
Supplemental materials
Kamath et al. Telomere-to-telomere assembly by preserving contained reads

Content summary

� Note S1: Additional details of CGProb method.
� Note S2: Software commands for CGProb.
� Note S3: Software commands for RAFT.
� Figure S1: Assembly gap due to contained read deletion on a haploid genome.
� Figure S2: Frequency of observing an assembly gap near a germline heterozygous locus.
� Figure S3: Frequency of observing an assembly gap near a somatic heterozygous locus.
� Figure S4: Read length distributions corresponding to the different read sequencing technologies.
� Table S1: Validating CGProb results using simulation
� Table S2: Read length statistics of sequencing datasets used for benchmarking RAFT algorithm.
� Table S3: Additional quality statistics of the HG002 phased assemblies produced by RAFT-Hifiasm and Hifiasm.
� Table S4: Comparing phased genome assemblies produced with complementary parental data.
� Table S5: Software versions.

1

Supplemental Note S1: Additional details of CGProb method

Read groups. For a sequencing output belonging to class (x1, x2) and having an assembly gap due to contained
read deletion, we define the following groups to partition the reads sampled from haplotype k (k = 1, 2).
We will see later that this classification makes it convenient to enumerate all valid multisets of reads for
calculating |Mx1,x2 |.

1. Reads in group 1 span the heterozygous locus.
– Reads in group 1(a) stop before xk.
– Reads in group 1(b) stop at xk.
– Reads in group 1(c) stop after xk.

2. The sampling interval of reads in group 2 is a sub-interval of [2,max(x1, x2)].
– Reads in group 2(a) start and stop in [2,min(x1, x2)].
– Reads in group 2(b) start in [2,min(x1, x2)] and stop in [min(x1, x2) + 1,max(x1, x2)].
– Reads in group 2(c) start and stop in [min(x1, x2) + 1,max(x1, x2)].

3. Reads in group 3 stop in [max(x1, x2) + 1, G].
– Reads in group 3(a) start in [2,min(x1, x2)].
– Reads in group 3(b) start in [min(x1, x2) + 1, G].

For example, the green-coloured reads in Figure 3 in the main text are in group 1(b), and the black-
coloured reads are in group 2(b). Next, we show that these read groups are mutually exclusive and exhaustive.
By our definitions of x1 and x2 in Section 1, group 1(c) must be empty. By Lemma 1, group 3(a) must be
empty.

Lemma 3. For all the sequencing outputs belonging to class (x1, x2) which have an assembly gap due to

contained read deletion, the read groups 1(a), 1(b), 2(a), 2(b), 2(c), and 3(b) are mutually exclusive and

exhaustive.

Proof. If the sequencing output belongs to class (x1, x2), then by Lemma 1, x1 6= x2. Without loss of
generality, assume x1 > x2. First, we argue that the groups are mutually exclusive. We only consider reads
sampled from haplotype 1. Similar arguments can be made for reads sampled from haplotype 2.

1. Reads in group 1 support the heterozygous locus. They cannot belong to groups 2 or 3. Reads in group
1(a) stop before x1 and reads in group 1(b) stop at x1.

2. Reads in group 2 start and stop in the interval [2, x1]. Therefore, they cannot belong to group 3. Reads
in group 2 have three choices – they start and stop in [2, x2], i.e. group 2(a), they start and stop in
[x2 + 1, x1], i.e. group 2(c), or they start in [2, x2] and stop in [x2 + 1, x1], i.e. group 2(b).

Thus, all the groups are mutually exclusive, and no read can belong to two groups simultaneously.
Next, we show that reads from any sequencing output belonging to class (x1, x2) can be classified into

one of the six groups. Again, we restrict our attention to reads arising from haplotype 1.

1. All the reads which support [1, 1] will be classified into groups 1(a) or 1(b), according to their stop
position before x1 or being x1, respectively.

2. Suppose a read starts and stops in the interval [2, x1]. This read will be classified into group 2 because
groups 2(a), 2(b) and 2(c) include all possible sub-intervals of [2, x1].

3. The remaining reads stop in [x1 + 1, G]. By Lemma 1, these reads must start in [x2 + 1, G]. Hence these
reads must be in group 3(b).

In the above argument, we first exhaust all reads that support [1, 1]. The remaining reads must start
and stop in [2, G]. Next, we consider all stop positions in [2, G]. For every stop position in [2, G], we have
considered all valid start positions. Therefore, no read is left unclassified into a group. Thus, all reads sampled
from haplotype 1 are partitioned into the six groups.

2

Counting |Mx1,x2 |. While counting read sequencing outputs in class (x1, x2) with an assembly gap due to
contained read deletion, we need to consider the ones which have at least one read in group 1(b) on both
haplotypes, at least one read in either haplotype on group 2(b), and zero reads in group 1(c) and 3(a) on
both haplotypes (Lemma 1). We use an inclusion-exclusion argument to count such outputs. To this end, we
define M11,M12,M13,M14 as following:

– M11 = Set of multisets of reads on haplotype 1 where groups 1(c) and 3(a) have zero reads
– M12 = Set of multisets of reads on haplotype 1 where groups 1(b), 1(c), and 3(a) have zero reads
– M13 = Set of multisets of reads on haplotype 1 where groups 1(c), 2(b), and 3(a) have zero reads
– M14 = Set of multisets of reads on haplotype 1 where groups 1(b), 1(c), 2(b), and 3(a) have zero reads

Similarly, we denote the corresponding sets of multisets on haplotype 2 using symbols M21,M22,M23,

M24.

