
SUPPLEMENTAL METHODS (ANALYSIS) 

Peak calling 

 During the course of the project sequencing methods evolved, the SPP peak caller went 

through multiple rounds of improvement and our internal pipeline changed (Kudron et al. 2018).  

To create a uniformly called set of peaks for the analyses presented here we processed all the 

ChIP-seq experiments through the ENCODE Transcription Factor and Histone ChIP-Seq 

processing pipeline version v1.3.6 , https://github.com/ENCODE-DCC/chip-seq-

pipeline2/tree/master.  (This version of the processing pipeline was used for all data submitted to 

the ENCODE DCC as well as data generated after October 2022.)  In all cases the bwa program 

was used for alignment (Heng Li and Durbin 2009; Heng Li 2013). The version of bwa in that 

pipeline is 0.7.17 https://bio-bwa.sourceforge.net/. For very early experiments that generated 

only short single ended sequence reads, the alignments done with the earlier version of bwa. 

0.7.8 were used.  The peak caller used for all experiments is SPP version 1.15.5 

(https://hbctraining.github.io/Intro-to-ChIPseq/lessons/peak_calling_spp.html) (Kharchenko, 

Tolstorukov, and Park 2008).  Because the ENCODE DCC ceased to accept data in October, 

2022, these new peaks calls are not available there but are available only through the website 

https://epic.gs.washington.edu/modERNresource and also through the SRA. 

 

Clustering of transcription factor peaks into metapeaks 

 Exploiting the similarity between TF peaks and sequence reads aligned to the genome, 

we aggregated TF peaks across all the ChIP-seq experiments for each species and called 

metapeaks. These called metapeaks represent the bounds of the clusters of TF peaks.  The TF 

peaks are then assigned to metapeaks based on proximity and overlap with the metapeaks. 

https://github.com/ENCODE-DCC/chip-seq-pipeline2/tree/master
https://github.com/ENCODE-DCC/chip-seq-pipeline2/tree/master
https://bio-bwa.sourceforge.net/
https://hbctraining.github.io/Intro-to-ChIPseq/lessons/peak_calling_spp.html
https://epic.gs.washington.edu/modERNresource


 We first aggregated all the peaks from the TF experiments for each species into a single 

bed file.  SPP sometimes called several peaks from a single experiment that overlapped exactly 

with the exact same genomic span but different apices.  These exactly overlapping peaks were 

trimmed, so that they were contiguous and non-overlapping.  The endpoints of these trimmed 

peaks were the midpoint between apices.  The apices were unchanged. 

 We next formed a signal track of all the aggregated trimmed TF peaks as a bedGraph file, 

as described at http://genome.ucsc.edu/goldenPath/help/bedgraph.html, using the program 

bedtools genomecov -bg (Version: v2.29.0)  

https://bedtools.readthedocs.io/en/latest/content/tools/genomecov.html.  

 The MACS2 program (version 2.2.4) https://hbctraining.github.io/Intro-to-

ChIPseq/lessons/05_peak_calling_macs.html was selected to call the metapeaks from the 

aggregated TF peaks.  Unlike SPP, the MACS2 program can be run without a control signal 

track, and for the TF peaks there is no control signal track.  

 The bdgpeakcall subcommand of MACS2 was used to call the metapeaks from bedGraph 

files.  Inspection of the results showed that clusters of peaks could sometimes overlap on their 

edges and depending on the extent of the overlap the valley between the two putative metapeaks 

could be of differing depths.  To split these overlapping metapeaks, we iterated the peak calling 

procedure using a minimum peak length of 50 bases with cutoff thresholds from 2 to 50. This 

created 49 output files in narrowPeak bed format 

https://genome.ucsc.edu/FAQ/FAQformat.html#format12.  As the cutoff increases, metapeaks 

with an internal valley will split into 2 metapeaks when the cutoff exceeds the minimum of the 

valleys.  Using a range of cutoff values makes it possible to split these broad metapeaks with 

internal valleys into separate metapeaks.   

