SUPPLEMENTAL METHODS

[bookmark: _z337ya]Cell culture
B Lymphocyte LCLs from the 1000 Genomes Project were purchased from the NHGRI Sample Repository for Human Genetic Research at the Coriell Institute for Medical Research. Cells were shipped overnight at ambient temperature in T25 flasks filled with carbon dioxide-equilibrated transport media. Upon receipt in the lab (day 0), cells were transferred directly to an incubator at 37°C and kept overnight. On day 1, cells and media were transferred to a T75 flask and 20 mL fresh complete RPMI-1640 media (15% fetal bovine serum, 1% penicillin-streptomycin) was added. On day 2, 10 mL of cells were removed for cryopreservation and 10 mL of fresh media was replaced. On day 3, cells were harvested by centrifugation at 300 rcf and resuspended in PBS for counting. An aliquot of 2.5x10^7 cells were pelleted by centrifugation at 300 rcf and resuspended in 3 mL Puregene Cell Lysis Buffer.

[bookmark: _3j2qqm3]DNA isolation, library preparation, sequencing, and base calling
HMW DNA was isolated from LCLs using either the NEB Monarch HMW DNA Extraction from Cells kit according to manufacturer’s directions or the Puregene DNA Purification from Cultured Cells kit. Puregene extractions were performed using the manufacturer instructions for large volume extractions or a small volume extraction protocol with the following modifications. Small volume cells were resuspended in 1.0 mL of Puregene Cell Lysis Buffer and 6 µL of Qiagen RNase A Solution was added. Both extraction methods were incubated at 37 °C for 40 min. For the small volume method, 333 µL of Puregene Protein Precipitation Solution was added, and both methods were incubated on ice for 10 minutes following homogenization. After DNA precipitation, washes were performed using 666 µL of 70% EtOH. DNA was resuspended with Puregene DNA Hydration Solution or Tris-EDTA buffer and allowed to incubate for 48 hr at 4°C or 24 hr at room temperature before quantifying. Extracted DNA was quantified on a Qubit Fluorometer (Invitrogen) using the dsDNA High Sensitivity Assay. DNA quality for sequencing was assessed using a NanoDrop Spectrophotometer (ThermoFisher) and Agilent Femtopulse following quantification.
After isolation and QC of HMW DNA, libraries for sequencing were prepared using the ligation sequencing kit (SQK-LSK110, ONT), loaded onto a R9.4.1 flow cell, and run on a PromethION 24 sequencer for 24 hr before being washed and reloaded. On average, 3 libraries were loaded, and 1.5 flow cells were used per sample. A unique library identifier was used for each wash and reload. Following sequencing, libraries were base called using Guppy version 6 (ONT) using the super accurate model with 5mCG modifications or with 5mCG and 5hmCG modifications. Run performance was evaluated using cramino (v0.14.1) (De Coster and Rademakers 2023) (Supplemental Table S2). 

[bookmark: _1y810tw]Alignment and variant calling pipeline
After base calling, FASTQ files with methylation tags were created from unaligned BAM files using samtools (v1.17) (Li et al. 2009) and aligned to GRCh38 (GCA_000001405.15_GRCh38_no_alt_analysis_set) with minimap2 (v2.24) (Li 2018). SNVs and indels were called with the Clair3 (v1.0.4) R9 model and BAM files were haplotagged using Longphase (Lin et al. 2022; Zheng et al. 2022). Structural variants were called by Sniffles2 (v2.0.7) (Smolka et al. 2024) using default parameters, SVIM (v1.4.2) (Heller and Vingron 2019) using default parameters, and cuteSV (v2.0.3) (Jiang et al. 2020) using the following specific parameters: --max_cluster_bias_INS 100 --diff_ratio_merging_INS 0.3 --max_cluster_bias_DEL 100 --diff_ratio_merging_DEL 0.3 --genotype. 

[bookmark: _4i7ojhp]Napu pipeline 
The Napu pipeline (Nanopore Analysis Pipeline) was run using default parameters (Kolmogorov et al. 2023). Input files were merged unaligned BAM files for each sample, the GRCh38 reference genome (GCA_000001405.15_GRCh38_no_alt_analysis_set_maskedGRC_exclusions) and corresponding VNTR annotations provided in the Napu GitHub repository.          

