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Supplemental Figures

Supplemental Fig. S1: Simple example of k-mer decomposition.
The example sequence decomposed into k-mers for a range of k values, from 2 to 7. Notice
the number of k-mers in a read is L - k + 1.



Supplemental Fig. S2: The total theoretical number of k-mers for each k.
The appreciation of the exponential increase of the complexity of the k-mer can be illustrated
relative to genome sizes of species. The proportion of k-mers corresponding to unique
positions in the genome will increase with k. Specifically, there is a guarantee at least some
of the k-mers are non-unique if the complexity of the k-mer space (blue line) is below the
genome size (for k < 11). However, with k > 21, the vast majority of the regions that will
share the same k-mer sequence are most likely to be similar for biological reasons (e.g.
genomic duplicates).



Supplemental Fig. S3: Proportion of human genome represented by unique k-mers
given k

For k = 9 there are no k-mers unique to a single region in the human genome, for k = 11,
there are 106 unique k-mers, which is still only a negligible proportion of all k-mers in the
dataset, even though the 11-mer space contains less than 2.1x106 k-mers, and the total
number of k-mers in the human genome is approximately 3.1x109. The proportion of the
genome that is represented by unique k-mers remains very small for all values of k =< 15,
but becomes more substantial for k => 17, and for k => 19 even dominant, which allows for
estimating k-mer coverage and downstream genome modelling. K-mer values >= 31 do not
substantially change this proportion which is driven mostly by longer repetitions in the
genome. This plot is based on the human T2T reference T2T-CHM13v2 (Nurk et al. 2022).

https://paperpile.com/c/0005VD/LQI0h


Supplemental Fig. S4: The relation of the k-mer coverage and k in relation to the read
length
This plot demonstrates the k-mer coverage that will be observed for different values of k for
different length reads. Each line represents a different read length, and in each case 20x
average sequencing coverage is available. When k is low, the difference is not very
prominent; for longer k values, the greater the benefit of long reads to maintain high k-mer
coverage. Note that this plot does not consider sequencing errors.



Supplemental Fig. S5: Example(s) of low complexity contamination visible in a k-mer
spectrum.
(A) This spectrum visually shows two peaks, but they are clearly not spaced in clear
stoichiometry (1:2, 1:3 or 1:4). Instead, this spectrum is the result of mixing the genomic
DNA of two different plants in the same sample. The central peak (purple) represents the
k-mers unique to the sequencing target Begonia johnstonii, and the lower-coverage peak
(orange) represents a different begonia species that grew in the same flower pot. The black
distribution represents k-mers shared between the two Begonia species. This signature is
typical for sequencing genomes of two closely related species. (B) This spectra shows a
sequencing of a mixture of two different diploid genomes. The high coverage (orange) is the
target genome of stone coral Pocillopora grandis, while the coverage peaks (purple)
represent a cobiont. Data from:
https://tolqc.cog.sanger.ac.uk/asg/jellyfish/Pocillopora_grandis/

https://tolqc.cog.sanger.ac.uk/asg/jellyfish/Pocillopora_grandis/


Supplemental Fig. S6: k-mer spectra of bony fish computed from PacBio HiFi reads
All the spectra suffer from a coverage dropout in some regions causing blending of peaks
despite a relatively high coverage. While the effect is very small in the stone loach (Hänfling
et al. 2023a) (A), it is more pronounced in the European flounder (B) and very apparent in
the nine-spined stickleback (Hänfling et al. 2023b). This pattern has been associated with a
reported coverage dropout of GA-rich low complexity regions in PacBio HiFi sequencing
(Nurk et al. 2020). All three plots were retrieved from Tree of Life ToLQC portal
https://tolqc.cog.sanger.ac.uk/.

https://paperpile.com/c/0005VD/43Mv
https://paperpile.com/c/0005VD/43Mv
https://paperpile.com/c/0005VD/bdGX
https://paperpile.com/c/0005VD/aNFp
https://tolqc.cog.sanger.ac.uk/


Supplemental Fig. S7: Genome proofing of two cape honey bee individuals.
Data from (Smith et al. 2019). (A) A k-mer spectra from a successful sequencing run: the
error peak and genomic peaks are well separated and the predicted genome size is very
close to the expected honeybee genome size. (B) Despite the greater k-mer coverage
(~34x) the error peak and genomic peaks are not less separating indicating there was a
problem with the sequencing library. This could potentially indicate contamination, but the
genome size indicates instead there was a different problem as a large portion of the
genome is missing. It is difficult to judge what exactly was wrong, but this sample is certainly
not a high quality representation of a bee genome.