http://genome.ucsc.edu/goldenPath/help/bedgraph.html
https://bedtools.readthedocs.io/en/latest/content/tools/genomecov.html
https://hbctraining.github.io/Intro-to-ChIPseq/lessons/05_peak_calling_macs.html
https://hbctraining.github.io/Intro-to-ChIPseq/lessons/05_peak_calling_macs.html
https://genome.ucsc.edu/FAQ/FAQformat.html#format12


  To come up with a final set of metapeaks, the multiple cutoff metapeaks were arranged 

into a tree structure.  The root of the trees was the metapeak called with cutoff 2.  The children 

metapeaks were the metapeaks from next higher cutoff that overlap the lower cutoff metapeak. If 

the higher cutoff did not go above an internal valley, there was only one child, but if the higher 

cutoff goes above a single internal valley, there were two children.  The tree was extended to the 

maximum threshold.  Branches extending only one generation were trimmed to avoid over 

splitting.   For the trimmed trees, each leaf metapeak was traced up the tree to when it was first 

created by a split of a metapeak, that is, it has a sister, and it is added to the list of metapeaks. 

After all the leaf metapeaks were traced up to their origins, the genomic width of the selected 

metapeaks is expanded to fill the entire width of the metapeaks at root level of cutoff 2.  This 

process is a compromise between splitting broad metapeaks with deep internal valleys and not 

splitting those metapeaks with very shallow internal valleys (depth of just one). The resulting 

metapeaks are also non-overlapping. 

 Each TF peak was then assigned to a metapeak as follows: If the TF peak apex was 

within the range of a metapeak, it was assigned to that metapeak. If the TF peak apex failed to 

overlap the range of a metapeak, but the peak region overlapped a single metapeak, it was 

assigned to that metapeak.  If the TF peak region overlapped more than one metapeak range, it 

was assigned to the metapeak whose end was closest to the apex of the TF peak.  If the TF peak 

did not overlap any metapeaks, then a new singleton metapeak was created for that TF peak.  

 

Conservation scores 

The D. melanogaster (dm6) and D. virilis (droVir3) assemblies were aligned using blastz 

(Chiaromonte, Yap, and Miller 2002; S. Schwartz et al. 2003) using blastz parameters and 



scoring matrices recommended on the UCSC browser (Kent et al. 2002). Similarly, the C. 

elegans (ce11) and C. remanei (caeRem4) genomes were aligned. The alignments were chained 

using axtChain (Kent et al. 2003) and processed into nets by the chainNet and netSyntenic tools 

(Kent et al. 2003). Conservation scores were calculated by giving matching bases a score of 2, 

gaps a score of 0, and substitutions the following scores A/C=T/G=A/T=C/G=-2, A/G=T/C=-

1.  Scores were summed across the bases in the feature of interest. 

 

HOT site determination  

  We calculated a HOTness score using a kernel density estimation (KDE) approach 

(L. Ma and A. Victorsen, unpublished) looking for regions of maximum point pattern densities 

as used, for example, in defining areas of geographical regions of high crime rates.  The 

following parameters were used: bandwidth 300, cutoff score 0.1, cutoff peak 0.00001, and local 

peak height 30.  Thresholds were defined by stage and by chromosome and across chromosomes 

within each stage using 1000 iterations randomly sampling from all observed peaks.  This 

approach labels the largest number of peaks as HOT sites (Supplemental Figure 3A). 

  In D. melanogaster almost all samples were embryonic, but in C. elegans we 

experimented with setting HOT site thresholds per stage as suggested by Araya et al., (Araya et 

al. 2014) identifying the 1% and 5% raw threshold per stage as compared to identifying the 

thresholds for the data set as a whole.  We determined most sites were found in all of the 

developmental stages. Approximately 10% additional sites were identified as “HOT” when using 

the cutoffs set per stage rather than setting the cutoff across all stages with 92% of those being 

within a few percent of the cutoff.   Thus, we chose to define the thresholds across the full data 

sets in both C. elegans and D. melanogaster, defining the 5% most highly occupied metapeaks as 



HOT sites and the 1% most highly occupied metapeaks as ultra-HOT sites (Supplemental 

Figure 3B, C). 

