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See also our Wiki at GitHub repository (https://github.com/ytanaka-bio/scIDST/wiki) 

 

1. Does imbalanced data affect output? 

The dataset (GEO: GSE193688) (Adams et al. 2024) contain 14 PD patients and 9 young 
and 8 aged healthy donors-derived scRNA-seq libraries. To test the effects of imbalanced 
data, we gradually remove PD samples (from 14 samples to 1 sample), and performed 
Reef/Snuba. We found that the probabilistic labels were dramatically decreased, when the 
number of patient-derived cells was less than 20% (removing more than half of PD samples). 
If the number of patient-derived cells is more than 20%, the probabilistic labels were very 
similar. 

 
Appendix 1. Distribution of the probabilistic labels in PD patient-derived cells. The 

calculation of the probabilistic labels was performed by gradually removing PD samples in 
Adams et al. 2024 dataset. The percentage of PD patient-derived cells is shown by red line. 

 

The dataset imbalance is one of the issues in the integrative analysis of single-cell data 
(Maan et al. 2024). If the dataset is skewed to specific class, we recommend under or 
oversampling the skewed class before running Reef/Snuba. For example, if patient-derived 
cells are less than 20%, please under or oversample cells from healthy donors or patients 
respectively, and increase the ratio of the minority groups. This under and oversampling 
improves the performance of Reef/Snuba probabilistic label calculation. 

https://github.com/ytanaka-bio/scIDST/wiki
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193688
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Appendix 2. Improvement of the probabilistic label calculation by under and 
oversampling. Given dataset with less than 20% of patient-derived cells, the under or 

oversampling of cells from healthy donors or patients respectively improved the performance 
of probabilistic label calculation. 

 

2. What is a difference between the classifier's output and the probability labels? 

Reef/Snuba algorithm calculates the probabilistic labels by agreement and disagreement of 
decision trees that are iteratively generated and pruned to fit a small portion of datasets. 
Therefore, the output from Reef/Snuba is relatively rough to that from subsequent ANN 
classifier. In addition, although the decision tree is faster and applicable for various types of 
datasets, ANN is more suitable to model complex relationships. Therefore, we recommend 
using the output of ANN classifier rather than the probabilistic labels from Reef/Snuba for 
subsequent analysis.  

 
Appendix 3. Comparison of classifiers output and Reef/Snuba output. 

 

3. How is batch effect correction? 

By comparing the distribution of individual cells across different patient/donor samples, we 
demonstrated that the removal of the batch effect was comparable with that in Seurat 
dimension-reduced data. UMAP plots represent similar distribution of individual cells across 
patient/donor samples. These results indicates that the batch effect is trivial level in our 
autoencoder-based dimension-reduced data. Variational autoencoder (VAE) is an alternative 
dimensionality reduction method that is probabilistic mapping and less susceptible to 
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overfitting than autoencoder. Like Seurat and autoencoder, the VAE-based dimension-
reduced data displayed limited batch effects.  

 
Appendix 4. Comparison of the batch effects by three dimension-reduced data: Seurat, 
autoencoder, and variational autoencoder (VAE). UMAP plots of individual cells from 
distinct patient/donor are shown. 

 

4. Does ratio of an initial dataset for Reef/Snuba algorithm affect the probabilistic labels? 

The probabilistic labels are calculated from a small portion (10% default, can be adjusted by 
-v option) of the datasets. We expect the bimodal distribution of disease level (healthy/early 
vs progressive), and test how this bimodality is affected by the ratio of the initial dataset. The 
bimodality was with low percentage of the initial datasets (10 ~ 50%), but disappeared when 
the ratio of the initial datasets were increased (70% ~). We noticed that the most of the 
probabilistic labels become 1 or 0 (similar with supervised learning), if we used high portion of 
the initial datasets. Therefore, we recommend that the ratio of the initial datasets should be 
set as small percentage (10~50%) for the weak supervision. 
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Appendix 5. Comparison of Reef/Snuba outputs with different ratio of initial datasets. 

The ratio was tested from 10% and 90%. (L) Heatmap represents Person correlation of 
Reef/Snuba outputs. (R) Histograms represents 3 representative Reef/Snuba outputs. 

 

5. Does scIDST show better performance than other cell scoring tools? 

We first tested scPred that calculates conditional class probabilities of belonging to a given 
cell states/subtypes by supervised support vector machine (Alquicira-Hernandez et al. 2019). 
Although the predicted disease levels were significantly higher in PD patient-derived cells 
than those from healthy donors (p<2.2×10-16 by two-sided t-test), significant difference of 
SNCA expression was not identified in the inferred disease progressive cells (Appendix 6A). 
In contrast, FKBP5 gene expression was clearly elevated along the predicted biological age 
(Appendix 6B). Comparative analysis with scIDST revealed that the predicted biological ages 
were similar between scPred and scIDST, whereas the correlation of disease levels are very 
weak between two methods (Appendix 6C). Nearest neighbor graph is an alternative 
approach to predict cell-to-cell relationships (Baran et al. 2019), and continuous cell state 
transition (Dann et al. 2022). To assess its performance, we also tested Milo algorithm that 
implemented differential abundance testing by assigning individual cells into nodes on a k-
nearest neighbor graph (Dann et al. 2022). Milo identified the nodes with differential 
abundance of PD patient/healthy donor-derived cells or aged/young donor-derived cells in 
neurons, oligodendrocytes, astrocytes, and microglia (Appendix 6D). However, a substantial 
number of differentially-expressed genes in these nodes were identified only in neurons or 
oligodendrocytes (Appendix 6E). Although the decline of myelin is one of pathological 
features of PD (Dean et al. 2016), there was no significant difference in the myelination-
associated gene expression (e.g. MBP, MOBP) (Appendix 6F). In contrast, similarly with 
scIDST and scPred, significant elevation of FKBP5 expression with aging was successfully 
detected. Taken together, these results indicated that our weakly-supervised deep learning 
displayed superior or comparable performance to the existing tools in the inference of disease 
progression and biological aging. 
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Appendix 6. Application of other cell scoring tools to Parkinson’s disease patient-
derived single-cell transcriptome profiles. A-B. Correlation (A) between scPred-predicted 
disease progressive level and SNCA expression and (B) between scPred-predicted biological 
age and FKBP5 expression across four groups. C. Comparison of predicted disease 
progressive level and biological age between scIDST and scPred. Person correlation 
coefficient and p-value are shown. D. Neighborhood graphs by Milo differential abundance 
testing. Beeswarm plot of log2(fold change) by (L) disease and (R) aging in each neiborhood 
node is also shown. Nodes with significant differential abundance (FDR < 0.1) are shown by 
blue or red colors. E. The number of differentially-expressed genes in nodes with differential 
abundance of (L) PD patient-derived cells and (R) aged donor-derived cells. F. Volcano plots 
showing differential gene expression in nodes in with enrichment of (L) healthy donor-derived 
ODCs and (R) aged donor-derived ODCs.  
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