[bookmark: _2xcytpi]Sample validation
For each sample, Clair3 variant calls from the internal minimap2 alignment pipeline were validated against 1KGP Illumina GATK VCF files (Byrska-Bishop et al. 2022). Specifically, SNVs on Chr21 and within the GIAB HG002 high confidence regions were compared using hap.py (Illumina) with Illumina GATK as the truth set and ONT Clair3 calls as the query set. All samples were confirmed to have a SNV precision > 0.98, suggesting sample concordance (nonconcordant samples showed SNV precision <0.50). 

[bookmark: _1ci93xb]SNV and indel benchmarking
Original sequencing data for 5 benchmarking samples (HG002/NA24385, HG003/NA24149, HG004/NA24143, HG00733, and HG02723) was downloaded and converted from FAST5 to POD5 format using the POD5 Python Package (ONT), then base called with Dorado 0.5.0 (ONT) using the super accurate model with 5mCG modifications. Each sample was downsampled using samtools to match the approximate depth of coverage of the 100 samples presented here and processed with both the internal alignment pipeline and the Napu pipeline. 
SNV and indel calls made using DeepVariant for HG002, HG00733, and HG02723 from the HPRC as well as those for HG002, HG003/NA24149, and HG004/NA24143 from GIAB were obtained (Shafin et al. 2020; Liao et al. 2023). Short-read SNV and indel calls made by GIAB using GATK for HG00733, and HG02723 for Chromosomes 1–22 were downloaded and concatenated using BCFtools (Danecek et al. 2021; Wagner et al. 2022). All VCFs were preprocessed for ‘FILTER = PASS’ and limited to variants on Chromosomes 1–22. 
We used hap.py (Illumina) to compare SNV and indel calls from the Napu pipeline to calls from the HPRC and GIAB. The HG002 SNV and indel high-confidence benchmarking BED (HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed) was used to limit analysis to high-confidence regions. While sample-specific benchmarking BEDs are available from GIAB for HG003 and HG004, we chose to use the HG002 BED file for all samples as similar sample-specific filters do not exist for other samples, such as HG00733 or HG02723. In addition, a modified version of HG002_GRCh38_1_22_v4.2.1_benchmark_noinconsistent.bed which excluded homopolymers 4 bp or larger +/– 1 bp (based on GIAB_hg38_Stratifications_v3.3) was used (Dwarshuis et al. 2023). 

[bookmark: _3whwml4]SNV and indel comparison between ONT and Illumina
We obtained Illumina GATK SNV/indel VCFs generated for these 100 samples from Chromosomes 1–22 (Byrska-Bishop et al. 2022). Variants in this dataset were previously filtered for the following: FILTER=PASS, Genotype missingness < 5%, Pass HWE test (i.e., HWE p-value > 1e-10 in at least 1 of the 5 superpopulations), Mendelian error rate ≤ 5%, and Minor allele count (MAC) ≥ 2. PMDV VCFs for these 100 samples were generated using the Napu pipeline. Clair3 VCFs for the 100 samples were generated using our internal alignment pipeline. Both PMDV and Clair3 VCFs were preprocessed for ‘FILTER = PASS’ and only variants on full Chromosomes 1–22 using BCFtools (Danecek et al. 2021). We then ran hap.py in a pairwise fashion (GATK vs. PMDV, GATK vs. Clair3) for each of the 100 samples using GATK as the truth set to calculate precision, recall, and F1 for each sample. For each VCF pair, 3 iterations were run: 1) no masking (all variants included); 2) using the GIAB high-confidence BED file to define confident regions; and 3) using the GIAB high-confidence BED file plus homopolymers 4 bp or greater +/– 1 bp removed.