 

Overlap of metapeaks with chromatin features and ATAC peaks  

D. melanogaster – ATAC-seq: Calderon et al., (Calderon et al. 2022) obtained 110,185 ATAC-

seq regions from staged D. melanogaster embryos (11 overlapping time windows spanning the 

first 20 hours of development). As measured by an overlap of at least ten bases with ChIP 

metapeaks, by count 80% of ATAC regions are overlapped by a metapeak and 65% of 

metapeaks are overlapped by an ATAC region. 

 

Chromatin state data - D. melanogaster: Kharchenko et al. (Kharchenko et al. 2011) identified 

21,955 chromatin state regions (in S2-DRSC and ML-DmBG3-c2 cells using ChIP-chip), some 

of which were overlapping, and assigned the genome in 200 bp bins to one of nine chromatin 

states.  We looked for overlap using just the apex of the metapeak, a region of 200 bases centered 

on the apex and the full metapeak, requiring an overlap of at least ten bases with the chromatin 

regions for the latter two measures. The three measures produced similar results, with the three 

states associated with actively transcribed among the most shared, and the states with 

heterochromatin showing less overlap (Supplemental_File_S8).  The largest number of ChIP 

metapeaks and the largest number of metapeak bases overlap transcriptionally silent intergenic 

euchromatin, perhaps reflecting the wider range of genes active in the whole animal as opposed 

to cell lines. 

C. elegans – ATAC-seq: Janes et al. (Jänes et al. 2018b) identified 42,245 elements accessible in 

at least one C. elegans stage.  As measured by an overlap of at least ten bases, 27,052 of the 



ChIP metapeaks overlap 33,911 of Janes et al. elements (Supplemental_File_S8).  In terms of 

overlap at the base pair level, in the embryonic data for example, 18% of bases labeled with a 

chromatin state overlapped an embryonic modERN metapeak and 98% of bases in embryonic 

metapeaks were overlapped by a region labeled with a chromatin state in the embryonic state 

data. 

 Janes et al. (Jänes et al. 2018b) further annotated their accessible regions defining 13,596 

protein-coding promoters and 19,231 putative enhancers. Review of the overlap between their 

regions and the metapeaks reveals the largest numbers of regions overlapped by count by the 

metapeaks are those labeled as enhancer and coding promoter. Metapeaks that overlap  ATAC 

regions have larger numbers of peaks (30.8 +/- 60.0) compared to metapeaks not overlapping 

ATAC regions (2.7+/- 4.5) and, similarly, ATAC regions that overlap a metapeak have stronger 

signals (18.2+/-30.0) compared to those that don’t (5.0+/-5.4) , suggesting that metapeaks with 

low occupancy are less likely to be observed in ATAC-seq data. 

 To examine further the 3,756 accessible regions annotated as an enhancer and that were 

not overlapped by a metapeak, we assigned those regions to target genes in the same way we 

assigned metapeaks to target genes. Those 3,756 accessible regions were found to be more 

distant from the transcription start site, typically more 3’ of the transcription start site, than were 

those accessible regions annotated by enhancer that did overlap a metapeak.  Of those 2,910 

genes targeted by enhancers (Jänes et al. 2018b) but not overlapped by a metapeak, 2,749 (95%) 

were targeted by other, non-overlapping metapeaks.  Thus only 161 genes are identified as being 

targeted by enhancers (Jänes et al. 2018b) that are not targeted by a metapeak.  Of those 161, 

there are only 80 that have a TPM of at least 100 in at least one cell type in the embryo (Packer 

et al. 2019). 



C. elegans – eY1H comparison:  Fuxman Bass et al (Fuxman Bass et al. 2016) examined 

interactions between 409 of C. elegans TFs and the 500 bases upstream of 3,125 of C. elegans 

gene TSSs, using an enhanced yeast one-hybrid assay (eY1H) to create a gene-centered physical 

protein DNA interactions (PDI) network.  Their results contained 26,497 PDIs of which 21,714 

were defined as high quality (dataset_EV1).  These high quality interactions were between 2,576 

target gene promoters and 366 TFs.  They report finding overlap for 20% of the 46 shared TFs 

detected by eY1H and by ChIP as of the 2014 release of the C. elegans modENCODE project.  