Lemma 4. The total number of sequencing outputs that belong to class (x1, x2) and have an assembly gap

due to contained read deletion is |Mx1,x2 | = (|M11|� |M12|)(|M21|� |M22|)� (|M13|� |M14|)(|M23|� |M24|).

Proof. We want to count sequencing outputs which have (i) at least one read in group 1(b) from haplotype
1, (ii) at least one read in group 1(b) from haplotype 2, (iii) at least one read in group 2(b) from either
haplotype 1 or 2, and (iv) exactly zero reads in group 1(c) and 3(a) on both haplotypes. We describe these
sequencing outputs in terms of multisets of reads from each haplotype as follows:

(1) Multisets of reads from haplotype 1 with at least one read in group 1(b), at least one read in group 2(b),
and zero reads in groups 1(c) and 3(a), taken together with multisets of reads from haplotype 2 with at
least one read in group 1(b), at least one read in group 2(b), and zero reads in groups 1(c) and 3(a).

(2) Multisets of reads from haplotype 1 with at least one read in group 1(b) and exactly zero reads in groups
1(c), 2(b) and 3(a), taken together with multisets of reads from haplotype 2 with at least one read in
group 1(b), at least one read in group 2(b), and zero reads in groups 1(c) and 3(a).

(3) Multisets of reads from haplotype 1 with at least one read in group 1(b), at least one read in group 2(b),
and zero reads in groups 1(c) and 3(a), taken together with multisets of reads from haplotype 2 with at
least one read in group 1(b) and exactly zero reads in groups 1(c), 2(b) and 3(a).

Note that these three partition the set of sequencing outputs that must be counted. Next, the following
facts follow from the principle of inclusion and exclusion:

– Multisets of reads from haplotype 1 with at least one read in group 1(b), at least one read in group 2(b),
and zero reads in groups 1(c) and 3(a) = |M11|� |M12|� |M13|+ |M14|.

– Multisets of reads from haplotype 2 with at least one read in group 1(b), at least one read in group 2(b),
and zero reads in groups 1(c) and 3(a) = |M21|� |M22|� |M23|+ |M24|.

– Multisets of reads from haplotype 1 with at least one read in group 1(b) and exactly zero reads in groups
1(c), 2(b) and 3(a) = |M13|� |M14|.

– Multisets of reads from haplotype 2 with at least one read in group 1(b) and exactly zero reads in groups
1(c), 2(b) and 3(a) = |M23|� |M24|.

Thus, the number of elements in (1) is (|M11|� |M12|� |M13|+ |M14|)(|M21|� |M22|� |M23|+ |M24|).
The number of elements in (2) is (|M13|� |M14|)(|M21|� |M22|� |M23|+ |M24|). The number of elements in
(3) is (|M11|� |M12|� |M13|+ |M14|)(|M23|� |M24|). Adding these gives |Mx1,x2 | = (|M11|� |M12|)(|M21|�
|M22|)� (|M13|� |M14|)(|M23|� |M24|).

The eight quantities |M11|, |M12|, |M13|, |M14|, |M21|, |M22|, |M23|, |M24| can be efficiently calculated using
ordinary generating functions Wilf (2005). First, we write an ordinary generating function fi,j,k(x) repre-
senting the number of valid reads of length i stopping at position j on haplotype k. Second, the coefficient
of the monomial of degree Nk,i in the product

QG
j=1 fi,j,k(x) gives the number of multisets of reads of length

i on haplotype k. Third, the product of the numbers of multisets of reads of length i on haplotype k (over
all possible values of i) gives the number of multisets of reads on haplotype k.

3

Counting multisets using generating functions. Suppose we have a multiset R = {3 ·a, 4 · b, 2 · c} of reads. To
count the number of multisets containing exactly six elements from R , where two copies of the same read
are indistinguishable, one can use the following method:

1. Write a generating function for each read, e.g. fa(x) = 1 + x+ x
2 + x

3.
2. Compute F (x) = fa(x) · fb(x) · fc(x).
3. Extract the coefficient of x6.

The generating function fa(x) denotes the four available choices concerning read a available when con-
structing a sub-multiset. We can pick zero, one, two, or three copies of a. In the product polynomial F (x),
the coefficient of xn is the number of sub-multisets of n elements.

