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Supplementary Methods

Animal Ethics.

Four 2-year-old male sika deers (Cervus nippon) were used for sampling
regenerating antler Tissues. The deer were farmed in an enclosure, provided water and
fed ad libitum, with feed including dry leaves (mainly oak tree leaves) and grass and
some cooked grains (mainly soya bean cakes). All experimental protocols and
procedures were approved by the Animal Ethics Committee of Changchun Sci-Tech
University (Approval No. CKARI202007). On days 0, 2, 5 and 10 after casting, deer
were anesthetized. The entire pedicles were thoroughly shaved, then after routine
sterilization with 1% iodophor and 75% ethanol, the skin was cut open, pedicle
periosteum or regenerating antler tissue (on the distal end of pedicle) was exposed and
collected, then immediately placed in liquid nitrogen to froze. After sample collection,

all animals were raised until natural death.

Genome size estimation.

We used chicken blood cells as an internal standard. 1ml of fresh heparin
anticoagulant blood samples were collected from the veins beneath the wings of four
chickens. The samples were stored on ice and transported back to the laboratory. Each
1 ml of anticoagulant blood was diluted with 10 ml of physiological saline, and then
centrifuged at 4 °C and 1500 rpm for 10 minutes. The supernatant was discarded, and

this step was repeated twice. Finally, 1 ml of physiological saline was used to suspend
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the red blood cells, and chicken red blood cells were added to Galbraith’s buffer at a

ratio of 1:100 to prepare the chicken cell nuclear suspension.

Four sika deers were anesthetized, and 1 ml of fresh heparin anticoagulant blood
samples were collected from their neck arteries. The samples were stored on ice and
transported back to the laboratory. Each 1 ml of anticoagulant blood was diluted with
10 ml of physiological saline, and then centrifuged at 4 °C and 1500 rpm for 10
minutes. The supernatant was discarded, and this step was repeated twice. Finally, 1
ml of physiological saline was used to suspend the cells (after centrifugation, mainly
white blood cells were obtained, along with a small number of other cells), and deer
cells were added to Galbraith’s buffer at a ratio of 1:100 to prepare the deer cell
nuclear suspension. As a control sample, 1 ml of fresh heparin anticoagulant blood
samples were collected from the tail veins of four rats. Each 1 ml of anticoagulant
blood was diluted with 10 ml of physiological saline, and then centrifuged at 4 °C and
1500 rpm for 10 minutes. The supernatant was discarded, and this step was repeated
twice. Finally, 1 ml of physiological saline was used to suspend the red blood cells,
and rat cells were added to Galbraith’s buffer at a ratio of 1:100 to prepare the rat cell

nuclear suspension.

After preparing the cell nuclear suspension samples for deer, chicken, and rat, the
relative fluorescence positions of the two samples were determined. The deer and rat
cell nuclear suspensions were mixed in a ratio of 10:1, and the rat and chicken cell

nuclear suspensions and the deer and chicken cell nuclear suspensions were mixed in
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a ratio of 500:3. Then, 50 pl of propidium iodide (PI) staining solution was added, and

the samples were stained in a dark environment at 4 °C for 20 minutes.

The cell nuclear suspensions were filtered through a 20 pm nylon membrane,
transferred to flow cytometry tubes, and analyzed using a BD FACSCelesta 3 laser.
The stained samples were detected under excitation light at 488 nm, and the relative
fluorescence signals of the 2C nuclei of the internal standard samples and the test
samples were measured to determine the average fluorescence peak. At least 10,000
nuclear fluorescence signals were collected for each sample, and the coefficient of

variation (CV) was controlled within 5%.

Single cell RNA-seq library preparation and sequencing

Liver sample was pooled, minced with a razor blade, and digested with collagenase I
(100 pg/ml) + collagenase II (100 pg/ml) + collagenase IV (30 pg/ml) mixed solution
(Gibco, 17100017, 17101015, and 17104019) at 37°C for 60 min (or until the tissues
were fully digested), with intermittent shaking. Single cell suspensions were
sequentially filtered through 70 pum and 40 pm cell strainers (Corning, 352350 and
352340), and centrifuged at 500 x g for 5 min. The cell pellets were resuspended in
PBS and treated with the Red Blood Cell Lysis Buffer (Solarbio, R1010) to remove
red blood cells. Live cells were then washed with PBS twice, resuspended in 0.04%
UltraPure BSA solution (Thermo, 23209), and counted using a Countess automated
cell counter (Bio-Rad TC20, US). Live cells (confirmed by staining with 7-

aminoactinomycin D [BD Biosciences, 51- 68981E]; 90-95% viability after sorting)
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were collected from samples collected at each stage, resuspended at 1 x 103 cells/ml
and single cells were obtained using a Chromium Controller (10x Genomics, US). We
followed a standard protocol for scRNA-seq library construction (10x Genomics,
US). The libraries were sequenced with an Illumina NovaSeq6000 platform

(Novogene, China).