For the current modERN dataset, there are 182 TFs shared by this project and the eY1H dataset.  

When looking in the 500 bases upstream of the TSS for the 14,198 TF/target pairs from those 

182 TFs, 1213 (8.5%) of have at least one ChIP peak overlapping that region by at least 10 

bases.  Of the 11,756 high quality Fuxman Bass TF/target pairs, 945 (8.0%) overlap at least one 

ChIP peak. 

 To understand better the low level of overlap between the two data sets, we examined the 

relationship between expression of the eY1H TFs and their targets in the single cell data sets, in 

the same way we had done for the ChIP-seq TFs and their targets.  We compared all of the eY1H 

TFs against the embryo, L2 and YA scRNA-seq sets.  Overall, the fraction of TFs with a cosine 

angle greater than 0.2 was lower in the eY1H data.  For example, for the embryo, of 304 eY1H 

TFs with high quality targets, and more than one target, 8.8% (27/304) had a cosine angle > 0.2. 

(58 had only 1 target and no angle was calculated. The eY1H data set has only 123 have more 

than 10 targets; more than half the targets are associated with just 18 TFs). By contrast, 26.8% 

(33/123) of the ChIP embryo TFs had a cosine angle of > 0.2.  Some notable TFs have low 

angles or very few targets in the eY1H set, e.g. HLH-1 has only one target.  Of the eY1H that 

have a cosine angle of > 0.2, about half also have a high cosine angle in the ChIP data.  



Interestingly, those TFs have more than a third of TF-target pairs overlapping between eY1H and 

ChIP, with PHA-4 showing 54% overlap (20/37).  For others, the eY1H data may be more 

informative data than the ChIP-seq data, e.g., ZTF-6 has a high angle (0.21) in the eY1H data 

and little overlap with the ChIP data (2/95) and a weak cosine angle (0.07) in the ChIP data. 

TF Pearson correlations for the worm and fly stages based on co-occurrence in same 

metapeak 

 Pearson correlations were used to evaluate how often TFs occur together in the set of 

metapeaks.  Pairs of TFs that occur often in the same metapeaks will have higher correlation 

values.  The initial set of metapeaks used in this analysis ranged in size of 2 peaks to 84 peaks, 

corresponding to the upper limit of non-HOT sites in the worm.  A binary matrix was 

constructed for each life stage in the worm and fly. These matrices were metapeaks by TFs, with 

a value of zero indicating the TF is not in the metapeak and value one indicating there was at 

least one peak of that TF in the metapeak.  For each lifestage in each species, if the number of 

TFs in the metapeak was less than two, that metapeak was not included in the calculations.  For 

each of the binary matrices, a Pearson correlation was then calculated for each pair of TFs across 

the metapeaks.  The correlation matrices were reordered by hierarchical clustering and displayed 

in heatmap form. 

 

Motif methods  

For known motifs, we collected fly and worm motifs determined by in vitro experiments, 

including SELEX, PBM, and B1H, from the Cis-BP database (Weirauch et al. 2014) with direct 

and inferred evidence.  For the motifs of a TF, we concatenated all the unique position-weighted 

matrices (PWMs) into a single file in the MEME motif format.  In total, 374 fly experiments and 



227 worm experiments have known in vitro motifs.  Locations of the motif occurrence in the 

genome were identified by FIMO (Grant, Bailey, and Noble 2011). We intersected the motif 

occurrence regions and the peaks or metapeaks regions by Bedtools (Quinlan and Hall 2010). 

 For motif inference, we first converted the ChIP-seq regions to fasta files using Bedtools 

(with genome versions dm6 and ce11 for fly and worm respectively).  We then used STREME 

(v5.4.1) (Bailey 2021) with default parameters to infer TF binding motifs from those ChIP-seq 

regions. We compared the inferred motifs to known motifs by TOMTOM (Gupta et al. 2007). 

For each experiment, if any one of the best three inferred motifs matched any one of the known 

motifs for that TF, we counted it as an experiment with successful inference. 