In our setting, we know that there are Nk,i reads of length i on haplotype k. There are G possible distinct
reads of length i corresponding to the G possible distinct stop positions in haplotype k. Some of these reads
will be ‘valid’, i.e. permissible according to conditions defined for Mkp, where k is the index of the haplotype
and p 2 {1, 2, 3, 4}, and others will be ‘invalid’. For a fixed choice of haplotype k and length i, we write
G generating functions fi,j,k(x), for 1  j  G. When estimating the quantities |M11|, |M12|, |M13|, |M14|,
|M21|, |M22|, |M23|, |M24|, some reads may be invalid for some of the quantities. If the read of length i stopping
at position j on haplotype k is valid, then the generating function is fi,j,k(x) = 1 + x + x

2 + · · ·xNk,i . If
the read is invalid, then the generating function is fi,j,k(x) = x

0. In the product Fk,i(x) =
QG

j=1 fi,j,k(x),
the coefficient of xNk,i , denoted by aNk,i , counts the number of multisets of reads of length i from haplotype
k. The product

Q�k

i=1 aNk,i gives the number of multisets of Nk reads arising from haplotype k. The roles
of haplotypes 1 and 2 can be reversed if x1 < x2. When x1 > x2, the conditions for reads in each read
sequencing output in M11,M12, . . . ,M23,M24 are as follows:

– M11:
1. If j = x1, reads are in group 1(b) if i � x1; they are in group 2(b) if x1 � x2 < i < x1; they are in

group 2(c) if 1  i  x1 � x2. All of these are valid reads.
2. If x2 < j < x1, reads are in group 1(a) if i � j; they are in group 2(b) if j � x2 < i < j; they are in

group 2(c) if 1  j  j � x2. All these reads are valid.
3. If 1 < j  x2, reads are in group 1(a) if i � j; they are in group 2(a) if 1  i < j. All these reads are

valid.
4. If j = 1, reads are in group 1(a) for all i. All these reads are valid.
5. If x1 < j  G, reads are in group 3(b) if 1  i  j � x2. All of these are valid reads. All reads of

length i with stop position j not mentioned above are invalid.
– M12:

1. If j = x1, reads are in group 1(b) if i � x1; they are in group 2(b) if x1 � x2 < i < x1; they are in
group 2(c) if 1  i  x1�x2. Reads in group 1(b) are invalid. Reads in groups 2(b) and 2(c) are valid.

2. Same as (2) in M11.
3. Same as (3) in M11.
4. Same as (4) in M11.
5. Same as (5) in M11.

– M13:
1. If j = x1, reads are in group 1(b) if i � x1; they are in group 2(b) if x1 � x2 < i < x1; they are in

group 2(c) if 1  i  x1�x2. Reads in groups 1(b) and 2(c) are valid. Reads in group 2(b) are invalid.
2. If x2 < j < x1, reads are in group 1(a) if i � j; they are in group 2(b) if j � x2 < i < j; they are in

group 2(c) if 1  j  j � x2. Reads in groups 1(a) and 2(c) are valid. Reads in group 2(b) are invalid.
3. Same as (3) in M11.
4. Same as (4) in M11.
5. Same as (5) in M11.

– M14:
1. If j = x1, reads are in group 1(b) if i � x1; they are in group 2(b) if x1 � x2 < i < x1; they are in

group 2(c) if 1  i  x1�x2. Reads in group 2(c) are valid. Reads in groups 1(b) and 2(b) are invalid.

4

2. If x2 < j < x1, reads are in group 1(a) if i � j; they are in group 2(b) if j � x2 < i < j; they are in
group 2(c) if 1  j  j � x2. Reads in groups 1(a) and 2(c) are valid. Reads in group 2(b) are invalid.

3. Same as (3) in M11.
4. Same as (4) in M11.
5. Same as (5) in M11.

– M21:

1. If j = x2, reads are in group 1(b) if i � x2; they are in group 2(a) if i < x2. All of these are valid
reads.

2. If 1  j < x2, reads are in group 1(a) if i � j; they are in group 2(a) if i < j. All of these are valid
reads.

3. If x2 < j  x1, reads are in group 2(b) if j � x2 < i < j; they are in group 2(c) if 1  i  j � x2. All
of these are valid reads. If i � j, these reads would support the heterozygous locus, they are invalid.

4. If x1 < j  G, reads are in group 3(b) if 1  i  j � x2. All of these are valid reads. All reads of
length i with stop position j not mentioned above are invalid.

– M22:

1. If j = x2, reads are in group 1(b) if i � x2; they are in group 2(a) if i < x2. Reads in group 2(a) are
valid. Reads in group 1(b) are invalid.

2. Same as (2) in M21.
3. Same as (3) in M21.
4. Same as (4) in M21.

– M23:

1. Same as (1) in M21.
2. Same as (2) in M21.
3. If x2 < j  x1, reads are in group 2(b) if j � x2 < i < j; they are in group 2(c) if 1  i  j � x2.

Reads in group 2(c) are valid. Reads in group 2(b) are invalid. If i � j, these reads would support the
heterozygous locus, they are invalid.

4. Same as (4) in M21.

– M24:

1. If j = x2, reads are in group 1(b) if i � x2; they are in group 2(a) if i < x2. Reads in group 2(a) are
valid. Reads in group 1(b) are invalid.

2. Same as (2) in M21.
3. If x2 < j  x1, reads are in group 2(b) if j � x2 < i < j; they are in group 2(c) if 1  i  j � x2.

Reads in group 2(c) are valid. Reads in group 2(b) are invalid. If i � j, these reads would support the
heterozygous locus, they are invalid.