https://paperpile.com/c/0005VD/zgJ0


Supplemental Fig. S8: Genome convergence pitfalls
The strawberry Fragaria iinumae is a diploid strawberry with a typical strawberry genome
size around 200Mbp. This particular specimen (DRR013884) has low heterozygosity, which
is also not unexpected in a strawberry. Data from (Hirakawa et al. 2014) A. The default
GenomeScope 2.0 run with no additional parameters misses the 1n coverage peak. One
should spot several red flags: too small genome size, very high heterozygosity for a
strawberry and finally, the red error line shows what could be (and really is) another genomic
peak that is not part of the model B. GenomeScope accepts the flag “-l <prior>” which allows
the user to input a (1n) coverage prior. When the analysis was rerun with specified coverage
prior (-l 140), it converged on correct peaks generating biologically meaningful estimates of
genome properties. On the GenomeScope web interface (https://genomescope.org) this is
labelled as “Average k-mer coverage for polyploid genome”. Note the input value does not
need to be a precise estimate, as the model fitting uses this to guide the automatic model
fitting algorithm.

https://paperpile.com/c/0005VD/gbxT


Supplemental Fig. S9: Genome size estimate pitfall
The Marbled crayfish has a triploid genome with ~3.5Gbp genome size measured by flow
cytometry (Gutekunst et al. 2018). Data from (Gutekunst et al. 2018). A.When using the
default threshold by KMC, the k-mer spectra is truncated at 10,000 coverage. The haploid
genome size estimate is then 1.855 Gbp, which is approximately half of expected haploid
size B.When increasing the coverage threshold to 500,000,000, the estimated genome size
(3.515 Gbp) is close to the expected values given the flow cytometry measurements,
indicating that a substantial proportion of the genome is on extremely repetitive sequences,
which can be observed on the log10 scale plots (C. and D.).

https://paperpile.com/c/0005VD/9qeH
https://paperpile.com/c/0005VD/9qeH


Supplemental Fig. S10: example(s) of assembly quality assessment using the k-mer
spectrum.
(A) The PacBio HiFi 31-mer spectrum of Ilex aquifolium from DToL. The model fit indicates
the genome is around 815.6 Mbp, with a fairly high level of heterozygosity (~1%). (B)
Merqury plot for assembly QC of the same species. The black area represents the k-mers
present in the read set but not in the assembly, and the red area represents what is present
in the assembly once. Larger assembly size than the genome size estimate, higher 1n peak
in the assembly (red) than absent (black) and relatively high BUSCO duplication scores all
indicate there are uncollapsed haplotypes in the haploid genome assembly which will
required downstream haplotype collapsing. Data from
https://tolqc.cog.sanger.ac.uk/darwin/dicots/Ilex_aquifolium.

https://tolqc.cog.sanger.ac.uk/darwin/dicots/Ilex_aquifolium/


Supplemental Fig. S11: Comparison of head and testes libraries in species with
germline restricted chromosomes
The two compared libraries are heads and testes. While heads are pure somatic cells with
uniform karyotype, the testes are a mixture of somatic cells surrounding the germ-line and
germline consisting mostly of sperm. The approximate proportion of sperm and somatic cells
were calculated using mean coverages of X chromosomes and autosomes. Sperm cells
contain two diverged germline restricted chromosomes (GRCs), that show in the 2D k-mer
plot in the orange square.



Supplemental Fig. S12: Phylogenetic representation of an allotetraploid species and
the accumulation of transposable elements.
Tempo 1 occurs after the speciation event, between diploid species 2 and the allopolyploid.
The accumulation of transposable elements during tempo 1 will be evenly represented
across both subgenomes. Tempo 2 represents a period where lineages of the allopolyploid
are segregated and accumulate differences. Transposable elements accumulated in tempo 2
will be unique to each subgenome. The third tempo begins with the polyploidization event.
Transposable elements in this period will be common to both subgenomes.