 For each ChIP-seq experiment, we used each of the following criteria to create several 

different input subsets: (i) keeping all peaks with no filters; (ii) keeping top 20% peaks sorted by 

SPP score; (iii) removing peaks that fall in metapeaks with size larger than 277 or 85, 

respectively for fly and worm; (iv) removing peaks that fall in metapeaks with sizes larger than 

53 or 31, respectively for fly and worm. Note that STREME will report an error if there were too 

few or zero peaks after filtering, and such subsets of that experiment will be disregarded. To 

make fair comparisons, for each of the subset types (ii), (iii) and (iv), we randomly sampled the 

same number of peaks from all peaks as well. We repeated the sampling three times and reported 

the average. All inferred motifs from all groups are available on 

https://github.com/modERNresource.  

 For the 288 and 290 experiments in fly and worm respectively where the TF did not have 

in vitro motifs, we compared their inferred motifs from group (i) to those from group (iv), 

described above.  If any one of the top three inferred motifs from group (i) was significantly 



similar (TOMTOM q-value<0.05) to one of the top three inferred motifs from group (iv), we 

considered this experiment as one with consistent inference results. 

 

Peak and metapeak target assignment 

 We relied on the following assumptions to guide the peak and metapeak assignments to 

target genes.  TFs operate at transcription start sites (TSS) and the closer the peak or metapeak is 

to the TSS, the more likely it is operating to influence gene expression of that target gene.  The 

peak or metapeak can be either upstream or downstream to the TSS.  It is not likely that a TF 

will influence gene expression of a target gene, if there is an intervening TSS of a different gene. 

It is ambiguous when a peak or metapeak lies between two different genes’ TSSs, and the 

distance to each of these two TSSs is not dramatically different.  In such cases, more than one 

target gene assignment for a single peak or metapeak was made. 

 The following describes the algorithm used to assign peaks and metapeaks to target 

genes.  Using the single base apex of the peak or metapeak as the location of a peak or metapeak, 

we found the closest TSS to the apex in either the positive or negative genomic direction and 

assigned the gene with the closest TSS as the primary target.  Other information recorded about 

the assignment included the distance and direction to the TSS, whether the apex was within an 

exon or intron, or whether the apex was outside the gene, on either the 5’ or 3’ side of the gene. 

After assignment of a primary target, an alternate target was chosen if the gene with the next 

nearest TSS to the apex in the opposite genomic direction from the primary target was a different 

gene than the primary.  The result was that an apex located between two genes was assigned both 

a primary and alternate target gene.  The distance and other information recorded can be used to 

assess how confident the assignment is to the alternate target gene.  If the distance is large 



compared to the distance to the primary target, the alternate target assignment may be less likely 

to be operational.  In addition, the location of peaks and metapeaks relative to the features of the 

target genes and their transcripts were recorded, again using proximity of the peak to the feature.  

The recorded relationships included being extragenic (either 5’ or 3’) or intragenic (either an 

internal TSS’s, an exon or an intron). For genes with multiple TSS’s both the transcript and gene 

positions were recorded. 

  

Remapping fly single cell data 

 As the initial analysis of the single cell RNA-seq fly data set (Calderon et al. 2022) for 

TF-target relationships yielded disappointing results, we attempted to refine the annotation.  To 

find additional cell types, we removed the very early cells (0-6 hours) along with yolk nuclei, 

subsetting their clusters 1, 5, 8, 9, 11, 12, 15, 16, 18, 21, 22, 23 to create a new cell data set (cds) 

(238,445 cells out of 547,805 starting cells).  Reducing the dimensions of this subset using first 

300 PCAs and then 2 dimensions with UMAP in monocle3 (https://cole-trapnell-

lab.github.io/monocle3/ ) with default parameters produced a more highly structured map 

(Supplemental Figure 9A).  After reclustering and grouping some clusters, dividing others and 

incorporating the prior neural annotations (Calderon et al. 2022), we produced the anonymous 

annotation (Supplemental Figure 9B).  The cells had relatively low counts, and highly 

expressed genes that, based on other evidence, should have been very cell specific, had a low-

level background throughout the maps. These factors may have limited resolution and 

contributed to the need to use high expression thresholds in the random forest models.  