4. Same as (4) in M21.

Minor remark on the calculation of |S|. While counting all valid sequencing outputs |S| in the main text, we
use T to denote the number of sequencing outputs having Nk,i reads of length i on haplotype k for all i 2
[1,�k] and for all k 2 {1, 2}. T can also be computed directly without using generating functions. Recall that
n indistinguishable objects can be placed into m distinguishable bins in

�n+m�1
n

�
ways. The Nk,i number of

reads of length i on haplotype k are only distinguishable by their stop positions. Treating the stop positions as
distinguishable bins, the number of ways in which the Nk,i number of reads can be stored in G distinguishable
bins is

�G+Nk,i�1
Nk,i

�
. This is the number of multisets of reads of length i on haplotype k. Thus, the total number

of multisets of reads on haplotype k is
Q

i

�G+Nk,i�1
Nk,i

�
. Accordingly, T =

Q2
k=1

Q
i

�G+Nk,i�1
Nk,i

�
. However,

deriving a direct formula for the other quantities, i.e., T1, T2, T12, M11,M12, . . . ,M24, is tedious.

5

Supplemental Note S2: Software commands for CGProb

To run CGProb, we use the following commands. Comments are indicated using #.

$ python3 scripts/create_genome.py 1000000
Simulation for the first haplotype
$ seqrequester simulate -truncate -genome myGenome.fasta -genomesize 1000000 -coverage 50 \
-distribution readLengthDistribution.txt > readsHap1.fasta
$ seqrequester summarize -simple readsHap1.fasta > originalReadLengthsHap1.txt
Simulation for the second haplotype
$ seqrequester simulate -truncate -genome myGenome.fasta -genomesize 1000000 -coverage 50 \
-distribution readLengthDistribution.txt > readsHap2.fasta
$ seqrequester summarize -simple readsHap2.fasta > originalReadLengthsHap2.txt
Scale down read lengths by factor 1000
$ python3 scripts/scale_down.py originalReadLengthsHap1.txt newShortLengthsHap1.txt 1000
$ python3 scripts/scale_down.py originalReadLengthsHap2.txt newShortLengthsHap2.txt 1000
Obtain read count on each haplotype
$ tail -2 readsHap1.fasta | head -1 | awk -F’[=,]’ ’{print $2}’ > numReadsHap1.txt
$ tail -2 readsHap2.fasta | head -1 | awk -F’[=,]’ ’{print $2}’ > numReadsHap2.txt
Computation
$ CGProb/compute -g 1000 -R $(cat numReadsHap1.txt) -r $(cat numReadsHap2.txt) \
-h 200 -D $(cat newShortLengthsHap1.txt) -d $(cat newShortLengthsHap2.txt) -p 128 -t 256 \
> output.txt
$ tail output.txt | grep "probability = " | awk ’{print $3}’ > probability.txt

Supplemental Note S3: Software commands for RAFT

Running Hifiasm We use the following command to run Hifiasm with 32 threads on an input FASTA file.

$ hifiasm -o assembly -t 32 input.fasta

We generate primary assemblies of tomato and maize using the following command:

$ hifiasm -o assembly -l 0 --primary -t 32 input.fasta

Running NaiveCut-Hifiasm We use the following sequence of commands to run NaiveCut-Hifiasm. The
split_naive command can be found in the GitHub repository for RAFT.

$ hifiasm -o errorcorrect -t 32 --write-ec input.fasta 2> errorcorrect.log
$ split_naive asm.ec.fa naive.fragmented.reads.fasta 20000
$ hifiasm -o naiveSplitAsm -t 32 -r1 naive.fragmented.reads.fasta 2> naiveSplitAsm.log

Running RAFT-Hifiasm We use the following sequence of commands to run the RAFT-Hifiasm pipeline
with 32 threads on an input FASTA file to generate diploid assemblies. First, we estimate the coverage by
obtaining the total number of bases using seqkit and dividing that number by the estimated genome size.
This value is stored in COVERAGE.

$ seqkit stats input.fasta
$ hifiasm -o errorcorrect -t 32 --write-ec input.fasta 2> errorcorrect.log
$ hifiasm -o getOverlaps -t 32 --dbg-ovec errorcorrect.ec.fa 2> getOverlaps.log
$ cat getOverlaps.0.ovlp.paf getOverlaps.1.ovlp.paf > overlaps.paf
$ raft -e ${COVERAGE} -o fragmented errorcorrect.ec.fa overlaps.paf
$ hifiasm -o finalasm -t 32 -r1 fragmented.reads.fasta 2> finalasm.log

6

To generate primary assemblies of the plant genomes using RAFT-Hifiasm, we use the following commands:

$ seqkit stats input.fasta
$ hifiasm -o errorcorrect -t 32 --write-ec input.fasta 2> errorcorrect.log
$ hifiasm -o getOverlaps -t 32 --dbg-ovec errorcorrect.ec.fa 2> getOverlaps.log
$ cat getOverlaps.0.ovlp.paf getOverlaps.1.ovlp.paf > overlaps.paf
$ raft -e ${COVERAGE} -o fragmented errorcorrect.ec.fa overlaps.paf
$ hifiasm -o finalasm -t 32 -l 0 --primary -r1 fragmented.reads.fasta 2> finalasm.log

Commands for evaluating RAFT using simulated data We used Seqrequester (commit: 31141c1) along with
a publicly available trio-based assembly of HG002 using Hifiasm to generate simulated read-sequencing
datasets. In this example, each haplotype’s coverage was set to 25.

