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Supplemental Methods1

Quality controls2

GWAS data quality controls. In processing the GWAS summary statistics data, several steps3

were taken following the best practice (Choi et al., 2020). Variants with a minor allele frequency4

(MAF) less than 0.1% and an imputation information score below 0.3 were excluded. In cases5

where variants had allelic inconsistencies between the base and target data, strand-flipping was6

applied if the inconsistency could be resolved; otherwise, the non-resolvable variants were re-7

moved. Duplicate variants were also excluded to retain only one instance of each. Ambiguous8

variants were entirely removed from the dataset.9

Target data quality controls. In processing the UKBB individual-level data, we implemented10

several filtering steps following the best practice (Choi et al., 2020). We excluded variants with a11

genotyping rate below 1%, a minor allele frequency lower than 0.1%, or those not conforming to12

Hardy-Weinberg equilibrium (P-value less than 1 × 10−10). Duplicate variants were also removed13

to retain only one instance of each. Additionally, individuals with discrepancies between their re-14

ported sex and genetic sex were removed. Individuals that have a first or second degree relative (π15

>0.125) in the cohort were removed. For each disease phenotype, variants that exhibited a statis-16

tically significant difference in missing rate between cases and controls (with a P-value less than17

1× 10−5) were identified using Fisher’s exact test and subsequently removed from the analysis.18

PRS-Net training details19

PRS-Net was implemented in PyTorch (Paszke et al., 2017) version 1.13.1 and DGL (Wang et al.,20

2019) version 1.1.0 with CUDA version 11.6 and Python 3.7.16. We implemented a one-layer21

graph isomorphism network (Xu et al., 2018) (GIN) with a hidden size of 64. A multi-layer percep-22

tron is employed as a predictor. The attentive readout module in PRS-Net differs from the attention23

layer commonly used in transformer architectures.24

In PRS-Net, the attentive readout module assigns attention scores to individual nodes within25

the gene-gene interaction (GGI) network. Subsequently, a sum of the node embeddings weighted26

by their attentions is computed to derive the graph-level embeddings for PRS prediction. Therefore,27

our attentive readout module employs a single attention operation with a single head. While a28

multi-head attention mechanism similar to that is used in transformer could potentially enhance29

performance, we leave this as future work. In PRS-Net, the hidden dimension D is set to 64. Unlike30

the attention layer in transformer, which scales the attention weights by D, our attentive readout31

module does not require this scaling factor. The scaling of transformer’s attention mechanism32

aims to stabilize the gradients and control the variance in dot product between the query and33

key matrices. This ensures that the magnitude of attention weights remains consistent across34

different values of D, facilitating effective learning and optimization in large-scale models with35

multiple attention layers. Given that our attentive readout module conducts only a single attention36

operation, the scaling by D here is not necessary.37

We used a cross-entropy loss function for binary phenotypes and mean squared error as the38

objective function for quantitative traits. To address sample imbalance (i.e., less disease cases39

than healthy controls) and ensure effective model training, we implemented a balanced sampling40

strategy during the training process. Specifically, in each training step, we randomly sampled an41

equal number of cases and controls to construct each training batch. To allow the dataloader42

to keep sampling batches until the model converges, we set the number of samples to a large43
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value. For example, by setting n samples to 10,000,000, the dataloader can generate a total of44

10,000,000/batch size batches during training. The AdamW optimizer with a learning rate of 1 ×45

10−4 was adopted to train the model. Training was performed with a batch size of 512 over a total46

of 20,000 steps, utilizing a single Nvidia A100 GPU.47

Implementation of baseline methods48

For PLINK, PRSice, LDPred-2, and lassosum2, we followed the implementation detailed in the49

PRS tutorial (https://choishingwan.github.io/PRS-Tutorial/). We used BOLT-LMM-inf to generate50

the best linear unbiased prediction (BLUP) estimates following BOLT-LMM manual (https://51

alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM manual.html). For the Multi-Layer Perceptron52