Calculating the TPMs for each gene in each cell type and weighting by the differential 

expression yielded a heuristic score for potential markers of each cell type.  These markers were 



then compared to the fly in situ data set (https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl) of the 

Berkeley Drosophila Genome Project and other literature to assign each cell type anatomical 

names (Supplemental Figure 9C, D).  After two additional rounds of refinement, we identified 

a total of 83 cell types in addition to the cell types removed from the cell subset (maternal, yolk 

nuclei, early germline, etc.) (Supplemental_File_S9).  To obtain a more robust estimate of gene 

expression, we used a bootstrap calculation (1000 iterations with replacement) similar to that 

used by Packer et al. to obtain the TPM values of each gene in each cell type (Packer et al. 

2019). 

 

TF versus target expression 

 

To measure the complexity of expression we calculated the entropy (reference 

https://en.wikipedia.org/wiki/Entropy_(information_theory)) of each across the different cell 

types with their time bins defined in the worm embryo data set (Packer et al., 2019) and the 

reanalyzed fly embryo data set from Calderon et al., 2022.  Entropy was calculated in R using the 

function: 

   entropy <- function(x){ 

      s <- sum(x) 

      g <- 0 

      for (i in 1:length(x)){ 

        if (x[i]!=0){ 

          p <- x[i]/s 

          g <- g - p*log2(p) 

https://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
https://en.wikipedia.org/wiki/Entropy_(information_theory)


        } 

      } 

       return(g) 

        } 

Where x is the tpm of the gene in each cell type.  High values of entropy indicate a uniformity of 

expression across cell types and low values indicate very restricted expression in just one or a 

few cell types. 

After exploring the impact of various methods of filtering the input peaks and targets, we settled 

on removing all targets of HOT sites and all singleton metapeaks.  Removing targets of peaks 

with low relative signal strength did improve the scores of some TF-target pairs, but severely 

reduced the number of targets for some TFs.  Expression plots were created in R using ggplot, 

assigning each cell type to a broad cell class and ordering the plots by the cell class and then the 

cell type. 

 

Random forest model of cell type expression 

 Regression models were trained to predict single cell gene expression in individual cell 

types from ChIP-seq TF binding sites. The goal of building these models was to determine which 

TFs were most important in determining expression in each individual cell type.  A random 

forest machine learning method 

(https://urldefense.com/v3/__https://www.randomforestsrc.org/__;!!K-

Hz7m0Vt54!iUhkkDeBFzaT4erzyUP5WycP36QDAPYmgmzrL9D0w_nFOd2BH9xMRu8_P0d

HwHJJM6qnAvdWl-uPHQ$) 

https://urldefense.com/v3/__https:/www.randomforestsrc.org/__;!!K-Hz7m0Vt54!iUhkkDeBFzaT4erzyUP5WycP36QDAPYmgmzrL9D0w_nFOd2BH9xMRu8_P0dHwHJJM6qnAvdWl-uPHQ$
https://urldefense.com/v3/__https:/www.randomforestsrc.org/__;!!K-Hz7m0Vt54!iUhkkDeBFzaT4erzyUP5WycP36QDAPYmgmzrL9D0w_nFOd2BH9xMRu8_P0dHwHJJM6qnAvdWl-uPHQ$
https://urldefense.com/v3/__https:/www.randomforestsrc.org/__;!!K-Hz7m0Vt54!iUhkkDeBFzaT4erzyUP5WycP36QDAPYmgmzrL9D0w_nFOd2BH9xMRu8_P0dHwHJJM6qnAvdWl-uPHQ$


 was selected for this application because of the non-linear relationship expected between TF 

binding strength and gene expression.  Also, the random forest model can be interrogated, after it 

is trained, for the most important TFs in predicting the gene expression in the cell type. 