$ seqrequester simulate -truncate -genome HG002_Trio_Assembly_Hap1.fa -genomesize 2935689000 \
-coverage 25 -distribution read_length_distribution.txt > reads.hap1.fasta
$ seqrequester simulate -truncate -genome HG002_Trio_Assembly_Hap2.fa -genomesize 3033188759 \
-coverage 25 -distribution read_length_distribution.txt > reads.hap2.fasta
$ cat reads.hap1.fasta reads.hap2.fasta > reads.fasta

To identify genomic intervals with zero alignment coverage, we use BEDTools (v2.29.1).

$ samtools faidx HG002_Trio_Assembly_Hap1.fa
$ samtools faidx HG002_Trio_Assembly_Hap2.fa
$ cut -f1,2 HG002_Trio_Assembly_Hap1.fa.fai > asm.contig.lengths.txt
$ cut -f1,2 HG002_Trio_Assembly_Hap2.fa.fai >> asm.contig.lengths.txt
$ grep ">" reads.fasta > reads.fasta.headers
$ cat reads.fasta.headers | awk -F ’[=,-]’ ’{print $9"\t"$5"\t"$6}’ | \
sort -k 1,1 -k2,2n -k3,3nr > reads.bed
$ bedtools genomecov -i reads.bed -g asm.contig.lengths.txt -bga | \
awk ’{if ($4==0) print $0}’ > zero_cov.bed

To identify all the non-contained reads, we first identify the set of contained reads based as reads having 100%
alignment identity with a longer read. All-vs-all alignments were computed using minimap2 (v2.26-r1175).
The command is as follows.

$ minimap2 -t 256 -w 101 -k 27 -g 500 -B 8 -O 8,48 -E 4,2 -cx ava-ont reads.fasta reads.fasta \
> overlaps.paf
$ cat overlaps.paf | awk -v minid=100 ’{

if ($3 == 0 && $2 == $4 && $2 < $7 && $10*100.0/$11 >= minid) print $0
}’ | cut -f1 > contained1
$ cat overlaps.paf | awk -v minid=100 ’{

if ($8 == 0 && $7 == $9 && $7 < $2 && $10*100.0/$11 >= minid) print $0
}’ | cut -f6 > contained2
$ cat contained1 contained2 | sort | uniq > contained_reads.txt
$ cat reads.fasta.headers | sort | sed ’s/>//g’ > reads.fasta.sorted.headers
$ comm -23 reads.fasta.sorted.headers contained_reads.txt > non-contained_reads.txt
$ seqtk subseq reads.fasta non-contained_reads.txt > non-contained_reads.fasta

We use the set of non-contained reads to identify coverage gaps in the standard string graph formulation as
follows.

$ minimap2 -t 32 -N 50 -cx map-ont HG002_Trio_Assembly_Hap1.fa non-contained_reads.fasta \
> non-contained_to_asm.paf
$ minimap2 -t 32 -N 50 -cx map-ont HG002_Trio_Assembly_Hap2.fa non-contained_reads.fasta \
>> non-contained_to_asm.paf
$ cat non-contained_to_asm.paf | awk ’{

if ($3 == 0 && $2 == $4 && $2 == $10) print $6"\t"$8"\t"$9
}’ | sort -k1,1 -k2,2n -k3,3nr > non-contained.exactmapped.bed
$ bedtools genomecov -i non-contained.exactmapped.bed -g asm.contig.lengths.txt -bga | \
awk ’{if ($4==0) print $0}’ > asm.uncovered.bed
$ bedtools merge -d 500 -i asm.uncovered.bed > temp.bed && mv temp.bed asm.uncovered.bed
Identify intervals with coverage gaps due to Contained Read Deletion
$ bedtools subtract -A -a asm.uncovered.bed -b zero_cov.bed > asm.CRD.uncovered.bed
printEdgeBedIntervals.py identifies intervals of specified length at both ends of contigs
$ python3 printEdgeBedIntervals.py asm.contig.lengths.txt 25000 > genome_25kbp_ends.bed

7

$ bedtools subtract -A -a asm.CRD.uncovered.bed -b genome_25kbp_ends.bed \
> temp.bed && mv temp.bed asm.CRD.uncovered.bed
$ cat asm.CRD.uncovered.bed | \
awk -F’\t’ ’BEGIN{SUM=0}{ SUM+=$3-$2 }END{print SUM}’ \
> asm.CRD.uncovered.sum
$ cat asm.CRD.uncovered.bed | awk ’{print ($3-$2)}’ | \
sort -n > asm.CRD.uncovered.lengths

We use the set of non-redundant reads identified by Hifiasm and the alignments of the non-contained reads
to identify Hifiasm coverage gaps as follows.