Supplemental Texts

Supplemental Text S1: The history of calling k-mers “k-mers”
The concept of decomposing sequences of letters in all possible subsequences is
widespread across multiple disciplines - from linguistics, through information theory to
genomics and biology. Being so useful, this concept was developed independently several
times under many different names. Computational linguists called the substrings -grams,
mathematicians called them -tuples or -tups, in biology, the most frequent expression is
-mer. Some authors recognized the difficulty in communicating the concept, so they
decided to use simply -words instead, but unfortunately that led to even more confusion.
In many cases, the substrings had specific length, and then authors would use concrete
numbers as prefixes, e.g. 11-mer for a polymer of length 11. But sometimes, the length
was just a variable, so people used various letters to mark the unknown and these letters
also vary a lot.
-grams
Probably the oldest reference to the concept dates all the way back to (Burkhardt et al. 1999;
Shannon 1948), Shannon used “N-grams” to develop a theory for communication, later to
calculate entropy of a natural language. This is likely the oldest record of the k-mer concept
(in the sense of all possible substrings of a certain length). The concept received a lot of
appreciation in the 1990s for applications as approximate string matching, and quite often
referred to as “q-gram”. In 1999, a tool QUASAR was published - q-gram based database
search using suffix arrays (Burkhardt et al. 1999).
-tuples
In maths, tuples are ordered sets of elements. The individual letters are the elements, but it
is their order that is really important for defining each subsequence - this definition
emphasises that ATGA is not the same sequence as AATG although it has the same
elements. A shorter version of this notation (ktup, controversially, without a dash between of
k and tup) was used in the, these days legendary, FASTA method for amino-acids sequence
alignment (Lipman and Pearson 1985). There was a lot of work done on -tuples till early
2000s when they were slowly replaced by k-mers. Interestingly, authors working on -tuples
used all sorts of prefixes: k-tuple (Idury and Waterman 1995) (Drmanac et al. 1991) REF,
L-tuple (Idury and Waterman 1995) or ℓ-tuple (Li and Waterman 2003). The transition from k-
to L- happened in (Idury and Waterman 1995), where they use k-tuples are a theoretical
string and L-tuples are all the possible sequences of the length of a genome (which would
allow perfect sequencing by hybridization, for the record, this will be one of those numbers
higher than the number of the atoms in the universe for even a modest genome).
-words
This expression was introduced by a research group led by Waterman in early 2000s
(Reinert et al. 2000), even specifically with the k- prefix (Mandeles 1968; Lippert et al. 2002).
Perhaps one curiosity a careful reader might have noticed is that the very same research
group used various forms of -tuples in the past (see the section above), so perhaps the best
explained as an attempt to make the concept more accessible.
-mers
Finally, the most common term in bioinformatics these days is k-mer, which is simply for
polymer of length k, although it is hardly ever used for anything else than a nucleotide
sequence. The first record of -mer I found was from 1968 by Mandeles (Mandeles 1968).

https://paperpile.com/c/0005VD/IjAQ+ubjN
https://paperpile.com/c/0005VD/IjAQ+ubjN
https://paperpile.com/c/0005VD/IjAQ
https://paperpile.com/c/0005VD/0jmA
https://paperpile.com/c/0005VD/AiST
https://paperpile.com/c/0005VD/4Fd2
https://paperpile.com/c/0005VD/AiST
https://paperpile.com/c/0005VD/XLqa
https://paperpile.com/c/0005VD/AiST
https://paperpile.com/c/0005VD/gSaN
https://paperpile.com/c/0005VD/j8S8+RsdZ
https://paperpile.com/c/0005VD/j8S8


With understanding that string of nucleotides might have a unique position in the genome -
they called these oligonucleotides unique-mers. Namely, they were placing two uniqe-mers
referred as Ψ-mer and Ω-mer respectively. Two decades later, sequencing by hybridization
(SBH) was proposed as a new alternative to sequencing on gels; The idea was to hybridise
the sequence on a chip with short nucleotide probes (5, 8, or 10 nucleotides); The only
challenge was losing the positional information, which naturally created the problem of
“k-mers” - unplaced genomic substrings.The 11 bases long nucleotide sequences were
called 11-mers (Drmanac et al. 1989). Which became the standard for the following papers
on the topic. One notable exception is the original description of microarrays, where they
were referred to as 15 nucleotide oligomers (Chee et al. 1996), however then also used
“15-mer” in the product descriptions once the commercial product (Affymetrix chips) were
released. These are sequences of a specific length, not conceptually utilising the idea of
taking sub-sequences of any arbitrary length. Which is of course understandable, that is a
pre-sequencing era. The true k-mers appeared in the publication of BLAST in 1990, however
using w as a prefix (w for word), so “w-mers” (Altschul et al. 1990). Nor w-mer or k-mer
received too much attention in this era. Majority of people using this concept were coming
from mathematical or computer science backgrounds and used other terms mentioned
above. The use of “k-mer” became more common in late 1990s, including within the seminal
work of MUMmer in 1999 (Delcher et al. 1999). In 2000, Liu & Singh coined “k-mer word
frequency distribution” and described it as a “signature” of the sequence (Liu and Singh
2000). One of the other pioneers of expression “k-mer” were Mullikin & Ning in the Phusion
Assembler publication (Mullikin and Ning 2003). In the paper they use this expression as
well as plot “word frequency graph”, which is one of the earliest k-mer spectra plots (Mullikin
and Ning 2003). Publications using the word k-mer increased in the following years
compared to any other of the terms. This gradual process was likely completed with the
release of several tools including a very popular k-mer counter Jellyfish ((Mullikin and Ning
2003; Marçais and Kingsford 2011). This counter served for a long time as the goto k-mer
counter and likely played a role in solidifying the expression “k-mer” as the main way to talk
about this concept.