 The independent variable in the predictor matrix is the TF binding signal strength.  The 

binding signal is part of the output for each called peak by the SPP peak calling program.  The 

dependent or response variable is each cell type’s gene expression profile.  In order to relate the 

response variable to the predictor variables, each metapeak must be associated with one or more 

target genes whose single cell expression has been measured in the cell type.  After modeling all 

the cell types in the embryonic, larval, and adult stages, a matrix of cell types by TF will be 

produced for each of those life stages.  The values in this matrix reflect the relative importance of 

the TF in determining the expression of the target genes in the cell type. 

 Relating TF peaks to target genes is done on the basis of genomic proximity of the 

containing metapeak to the TSS.  All of the TF binding sites have been grouped into metapeaks 

as described above.  These metapeaks are assigned a primary target gene, which is the gene with 

a TSS closest to the apex of the metapeak.  An alternative target gene may also be assigned to the 

metapeak, which is a gene in the opposite genomic direction from the primary target that has the 

closest TSS.  Each binding site in the metapeak is assigned to the target genes assigned to the 

metapeak. 

 Multiple different models were built for all the cell types, depending on which 

metapeaks, TFs, and targets are selected for modeling, and any transformation performed on the 

signal binding strength of each binding site.  Many of the ChIP-seq binding sites were 

determined in a single life stage, while some were done at multiple stages.  When modeling the 

expression in a cell type, only binding sites measured in a close life stage were used in the 



modeling.  Thus, embryonic ChIP-seq experiments were used to model embryonic single cell 

expression, while L1, L2, and L3 stage ChIP-seq experiments were used to model L2 larval 

expression. and adult and L4 ChIP-seq experiments were used to model adult expression for the 

worm.  Only embryonic ChIP-seq experiments in the fly were used as this was the only stage for 

which single cell expression data was available. 

 The SPP peak calling program outputs a signal strength for each peak called.  In order for 

these signal strengths to be used in the modeling, they need to be normalized so that each 

experiment is comparable.  To do the normalization, the peaks in each experiment are sorted by 

their signal strength.  They are then assigned a normalized signal strength between zero and one 

based on their rank in the experiment.  The peak with the strongest signal in the experiment will 

be assigned a normalized signal of one, and the peak with the lowest signal strength in the 

experiment will get a zero normalized signal strength. 

 The predictor matrix is constructed with the independent variables in the columns, all the 

TFs measured in the experiments done in the life stage of the cell type being modeled.  The rows 

of the predictor matrix represent the data points, an association of a cluster to a target gene.  The 

values in the matrix in a given row are a measure of the binding site for each TF in the cluster.  If 

a cluster is associated with more than one target, there will be more than one row in the matrix 

corresponding to that cluster.  Genes that have no associated cluster are not represented in the 

model.  Some genes will have multiple associated metapeaks, and there will be a row for the 

gene in the predictor matrix for each associated metapeak. The response vector is the single cell 

expression in the cell type being modeled for the target genes in the rows of the predictor matrix. 

The number of rows in the predictor matrix will equal the number of entries in the response 

vector. 



 Forty different predictor matrices and response vectors were constructed for each worm 

cell type, depending on which TFs were selected (feature selection), which metapeaks were 

selected, which targets were selected, and which function of normalized signal strength was 

selected.  

Transcription factor selection: 

1) only factors with nonzero measured single cell expression in the cell type 

2) only factors with expression in the cell type of at least 5% of the maximum expression 

of all the cell types in the life stage. 

Metapeak selection: 

1) no HOT site and no singleton clusters, only those clusters with 2 to 84 peaks (of all life 

stages) in the cluster 

2) clusters with 2 to 30 peaks 

3) clusters with 2 to 84 peaks, but within 2KB of the target gene’s TSS or in the first 

intron or first exon of the target gene 

4)  clusters with 2 to 30 peaks, but within 2KB of the target gene’s TSS or in the first 

intron or first exon of the target gene 

5) clusters with target genes that do not have a HOT site associated with them 

Metapeak target selection: 

1) Use primary targets only 

2) In addition to primary targets, use alternative targets that are less than twice the 

distance from the cluster as the primary target 

Signal Strength: 

1) use the normalized signal rank without modification 



2) divide the normalized signal rank by the log of the distance between the cluster and its 

target 

 

 Each cell type in each life stage was modeled with all forty different predictor models. 