(MLP), we implemented a three-layer architecture with a hidden size of 64, utilizing ReLU activa-53

tion and batch normalization. The learning rate was set to 0.001. For XGBoost, we configured the54

number of gradient-boosted trees to 500 and the learning rate to 0.01, keeping all other hyper-55

parameters at their default settings. Both MLP and XGBoost took GWAS variants as inputs. We56

selected the best GWAS P -values (0.001, 0.0001, and 0.00001) based on performance on the57

validation set and reported the results on the test set.58
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Supplemental Figures59
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Supplemental Fig. S1: Prediction performance evaluation based on the area under the precision-
recall curve (AUPRC) for different diseases (41, 175 test samples in total). The bar plot and error
bar denote the mean and standard error, respectively. The training, validation, and testing proce-
dure was conducted for six repeats with different random seeds for each model and each disease.
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Supplemental Fig. S2: Additional prediction evaluation for diseases based on the area under the
receiver operating characteristic curve (AUROC) and the area under the precision-recall curve
(AUPRC) (41, 175 test samples in total). The bar plot and error bar indicate the mean and standard
error, respectively. The training, validation, and testing procedure was conducted for six repeats
with different random seeds for each model and each disease.
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Supplemental Fig. S3: Prediction comparison for MLP less snp and XGBoost less snp. The bar
plot and error bar denote the mean and standard error, respectively. The training, validation, and
testing procedure was carried out for six repeats with different random seeds for each model and
each disease. AD, Alzheimer’s disease; MS, multiple sclerosis; UC, ulcerative colitis; AUROC, the
area under the receiver operating characteristic curve; AUPRC, the area under the precision-recall
curve.
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Supplemental Fig. S4: The cumulative incidence plots of low-risk individuals (with the lowest 5%
PRSs) determined by PRS-Net and baseline methods. Each plot illustrates the estimated per-
centage of individuals diagnosed with a specific disease at different ages. We provide cumulative
incidence plots for the original datasets as references. The line plot and shaded area represent
the mean and standard error, respectively.
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Supplemental Fig. S5: Prediction performance evaluation for quantitative traits (41, 028 and 40, 411
test samples for height and BMI, respectively). Performance was measured in R2. The bar plot and
error bar denote the mean and standard error, respectively. The training, validation, and testing
procedure was conducted for six repeats with different random seeds for each model and each
trait. BMI, body mass index.
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Supplemental Fig. S6: Gene set enrichment analysis (GSEA) for Alzheimer’s disease genes iden-
tified by PRS-Net, using gene ontology (GO) dataset as a reference. GO terms with adjusted
P< 0.05 (Benjamini-Hochberg correction) were shown.
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Supplemental Fig. S7: Gene set enrichment analysis (GSEA) for multiple sclerosis genes identified
by PRS-Net, using (A) gene ontology (GO) and (B) KEGG datasets as references. Terms with
adjusted P< 0.05 (Benjamini-Hochberg correction) were shown.
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Supplemental Fig. S8: Disease genes identified by a variation of PRS-Net without gene-gene in-
teraction network (PRS-Net-noPPI). (A-B), Top 20 genes ranked by P -value based on the Mann-
Whitney U test for Alzheimer’s disease (A) and multiple sclerosis (B), respectively. The red line
denotes the Bonferroni significance level.
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Supplemental Fig. S9: The ablation results for PRS-Net in AUPRC. (A) The performance com-
parison between PRS-Net and its variations. The bar plot and error bar denote the mean and
standard error, respectively. (B) The performance of PRS-Net with PPI dropout. The line plot and
shaded area denote the mean and standard error, respectively. (C) Comparison results of PRS-Net
with different GGI networks. (D) The prediction performance of PRS-Net with different extension
lengths. AD, Alzheimer’s disease; MS, multiple sclerosis; UC, ulcerative colitis; AUPRC, the area
under the precision-recall curve; PPI, protein-protein interaction.
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Supplemental Fig. S10: The ablation results on the PPI network. (A) The performance of PRS-
Net with different thresholds for PPI filtering. The line plot and shaded area denote the mean
and standard error, respectively. (B) The performance comparison of PRS-Net with original and
random PPI networks. The bar plot and error bar denote the mean and standard error, respectively.
AD, Alzheimer’s disease; MS, multiple sclerosis; UC, ulcerative colitis; AUROC, the area under the
receiver operating characteristic curve; AUPRC, the area under the precision-recall curve.
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Supplemental Fig. S11: The ablation results on different model hyperparameters. The performance
comparison of PRS-Net with different values of R2, L, and window size on Alzheimer’s disease.
The bar plot and error bar denote the mean and standard error, respectively. The training, valida-
tion and testing procedure was conducted for six repeats with different random seeds. AUROC,
the area under the receiver operating characteristic curve; AUPRC, the area under the precision-
recall curve.
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Supplemental Fig. S12: The ablation results on the predictor. The performance comparison of
PRS-Net with a linear predictor (PRS-Net-Linear) and with a multiple-layer perceptron (MLP) pre-
dictor (PRS-Net-MLP). The bar plot and error bar denote the mean and standard error, respec-
tively. The training, validation and testing procedure was conducted for six repeats with different
random seeds. AD, Alzheimer’s disease; MS, multiple sclerosis; UC, ulcerative colitis; AUROC, the
area under the receiver operating characteristic curve; AUPRC, the area under the precision-recall
curve.
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Supplemental Fig. S13: Prediction performance evaluation for quantitative traits including age, sex,
and principal components (PCs) as covariates (41, 028 and 40, 411 test samples for height and BMI,
respectively). Performance was measured in explained variance and R2. The bar plot and error bar
denote the mean and standard error, respectively. The training, validation, and testing procedure
was conducted for six repeats with different random seeds for each model and each trait. BMI,
body mass index.



