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Supplemental Fig. S1. Quality metrics for training and validation data set. (A) Comparison of
single cell and bulk cell read density for H3K4me3 histone mark relative to global transcriptional
start sites. Read density profiles for single cells closely match bulk cell data, with clear
nucleosome depletion regions. (B) Pearson’s correlation between training set single cells and bulk
data for H3K4me3 histone mark. (C) Pearson’s correlation between training set single cells and
bulk cell data for H3K27ac histone mark. (D) Scatter plot ranking the top 1,000 libraries with the
most to the least number of unique mapped reads. snCUT&RUN data is compared with
scCUT&Tag (Kaya-Okur et al. 2019), CoTECH (Xiong et al. 2021) and Droplet Paired-Tag (Xie et
al. 2023). (E) Violin- and boxplots indicating the percentage of reads which map to the genome
uniquely after PCR duplicates have been removed. (F) ChIPseeker (Yu et al. 2015) annotation of
the genomic localization of H3K27ac and H3K4me3 peaks in the snCUT&RUN dataset, compared
to the genomic localization of probed histone marks in the scCUT&Tag and uliCUT&RUN

bulk/pseudobulk datasets.
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Supplemental Fig. S2. Pearson correlation matrices of PRI, MET and PCR cell types for
H3K4me3, H3K27ac and H3K27me3 histone marks. (A) Similarity matrix for cells from patient
HN137. For all histone marks, HN137MET cells have diverged more from HN137PRI than
HN137PCR cells. The largest distinction between cell types is between HN137PRI and
HN137MET for H3K27ac. (B) Similarity matrix for cells from patient HN120. HN120PRI and
HN120PCR are more closely associated than HN120MET for both H3K4me3 and H3K27me3
histone marks. For H3K27ac, HN120PCR cells are more distinct from HN120PRI and HN120MET
cells. (C) and (D) UMAPs of H3K4me3 (C) and H3K27ac (D) profiles of HN120 and HN137 cells

annotated by replicates.
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Supplemental Fig. S3. Global H3K4me3 and H3K27ac profiles of primary and progressed
PDCs. (A) and (B) Number of H3K27ac (A) and H3K4me3 (B) peaks achieved per cell line profiled

with snCUT&RUN. (C) and (D) snCUT&RUN number of H3K27ac (C) and H3K4me3 (D) peaks
that are either cell line specific or shared by two or more cell lines. (E) and (F) ChIPseeker (Yu et
al. 2015) annotation of the genomic localization of shared and sample unique H3K27ac (E) and

H3K4me3 (F) peaks in the snCUT&RUN dataset.
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Supplemental Fig. S4. Differential keratin expression between primary and progressed HNSCC
(A) Immunofluorescence image of KRTS (yellow) and KRT18 (magenta) in HN120 and HN137
PDCs. (B-G) Expression data from Puram et al. (Puram et al. Cell, 2017) of various keratins and key
transcription factors in keratinocyte differentiation, comparing primary tumours and metastatic
tumours. (H-J) Gene expression of 7P63, KRT5 and KRT8, comparing primary tumour and metastatic

tumours. Data from Sharma et al. Nature Communications, 2018.
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Supplemental Fig. S5. Inference of transcription factor activity determining epithelial cell
identity with H3K27ac and H3K4me3 signal. (A) H3K27ac CoveragePlots at the KRT5 (left) and
KRT8/18 (right) loci for HN120 PDCs. (B) H3K4me3 CoveragePlots for HN120 and HN137 PDCs at
the KRT5 (left) and the KRTS8/18 (right) loci. (C) Motif activity UMAPs depicting the TF activities of

TP63, KLF5, TEAD4 and FOSL2 at single cell level.
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Supplemental Fig. S6. Genomic regions with copy number amplifications exhibit intense read
density with snCUT&RUN. (A) EGFR locus has a higher read density in HN137Met cells than
HN137Pri cells, suggesting further amplification of this region might drive primary cancer cells
towards metastasis. (B) Read density at Chr18p11.31 is significantly higher in both HN137Pri and

HN137Met cells compared to the rest of the genome.
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Supplemental Fig. S7. Correlation between gene CN, chromatin state, and gene expression (A)
Boxplots of RNAseq Z-scores against gene CN of the six PDCs. (B) ChromHMM results showing
chromatin state combinations based on HN120 samples alone. (C) ChromHMM results showing
chromatin state combinations based on HN137 samples alone. The weak bivalent
H3K4me3/H3K27me3 signal is annotated with an asterisk. (D) Boxplots correlating RNAseq Z-
scores against H3K27ac/H3K4me3 activity in HN120Pri, HN120Met, HN120PCR, HN137Pri and

HN137PCR.
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Supplemental Fig. S8. Chromatin state transitions between primary tumour and progressed
HNSCC. (A) Alluvial plot depicting the chromatin state changes between HN120Pri and HN120Met
PDC (left), HN120Pri > HN120PCR transition (middle) and HN137Pri > HN137PCR transition
(right). E1 (red): regions with H3K4me3 only. E2 (blue): regions with both H3K4me3 and H3K27ac.
E3 (green): regions with H3K27ac only. E4 (purple): unmodified regions. ES (orange): regions with
H3K27me3 only. (B) Log?2 ratio of the number of upregulated (Log2 FC > 1, p <0.001) genes to the
number of downregulated (Log2 FC <-0.5, p <0.001) genes per chromatin state change during

metastatic progression of patient HN137 (HN137Pri > HN137Met).
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Supplemental Fig. S9. Transcription factor (TF) activity related to stemness is correlated with
HNSCC progression. (A) Top six enriched TF motifs in HN120Met vs. HN120Pri. (B) Top 12
enriched REACTOME pathways in HN120Met vs. HN120Pri. (C) Top six enriched TF motifs in
HN137PCR vs. HN137Pri. (D) Top 12 enriched REACTOME pathways in HN137PCR vs.
HN137Pri. (E) Top six enriched TF motifs in HN120PCR vs. HN120Pri. (F) Top 12 enriched

REACTOME pathways in HN120PCR vs. HN120Pri.
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Supplemental Fig. S10. HN137prePCR and HN120preMET analysis. (A) PDC-specific HN137
H3K27ac module scores. Each module consists of the top 50 peaks for a particular PDC, and each
module score was back calculated for each single-cell using Signac’s AddChromatinModule
function. (B) CoveragePlots of the ARHGEFI16 and PTPRG-AS1 loci showing higher H3K27ac
localization in HN137prePCR compared to remaining HN137Pri cells. (C) UMR count for
HN137Pri, HN137PCR and HN137prePCR cells. (D) FRiP count for HN137Pri, HN137PCR and
HN137prePCR cells. (E) ChromVAR scores of the activity of several TFs enriched in HN120Met
vs. HN120Pri, visualized after the subset of HN120Pri to HN120preMET and remaining

HN120Pri cells.
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