$ hifiasm -o assembly -t 32 -r1 reads.fasta
$ grep -P "^A\t" assembly.bp.r_utg.gfa | grep -o -P "read=[^\t]*" | sort \
> assembly.bp.r_utg.gfa.sorted.headers
$ comm -12 assembly.bp.r_utg.gfa.sorted.headers contained_reads.txt \
> assembly.bp.r_utg.gfa.contained.headers
$ seqtk subseq reads.fasta assembly.bp.r_utg.gfa.contained.headers \
> non-redundant.fasta
$ minimap2 -t 32 -N 50 -cx map-ont HG002_Trio_Assembly_Hap1.fa non-redundant.fasta \
> non-redundant.paf
$ minimap2 -t 32 -N 50 -cx map-ont HG002_Trio_Assembly_Hap2.fa non-redundant.fasta \
>> non-redundant.paf
$ cat non-redundant.paf | awk ’{

if ($3 == 0 && $2 == $4 && $2 == $10) print $6"\t"$8"\t"$9
}’ > non-redundant.bed
$ cat non-redundant.paf | awk ’{

if ($8 == 0 && $7 == $9 && $7 == $10) print $6"\t"$8"\t"$9
}’ >> non-redundant.bed
$ cat non-redundant.bed | sort -k 1,1 -k2,2n -k3,3nr > non-redundant.exactmapped.bed
$ bedtools subtract -a asm.CRD.uncovered.bed -b non-redundant.exactmapped.bed \
> unresolved_gaps.bed
$ cat unresolved_gaps.bed | \
awk -F’\t’ ’BEGIN{SUM=0}{ SUM+=$3-$2 }END{print SUM}’ > unresolved_gaps.sum
$ cat unresolved_gaps.bed | awk ’{print ($3-$2)}’ | sort -n > unresolved_gaps.lengths

For the RAFT-Hifiasm method, to identify all the non-contained reads, we first identify the set of contained
reads based on fragmented reads having 100% alignment identity with a longer read. The above commands
are rerun using fragmented reads instead of the input reads.

Commands for evaluating RAFT using real data We used QUAST to estimate NG50 assuming the size of
each haplotype to be 3.1 Gb and the length of the longest contig.

$ python quast.py -t 256 -o results --est-ref-size 3099922541 --large primary_contigs.fa
$ python quast.py -t 256 -o results --est-ref-size 3099922541 --large assembly_hap1.fa
$ python quast.py -t 256 -o results --est-ref-size 3099922541 --large assembly_hap2.fa

Switch error rate and Hamming error rate were computed using yak trioeval. Complementary parental
data from HG003 in the form of Illumina HiSeq data were used to compute k-mer counts in parents. These
were compared against k-mers in contigs from phased assemblies.

$ zcat HG003_HiSeq30x_subsampled_R1.fastq.gz > HG003.fastq
$ zcat HG003_HiSeq30x_subsampled_R2.fastq.gz >> HG003.fastq
$ zcat HG004_HiSeq30x_subsampled_R1.fastq.gz > HG004.fastq
$ zcat HG004_HiSeq30x_subsampled_R2.fastq.gz >> HG004.fastq
$ yak count -b37 -t 128 -o paternal.yak HG003.fastq
$ yak count -b37 -t 128 -o maternal.yak HG004.fastq
$ yak trioeval -t 128 paternal.yak maternal.yak assembly_hap1.fa > hap1.out
$ yak trioeval -t 128 paternal.yak maternal.yak assembly_hap2.fa > hap2.out

To compute gene completeness statistics, we used asmgene.

$ minimap2 -cxsplice:hq -t 128 grch38_contigs.fa cDNA.fa > grch38_cDNA.paf
$ minimap2 -cxsplice:hq -t 128 assembly_hap1.fa grch38_contigs.fa > hap1_cDNA.paf
$ minimap2 -cxsplice:hq -t 128 assembly_hap2.fa grch38_contigs.fa > hap2_cDNA.paf
$ paftools.js asmgene -a grch38_cDNA.paf hap1_cDNA.paf > hap1.stats
$ paftools.js asmgene -a grch38_cDNA.paf hap2_cDNA.paf > hap2.stats

8

Telomere-to-Telomere contigs were computed using the HPRC workflow at https://github.com/
biomonika/HPP/blob/main/assembly/wdl/workflows/assessAsemblyCompletness.wdl. CHM13v2 was used
as the reference genome for the workflow. The resulting T2T contigs summarised by the workflow were vetted
to ensure that the contigs were within 10% of the length of the corresponding chromosome in CHM13v2.
QV was obtained using yak. Complementary HiC data for HG002 was used to compute k-mer statistics as
a comparison against the assembly contigs. Both sets of phased assembly contigs were passed as input for
the comparison.

$ yak count -b37 -y 128 -o complementary-kmers.yak hg002_hic.fq
$ yak qv -t 128 -p -K3.2g -l100k complementary-kmers.yak assembly_hap1hap2.fa

Variant calling statistics, i.e. SNPs and INDELs were first called using dipcall and the VCF file was
compared against the GIAB variant calling benchmark v4.2.1 for HG002 (treated as ground truth).

$ dipcall.kit/run-dipcall -x dipcall.kit/hs38.PAR.bed output \
GRCh38_no_alt_analysis_set.fna assembly_hap1.fa assembly_hap2.fa > output.mak
$ make -j4 -f output.mak
$ tabix -p vcf output.dip.vcf.gz
$ bedtools intersect -a output.dip.bed -b HG002_GRCh38_v4.2.1_noinconsistent.bed \
> conf_giab_restrict.bed
$ hap.py HG002_GIAB_v4.2.1.vcf output.dip.vcf.gz -f conf_giab_restrict.bed \
-r GRCh38_no_alt_analysis_set.fna -o compare --engine=vcfeval --pass-only

9

https://github.com/biomonika/HPP/blob/main/assembly/wdl/workflows/assessAsemblyCompletness.wdl
https://github.com/biomonika/HPP/blob/main/assembly/wdl/workflows/assessAsemblyCompletness.wdl

!!