16

A B

Supplemental Fig. S14: Prediction performance evaluation for simulation dataset (41, 028 test sam-
ples in total). Performance was measured in explained variance and R2. (A) Prediction perfor-
mance on the non-linear simulation dataset. (B) Prediction performance on the linear simulation
dataset. The bar plot and error bar denote the mean and standard error, respectively. The training,
validation, and testing procedure was conducted for six repeats with different random seeds for
each model. LR, linear regression.
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Supplemental Tables60

Supplemental Table S1: ICD-10 codes used to define different diseases.
Phenotype ICD-10

Alzheimer’s disease F00/G30
Atrial fibrillation I48
Ulcerative colitis K51/M07.5/M09.2

Asthma J45/J46
Rheumatoid arthritis M05/M06/M08.0

Multiple sclerosis G35
Myocardial infarction I21.9

Coronary artery disease I25.1
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Supplemental Table S2: Summary statistics of disease cohorts across multiple ancestry groups,
including Western European (EUR), South Asian (SAS), and African (AFR) ancestry. Abbrevia-
tions: N (number), POS (positive), and NEG (negative).

Phenotype N.POS.EUR (%) N.NEG.EUR N.POS.SAS (%) N.NEG.SAS N.POS.AFR (%) N.NEG.AFR
Alzheimer’s disease 2310 (0.59%) 388549 41 (0.47%) 8772 53 (0.60%) 8796

Atrial fibrillation 28754 (7.36%) 362105 374 (4.24%) 8439 266 (3.00%) 8583
Ulcerative colitis 4293 (1.10%) 386566 139 (1.58%) 8674 51 (0.58%) 8798
Multiple sclerosis 1742 (0.45%) 389117 8 (0.09%) 8805 16 (0.18%) 8833

Asthma 41443 (10.60%) 349416 1239 (14.06%) 7574 1048 (11.84%) 7801
Rheumatoid arthritis 7566 (1.94%) 383293 242 (2.75%) 8571 186 (2.10%) 8663
Myocardial Infarction 4205 (1.08%) 349416 167 (1.89%) 7574 69 (0.78%) 7801

Coronary artery disease 14582 (3.73%) 383293 603 (6.84%) 8571 181 (2.05%) 8663

Supplemental Table S3: Alzheimer’s disease genes identified by PRS-Net.61

Supplemental Table S4: Multiple sclerosis genes identified by PRS-Net.62
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