When training a random forest, we used a procedure referred to as bagging, which means each 

decision tree is built with a random selection of the data points.  The result is  an out of bag 

ensemble of data points, not used in the training, that can be used to assess the accuracy of each 

of the models.  This out of bag ensemble also makes it possible to assess the importance of each 

TF in the accuracy of the prediction model by seeing how much the model error changes when a 

given TF is permuted in the trained model.  Those TFs that cause the greatest increase in the 

model error when permuted, are the most important for the prediction. 

 The models were ranked by the root mean square error for each cell type.  The model 

ranked best for the most cell types was selected as the best modeling approach for each life stage. 

For the worm, the model that used TFs with at least 5% of the maximum expression, no HOT 

sites and no singleton clusters, close alternative targets, and distance modified signal strength 

was judged to be the best. 

 For the fly embryonic stage, a different model performed best. This model used TFs 

where the expression was greater than the mean expression plus one standard deviation. 

Metapeaks more than 84 peaks were not included in the fly model, consistent with the worm 

models.  

REFERENCES 
 
Araya, Carlos L., Trupti Kawli, Anshul Kundaje, Lixia Jiang, Beijing Wu, Dionne Vafeados, 

Robert Terrell, et al. 2014. “Regulatory Analysis of the C. elegans Genome with 
Spatiotemporal Resolution.” Nature 512 (7515): 400–405. 



Bailey, Timothy L. 2021. “STREME: Accurate and Versatile Sequence Motif Discovery.” 
Bioinformatics (Oxford, England) 37 (18): 2834–40. 

Chiaromonte, F., V. B. Yap, and W. Miller. 2002. “Scoring Pairwise Genomic Sequence 
Alignments.” Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 
115–26. 

Grant, Charles E., Timothy L. Bailey, and William Stafford Noble. 2011. “FIMO: Scanning for 
Occurrences of a given Motif.” Bioinformatics (Oxford, England) 27 (7): 1017–18. 

Gupta, Shobhit, John A. Stamatoyannopoulos, Timothy L. Bailey, and William Stafford Noble. 
2007. “Quantifying Similarity between Motifs.” Genome Biology 8 (2): R24. 

Kent, W. James, Robert Baertsch, Angie Hinrichs, Webb Miller, and David Haussler. 2003. 
“Evolution’s Cauldron: Duplication, Deletion, and Rearrangement in the Mouse and 
Human Genomes.” Proceedings of the National Academy of Sciences of the United States 
of America 100 (20): 11484–89. 

Kent, W. James, Charles W. Sugnet, Terrence S. Furey, Krishna M. Roskin, Tom H. Pringle, 
Alan M. Zahler, and David Haussler. 2002. “The Human Genome Browser at UCSC.” 
Genome Research 12 (6): 996–1006. 

Kharchenko, Peter V., Artyom A. Alekseyenko, Yuri B. Schwartz, Aki Minoda, Nicole C. 
Riddle, Jason Ernst, Peter J. Sabo, et al. 2011. “Comprehensive Analysis of the 
Chromatin Landscape in Drosophila Melanogaster.” Nature 471 (7339): 480–85. 

Li, Heng. 2013. “Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-
MEM.” ArXiv [q-Bio.GN]. arXiv. http://arxiv.org/abs/1303.3997. 

Li, Heng, and Richard Durbin. 2009. “Fast and Accurate Short Read Alignment with Burrows-
Wheeler Transform.” Bioinformatics  25 (14): 1754–60. 

Quinlan, Aaron R., and Ira M. Hall. 2010. “BEDTools: A Flexible Suite of Utilities for 
Comparing Genomic Features.” Bioinformatics (Oxford, England) 26 (6): 841–42. 

Schwartz, Scott, W. James Kent, Arian Smit, Zheng Zhang, Robert Baertsch, Ross C. Hardison, 
David Haussler, and Webb Miller. 2003. “Human-Mouse Alignments with BLASTZ.” 
Genome Research 13 (1): 103–7. 

 