!1 !2 !3 !4 !5

!"
!#

!$
!% !" copy

!1 !3 !4 !5

Repeats in a haploid genome

A

B

C

Supplemental Figure S1. Assembly gap due to contained read deletion on a haploid genome. When a
read is sampled from a repeat region, it may be contained in another read spanning a different copy of the repeat. In
this example, the deletion of contained read r2 can lead to an assembly gap in the string graph.

Supplemental Figure S2. Frequency of observing an assembly gap near a germline heterozygous locus.
In the main text Figure 1B, we showed the median frequencies of observing an assembly gap near a germline heterozy-
gous variant locus in a string graph. For each choice of sequencing technology and sequencing depths, the median
value was reported by running CGProb using fifteen simulated read length distributions. From the same experiment,
the above figure shows the minimum and maximum values.

10

A B

Supplemental Figure S3. Frequency of observing an assembly gap near a somatic heterozygous locus.
In the main text Figures 1C and 1D, we showed the median frequencies of observing an assembly gap near a somatic
heterozygous variant locus in a string graph. For each choice of sequencing technology and sequencing depths, the
median value was reported by running CGProb using five simulated read length distributions. From the same exper-
iment, the above figures show the minimum and maximum values.

11

Supplemental Figure S4. Read length distributions corresponding to the different read sequencing

technologies. PacBio HiFi dataset has reasonably uniform read lengths, whereas the range of read lengths in ONT
Simplex and ONT Duplex datasets is large.

12

Sequencing Number of assembly gaps due to contained read deletion

coverage PacBio HiFi ONT Duplex ONT Simplex

Simulation CGProb Simulation CGProb Simulation CGProb

20⇥ 467 458 9314 7890 28193 26016
25⇥ 120 100 7410 6710 21009 19749
30⇥ 35 27 2364 2090 13083 11255
35⇥ 16 12 2415 2176 9326 8332
40⇥ 4 2 1607 1250 7176 6816
45⇥ 1 1 842 736 5874 5017
50⇥ 1 1 485 406 3872 3398

Supplemental Table S1. Simulations to validate CGProb. We conducted simulation experiments to validate
the mathematical formula in CGProb. For each sequencing depth and sequencing technology, we sampled 500000
sets of reads from a genome containing a single heterozygous locus. Then we counted the number of sequencing
outputs which contained an assembly gap due to contained read deletion. Unlike this simulation-based counting,
the combinatorial technique implemented in CGProb outputs the fraction of sequencing outputs which contain an
assembly gap by considering all possible sequencing outputs. In the above table, we report CGProb’s estimate by
multiplying the median fraction with 500000 and then rounding the value to the closest integer. We observe that the
counts obtained using simulations and CGProb are comparable, thus confirming that our results obtained by using
CGProb are correct.

13

Dataset State Read Bases N50 Longest
Count (Gb) (kb) read (kb)

Simulated
datasets

HiFi (30x) Original 4.2M 89.5 21.3 48.7
Fragmented 6.7M 90.8 20.0 47.4

ONT Simplex (30⇥) Original 5.4M 89.5 39.6 572.4
Fragmented 7.9M 90.8 20.0 175.1

ONT Simplex (50⇥) Original 8.9M 149.2 39.7 572.4
Fragmented 13.2M 151.4 20.0 189.5

ONT Duplex (30⇥) Original 3.4M 89.5 34.1 170.6
Fragmented 6.1M 90.9 20.0 120.7

ONT Duplex (50⇥) Original 5.7M 149.2 34.1 170.6
Fragmented 10.2M 151.5 20.0 118.9

Publicly available
real sequencing
datasets (Human)

D1: HiFi (36⇥) Original 7.4M 110.5 14.7 46.9
Fragmented 7.9M 110.8 14.6 38.0

D2: ONT Duplex (32⇥) Original 3.7M 99.3 34.2 170.6
Fragmented 6.8M 100.9 20.0 95.9

D3: HiFi (36⇥) + Original 11.1M 209.9 19.3 170.6
ONT Duplex (32⇥) Fragmented 14.7M 211.7 17.8 95.9

D4: ONT high-acc Original 5.6M 126.9 91.7 1397.8
UL (40⇥) Fragmented 10.3M 129.3 20.5 397.1

Publicly available
real sequencing
datasets (Plant)

Tomato: ONT Duplex (36⇥) Original 1.6M 36.1 29.8 184.1
Fragmented 2.6M 36.1 20.0 132.1

Maize: ONT Duplex (32⇥) Original 4.1M 97.7 27.2 189.4
Fragmented 6.8M 99.1 20.0 110.3

Supplemental Table S2. Read length statistics of sequencing datasets used for benchmarking RAFT

algorithm. The first five read datasets were simulated from a long-read Trio-based assembly of the HG002 human
sample. D1, D2, and D4 are publicly available real datasets. D3 is constructed by merging D1 and D2. We used RAFT
on the original datasets to produce the fragmented datasets. Read length statistics are shown for both the original
and their fragmented versions.

