break
if max(len(reference), len(target)) == 0:

return matches, 1
Gap-compressed sequence identity
total length = max(len(reference), len(target)) - gaps_in_ ref
return matches, total length

Calculate the full-length transcript DNA sequence identity score
function get DNA id fraction(reference, target):

matches = 0
BLAST identity
for i, letter in enumerate (reference):

if letter == target([i]:
matches += 1
if max(len(reference), len(target)) == 0:

return matches, 1
return matches, max(len(reference), len(target))