https://paperpile.com/c/0005VD/eiMB
https://paperpile.com/c/0005VD/NWKB
https://paperpile.com/c/0005VD/jCQy
https://paperpile.com/c/0005VD/eMPs4
https://paperpile.com/c/0005VD/VsH6
https://paperpile.com/c/0005VD/VsH6
https://paperpile.com/c/0005VD/Zgrl
https://paperpile.com/c/0005VD/Zgrl
https://paperpile.com/c/0005VD/Zgrl
https://paperpile.com/c/0005VD/Zgrl+oxsv
https://paperpile.com/c/0005VD/Zgrl+oxsv


Supplemental Text S2: On the definition of coverage, k-mer coverages, and their
approximate relationship
Historically, the coverage was a concept that was aiming to monitor progress of genome
sequencing efforts by cloning (Lander and Waterman 1988). In this context, the
“redundancy of coverage” was defined as

C = (N × L) / G,

where L is read length, N is the number of reads and G is the expected genome size of a
single haplotype (Lander and Waterman 1988). However, soon enough, this number became
just a preliminary proxy for the expected read depth on each individual base (see (Sims et al.
2014) for a review). A better estimate of such coverage (Cg) is through investigation of the
empirically mapped reads on a reference, as reported by current sequencing efforts (Sims et
al. 2014; Darwin Tree of Life Project Consortium 2022). The coverage is sometimes reported
as a sum of all haplotypes together and sometimes per haplotype (usually referred as 1n
coverage). Notably, the original coverage is close to the empirical per-base coverage if all
sequencing was of the target genome and that is regardless of the error rate as long as it
does not interfere with mappability of reads. If compared to 1n sequencing coverage, the
corresponding C also needs to be divided by the ploidy of the sequenced genome.

k-mer coverage is the number of times we see a k-mer in the readset. In theory, we could
define an analogous ] relationship as C was defined above but for k-mers, but that is not
very practical for any genomic applications - sequencing runs contain many other sequences
than the target genome and furthermore, we often do not know genome size in advance and
finally, considering error k-mers as part of the coverage would imply we would need to have
the ability to somehow match them to their correct contra-parts. Instead, we define the
expected k-mer coverage (Ck) as the expected number of k-mers matching a single copy
k-mer in the genome. Such coverage can be inferred using fits of sequencing coverage
depth models to a k-mer frequency spectrum without knowledge of the genome size.
Intuitively, it is where the first peak in the k-mer histogram is (as shown on Figure 1 or 2). Ck

can be approximated from Cg by

Ck= Cg(L - k + 1) / L

However, this is not considering levels of contamination in the sequencing dataset, nor
sequencing errors. In extreme cases those two might show widely different values. While Cg

is unaffected by sequencing errors, Ck is - higher error rate there is, smaller expected k-mer
coverage. Assuming a simple per-base error model, the fraction of genomic k-mers in the
dataset is (1 - e)k which can be jointly used for a more accurate approximation of expected
genomic and k-mer coverages.