14

Dataset Method SNPs INDELs Longest QV Hamming

Recall Precision F1 Recall Precision F1 Contig Error
(%) (%) (%) (%) (%) (%) (Mbp) (%)

D1: HiFi Hifiasm 99.04 99.81 99.43 97.49 97.82 97.65 176.5/138.5 52.2/52.4 26.0/23.9
(36⇥) RAFT-Hifiasm 99.05 99.86 99.46 97.45 97.86 97.65 140.3/133.9 52.4/51.1 24.7/24.5

D2: Duplex (ONT) Hifiasm 98.36 99.63 98.99 86.02 69.91 77.14 180.0/137.6 47.7/47.9 26.7/17.9
(32⇥) RAFT-Hifiasm 99.10 99.68 99.39 86.48 70.35 77.58 201.1/174.7 48.0/48.4 24.3/22.1

D3: HiFi (36⇥) + Hifiasm 97.71 99.76 98.72 95.58 96.19 95.89 137.7/148.5 51.2/50.5 19.2/23.6
Duplex (ONT) (32⇥) RAFT-Hifiasm 99.21 99.79 99.50 96.96 96.38 96.67 140.3/192.5 50.9/52.4 23.9/26.2

D4: High-acc Hifiasm 57.87 97.66 72.67 51.04 67.57 58.16 77.2/103.6 40.9/41.1 8.1/5.8
UL (ONT) (40⇥) RAFT-Hifiasm 98.36 99.51 98.93 87.92 72.82 79.66 140.9/144.9 47.1/47.1 26.7/22.1

Supplemental Table S3. Additional quality statistics of the HG002 phased assemblies produced by

RAFT-Hifiasm and Hifiasm. We measured the base-level accuracy of the assembled sequences by using SNP and
indel calls available from Genome in a Bottle benchmark (v4.2.1). We used Dipcall to call variants from the assembled
sequences. We restricted our evaluation to the GIAB’s high-confidence intervals. Information about the longest contig
was extracted using QUAST. QV and Hamming error were estimated using yak. These genome assemblies should be
interpreted as partially phased assemblies Li (2021) because we did not use parental or Hi-C data during assembly.

15

Dataset Method Size NG50 Switch T2T Multicopy Gene completeness

(Gbp) (Mbp) error (%) contigs genes Complete Duplicated
retained(%) (%) (%)

D1: HiFi (36⇥) Hifiasm 2.939/3.034 50.0/57.9 0.81/0.98 1 79.62/82.73 97.87/97.91 0.33/0.36
Verkko 2.981/3.070 79.6/77.5 0.78/0.96 0 75.14/79.70 95.20/95.20 1.52/1.44
RAFT-Hifiasm 2.937/3.033 50.0/50.2 0.81/0.99 1 79.22/83.05 97.83/97.88 0.33/0.38

D2: ONT Duplex Hifiasm 2.946/3.034 46.5/45.1 1.61/2.62 0 79.38/82.89 97.44/97.42 0.58/0.76
(32⇥) Verkko 2.978/3.065 82.8/90.2 1.72/2.82 0 80.26/82.73 96.74/96.83 1.16/1.17

RAFT-Hifiasm 2.934/3.036 80.3/73.5 1.62/2.63 6 79.86/83.45 97.87/97.96 0.38/0.37

D3: HiFi (36⇥) + Hifiasm 2.960/3.053 40.3/49.4 0.81/1.01 1 79.86/82.73 97.33/97.59 0.85/0.65
ONT Duplex (32⇥) Verkko 2.978/3.064 110.5/107.3 0.81/0.99 0 79.46/83.69 96.74/97.03 1.22/1.11

RAFT-Hifiasm 2.949/3.043 97.6/92.6 0.83/1.02 5 79.94/83.21 97.94/97.90 0.41/0.39
Supplemental Table S4. Comparing phased genome assemblies produced with complementary parental

data. We measured assembly quality statistics separately for both haplotypes. The contig NG50 was computed by
assuming a genome length of 3.1 Gbp. The tools and commands used to measure the assembly statistics are available
in Supplemental Note S3.

16

Software Version Purpose

BEDTools 2.29.1 Identifying genomic intervals without coverage

CGProb Commit 9eaf5a5 Fraction of sequencing outputs with an assembly gap

Dipcall 0.3 Variant calling

Hap.py 0.3.9 Comparing VCF files

minimap2 2.26-r1175 Read alignment, Contig alignment

Hifiasm 0.19.8-r603 Genome assembly, RAFT-Hifiasm pipeline

QUAST 5.2.0 NG50

RAFT Commit 378b3ed Fragmenting long reads

Samtools 1.6 Indexing reference genomes

Seqrequester r90 (commit ID: 31141c1) Generating simulated reads

Seqtk 1.3-r106 Selecting subset of FASTA files

Tabix 1.9 Indexing VCF files

Verkko 2.0 Genome assembly

Yak 0.1-r69-dirty Switch error, Hamming error, QV
Supplemental Table S5. Software versions.

17