ATAC-seq library preparation and sequencing.

ATAC-seq was performed as previously reported(Buenrostro et al. 2013).
Briefly, nuclei were extracted from samples, and the nuclei pellet was resuspended in
the Tn5 transposase reaction mix. The transposition reaction was incubated at 37°C
for 30 min. Equimolar Adapter 1 and Adapter 2 were added after transposition, PCR
was then performed to amplify the library. After the PCR reaction, libraries were
purified with the AMPure beads and library quality was assessed with Qubit. The
clustering of the index-coded samples was performed on a cBot Cluster Generation
System using TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to the
manufacturer’s instructions. After cluster generation, the library preparations were
sequenced on an [llumina Hiseq platform and 150 bp paired-end reads were

generated.

RNA-seq library preparation and sequencing.

A total amount of 1 pg RNA per sample was used as input material for the RNA

sample preparations. Sequencing libraries were generated using NEBNext® UltraTM
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RNA Library Prep Kit for [llumina® (NEB, USA) following manufacturer’s
recommendations and index codes were added to attribute sequences to each sample.
Briefly, mRNA was purified from total RNA using poly(T) oligo-attached magnetic
beads. Fragmentation was carried out using divalent cations under elevated
temperature in NEBNext First Strand Synthesis Reaction Buffer(5X). First-strand
cDNA was synthesized using random hexamer primer and M-MuLV Reverse
Transcriptase (RNase H). Second-strand cDNA synthesis was subsequently performed
using DNA Polymerase I and RNase H. Remaining overhangs were converted into
blunt ends via exonuclease/polymerase activities. After adenylation of 3’ ends of DNA
fragments, NEBNext Adaptor with hairpin loop structure were ligated to prepare for
hybridization. In order to select cDNA fragments of preferentially 250~300 bp in
length, the library fragments were purified with AMPure XP system (Beckman
Coulter, Beverly, USA). Then 3 ul USER Enzyme (NEB, USA) was used with size-
selected, adaptor-ligated cDNA at 37°C for 15 min followed by 5 min at 95 °C before
PCR. Then PCR was performed with Phusion High-Fidelity DNA polymerase,
Universal PCR primers and Index (X) Primer. At last, PCR products were purified
(AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer
2100 system. The clustering of the index-coded samples was performed on a cBot
Cluster Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia)
according to the manufacturer’s instructions. After cluster generation, the library

preparations were sequenced on an [llumina NovaSeq platform and 150 bp paired-end



140  reads were generated.

141  HiFi library preparation and sequencing.

142 Genomic DNA was extracted from liver using the standard

143  cetyltrimethylammonium bromide method and sequenced using the PacBio in HiFi
144 mode. SMRTbell library construction and sequencing were performed at Novogene
145  (Tianjin, China) following the official protocols of PacBio for preparing ~20-544kb
146 SMRThbell libraries. After obtaining the sequence data, we processed the raw

147  information with SMRT Link (version 8.0546

148  https://github.com/PacificBiosciences/pbcommand), using the CCS method with

149  default parameters.

150 Hi-C library preparation and sequencing.

151 For Hi-C sequencing, we followed the standard protocol described previously
152  with minor modifications. In brief, liver of sika deer was used to isolate cells. The
153  cells were cross-linked and then homogenized by tissue lysis and digested with the
154  restriction enzyme Mbol overnight. The proximal chromatin DNA was re-ligated
155  using a ligation enzyme. The nuclear complexes were reversely cross-linked by

156  incubation with Proteinase K at 65°C. DNA was purified using phenol-chloroform
157  extraction, and biotin was removed from non-ligated fragment ends using T4 DNA
158  polymerase. The ends of sheared fragments (300—500 base pairs) were repaired using