Ck= Cg(L - k + 1) × (1 - e)k / L

We demonstrated this relationship in an online material:
https://github.com/KamilSJaron/k-mer-approaches-for-biodiversity-genomics/wiki/demonstrat
ing-the-effect-of-sequencing-error-rate-on-k-mer-coverage. However in practice, the

https://paperpile.com/c/0005VD/LYsW
https://paperpile.com/c/0005VD/LYsW
https://paperpile.com/c/0005VD/ghm3
https://paperpile.com/c/0005VD/ghm3
https://paperpile.com/c/0005VD/ghm3+Cpce
https://paperpile.com/c/0005VD/ghm3+Cpce
https://github.com/KamilSJaron/k-mer-approaches-for-biodiversity-genomics/wiki/demonstrating-the-effect-of-sequencing-error-rate-on-k-mer-coverage
https://github.com/KamilSJaron/k-mer-approaches-for-biodiversity-genomics/wiki/demonstrating-the-effect-of-sequencing-error-rate-on-k-mer-coverage


differences in Cg and Ck are frequently small enough to be unimportant for practical
qualitative assessment of sequencing datasets.



Supplemental Text S3: Corresponding fractions of heterozygous k-mers and
heterozygous nucleotides

The main text outlined the principle that heterozygous sites in a genome generate twice as
many k-mers of half coverage than homozygous sites. Specifically, if the variant is a SNP
and no other variant occurs within k nucleotides, there will be 2 * k, heterozygous k-mers
generated: k k-mers from the maternal allele, and k k-mers from the paternal allele. This is
the simplest model on how to model heterozygosity, but is not realistic for moderately or
highly heterozygous genomes.

The GenomeScope model overcomes this problem by considering the probability of
observing homozygous and heterozygous k-mers respectively given a single per nucleotide
heterozygosity parameter r - the probability of observing a heterozygous nucleotide (Vurture
et al. 2017). In a simplified case (modelling two peaks only) the probability of observing a
completely homozygous k-mer is (1 - r)^k, which can be complemented by the probability of
observing a heterozygous k-mer pair 1 - (1 - r)^k (and given two k-mers are generated, there
will be a factor 2 in the model fit to a k-mer spectrum) (Vurture et al. 2017). Important here to
note, that first GenomeScope fits 4 peaks also including duplications, and considers random
overlap of duplications and heterozygous sites (see supplementary materials of (Vurture et
al. 2017) for a very well-illustrated explanation). The GenomeScope 2.0 expanded this up to
hexaploidy, and added many important features that further improved the fit, however, the
fundamental logic of the fit remains the same (Ranallo-Benavidez et al. 2020). The
GenomeScope model is still somewhat “unrealistic” for several reasons: different regions
within genome have different probability of being heterozygous (i.e. heterozygosity is not
uniformly distributed in a genome); many variants are not just SNPs; and/or a large
proportion of the genome might be covered by repetitions with more than two copies. How
much of a problem this presents in the estimates is still an open question, and the answer is
most likely dependent on the studied species.

Finally, Tetmer (Becher H, Brown MR, Powell G, Metherell C, Riddiford NJ, Twyford AD
2020) is a tool that estimates genetic diversity (θ) as opposed to heterozygosity (fraction of
nucleotides that differ between haplotypes). Specifically, the method assumes no k-mer
recombines within, and the probability of a homozygous k-mer pair is θk / (θk + 1), where θk is
a per-k-mer genetic diversity. It is suggested for θk to be simply divided by k to obtain per
nucleotide, assuming no overlap of variants. This method is more interesting for tetraploid
cases with two different coalescent models for auto- and allo- tetraploid species respectively.

A different way to look at the difference of the three methods is “what heterozygosity would
be predicted given the same relative size of the 1n k-mer peak”. In this comparison, we can
easily see that the GenomeScope estimate will always generate higher heterozygosity
estimates compared to the simple model, but smaller than Tetmer (see the Figure
underneath). While looking at the plot, note that Tetmer does not use the same type of
estimate, which makes the comparison somewhat unbalanced.

https://paperpile.com/c/0005VD/Jj5r
https://paperpile.com/c/0005VD/Jj5r
https://paperpile.com/c/0005VD/Jj5r
https://paperpile.com/c/0005VD/Jj5r
https://paperpile.com/c/0005VD/Jj5r
https://paperpile.com/c/0005VD/b8wr
https://paperpile.com/c/0005VD/S5Mf
https://paperpile.com/c/0005VD/S5Mf


Sizes of peaks corresponding to heterozygosity estimates by different methods.
The three available methods estimating heterozygosity differ in the interpretation of the
relative size of the 1n peak. In the case of a small 1n peak (<0.2 of all the k-mers), all
methods estimate similar levels of heterozygosity. With an increasing proportion of k-mers in
the 1n peak, the estimate starts to differ. Notably, Tetmer does not estimate heterozygosity,
but genetic diversity, which is not exactly the same measure.
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