159  a mixture of T4 DNA polymerase, T4 polynucleotide kinase, and Klenow DNA
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polymerase. Biotin-labeled Hi-C samples were specifically enriched using
streptavidin C1 magnetic beads. After adding A-tails to the fragment ends and ligating
[llumina paired-end (PE) sequencing adapters, Hi-C sequencing libraries were
amplified by PCR (12-14 cycles) and sequenced on the Illumina NovaSeq sequencing

platform at Novogene (Tianjin, China).
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169 Supplementary Figure 1. Genome estimate, assembly and evaluation.
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The erythrocyte of chicken (Gallus gallus) as an internal reference standard and rat
(Rattus norvegicus) as a positive control were selected to determine the genome size
of sika deer. This figure shows the flow cytometric histogram of relative DNA content
of nuclei from (A) mixture of rat and sika deer, (B) mixture of chicken and rat and (C)
mixture of sika deer and chicken. (D) Hi-C heatmap for X chromosome and Y
chromosome of sika deer. Green blocks referred to contigs and black blocks referred
to contigs with switch error phased by hifiasm. (E) Dot plot of genome alignment
from previous assembly (upper) and Y chromosome in our assembly to X
chromosome in our assembly suggesting that our assembly located PAR regions finely
in X and Y chromosome which is lost in previous assembly. (F) Synteny of PAR
regions between X chromosomes from cow, pig and sika deer and Y chromosomes of
sika deer firstly revealed the structure of PAR in Cervidae. Red blocks referred to

starting point of PAR.
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186
187  Supplementary Figure 2. Single cell RNA-seq quality metrics in different genome

188  versions.
189 Line plots to show median genes per cell (A) and estimated number of cells (B)

190 identified using the same scRNA-seq data but different reference genomes.
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Supplementary Figure 3. Quality control of ATAC-seq samples.Line plot to show

TSS enrichment analysis of ATAC-seq for each sample suggested high quality of our

data.
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197  Supplemental Figure 4. Statistic of ATAC-seq peaks.

198 A Bar plot for the number of peaks for all samples and PPs. B Bar plot of fraction of
199  different type of peaks for all samples and PPs tissue. C Pie plot to show the statistic
200  of the OCRs mapping from sika deer genome to red deer genome. D Bubble plot to

201  show functional enrichment of genes related to sika deer-specific OCRs.
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Dot plot to show the PCA analysis of gene expression (A) and chromatin accessibility

(B) of sika deer major organ.
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208  Supplementary Figure 6. Highly overlap between hub TFs during antler

209  regeneration.
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Upset plot to show the overlap in target genes between top 7 hub TFs in (A) dac0, (B)

dac2, (C) dac5 and (D) dac10 during antler regeneration.
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Supplementary Figure 7. Cellular expression of hub TFs
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show most hub TFs don’t show cellular specifity.
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218  Supplementary Figure 8. Comparison between stem cells population from antler

219  and mouse digit tip.
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A UMAP plot of cell type annotation in stem cell population from antler, regenerative
mouse digit tip (P3) and unregenerative mouse digit tip (P2). B UMAP plot of gene
expression of PRRX1 (the marker of PRRX1+ mesenchymal stem cell) and 7NN (the
marker of antler blastema progenitor cell). C Violin plot to show expression of MYC

and KLF4 in long bone and calvarial bone data.
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Supplementary Figure 9. CPCR activity in different cell types.

Violin plot to show each CPCR activity in different cell types.
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Supplementary Figure 10. cTOP model in liver scRNA-seq data.
232 A UMAP plot of cell annotations in sika deer liver. B UMAP plot to show percentage

233  of ribosome genes expression in a cell. C Dot plot to show marker genes expression in

234 each cell type. D UMAP plot to show highest CPCR of cells. E Functional enrichment

235  for TGs of each CPCR. F network of shared TFs and TGs between endothelial cell

236  related programs in liver and antler PP.
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239  Supplementary Figure 11. Pesudotime trajectory analysis of PMCs

240  differentiation.
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UMAP of (A) cell type and (B) pseudotime in dac5 cell atlas analyzed using Palantir.
The branching fate to (C) angiogenesis and (D) chondrogenesis is consisting with the
result from Monocle3 (Fig. 4E). The CPCR activity dynamics across trajectories from

(E) Monocle3 and (F) Palantir are similar.