[bookmark: _2bn6wsx]De novo genome assembly and assembly evaluation
Flye (v2.9.2) was run on all samples using the ‘--nano-hq’ option to obtain haploid assemblies (Kolmogorov et al. 2019). Assembled fasta files were aligned to the GRCh38 reference genome (GCA_000001405.15_GRCh38_no_alt_analysis_set_maskedGRC_exclusions) using minimap2 (v2.24) (Li 2018) with the following parameters: ‘-ax asm20 -B 2 -E 3,1 -O 6,100 --cs -K 5G’. Starts and ends of aligned contigs were determined using BEDTools (v2.3.0) (Quinlan and Hall 2010). The process was repeated for diploid assembly files ‘hapdup_dual_1.fasta’ and ‘hapdup_dual_2.fasta’ from the Napu (Shasta-Hapdup) pipeline (Kolmogorov et al. 2023). 
To compute the fraction of the genome covered by assemblies and the contig NG50s, QUAST (v5.2.0) (Mikheenko et al. 2018) was run using the ‘--large’, ‘-x-for-Nx 75’ and ‘--fragmented’ options on assembled fasta files from Flye and individually on diploid assembly files from the Napu (Shasta-Hapdup) pipeline. Mean QV scores used to evaluate the Flye and Napu (Shasta-Hapdup) assemblies were estimated using yak (r56) (https://github.com/lh3/yak). K-mer hash tables for each sample were generated from matching Illumina short-reads and the QV for the corresponding long-read assembly file was then computed.
For the Napu (Shasta-Hapdup) assemblies, yak (r56) was individually run on the two haplotype-resolved assembly files ‘hapdup_dual_1.fasta’ and ‘hapdup_dual_2.fasta’ and a mean QV for the two files was reported per sample. Matching Illumina datasets for the 100 samples and 2 benchmarking datasets (HG00733 and HG02723) were downloaded from https://www.internationalgenome.org/data-portal/data-collection/30x-grch38. Illumina data for the remaining 3 datasets used for benchmarking (HG002, HG003 and HG004) were downloaded from https://www.nist.gov/programs-projects/genome-bottle.

[bookmark: _qsh70q]Pangenome construction
Contigs of the 100 Shasta-Hapdup assemblies were partitioned by chromosome by mapping them against the GRCh38, CHM13 (v2.0) and HG002 (v1.0.1) human reference genomes using WFMASH (v0.12.6, commit 0b191bb) pangenome aligner (Marco-Sola et al. 2021). On each set of contigs, we used PGGB (v0.5.4, commit 0317e7f) to build chromosome-level unbiased pangenome variation graphs (Garrison et al. 2023). We used ODGI (v0.8.3, commit 861b1c0) to compute similarity matrixes from the pangenome graphs and used R (v4.2.2) to perform the principal component analysis (Guarracino et al. 2022; R Core Team 2021). 

[bookmark: _3as4poj]Analysis of assembly contig breakpoints 
We characterized the position of assembly breakpoints using precomputed segdup and RepeatMasker positions downloaded from UCSC (Bailey et al. 2002; Kent et al. 2002). The position of assembly breaks were categorized as “Satellite” (only satellite repeats), “SegDup+Satellite” (segdups and satellite repeats), “SegDup” (only segdups) or “Neither” (outside segdups and satellite repeat regions).

[bookmark: _1pxezwc]Gene assembly stats
A list of medically relevant genes was downloaded from OMIM (https://www.omim.org/). Gaps in either the Flye or Napu (Shasta-Hapdup) assemblies were defined using the GenomicRanges R package (Lawrence et al. 2013). Gaps were defined as regions in the genome where no contig was mapped. After filtering for regions representing OMIM genes, mapping_fraction for each OMIM gene was calculated as follows:

	

Data from the Shasta-Hapdup and Flye assemblies were filtered for OMIM genes with mapping_fraction less than 1 or for genes where more than one contig spanned the gene indicating an incomplete or broken assembly. If at least one of two Shasta-Hapdup assemblies had a mapping_fraction less than 1 or multiple contigs spanning a gene it was counted as an incomplete assembly for that gene. 

[bookmark: _49x2ik5]Calculation of median contig sizes by superpopulation
Contig sizes for each sample were calculated by taking the difference between the start and end position in the BED file. For each sample, the median contig size for contigs larger than 1 Mb was calculated separately for the Shasta-Hapdup and Flye assemblies. 

[bookmark: _2p2csry]SV analysis, merging, and benchmarking
All SV VCFs were preprocessed to standardize SV type annotations and to include SVs that passed filtering (FILTER = PASS), were ≥ 50 bp in length (if SV length was not reported for the SV type, the variant was kept), and were located on full-length chromosomes (Chromosome 1–22, X, Y, and M) using BCFtools commands specific to each caller. After preprocessing, the number of SVs (INS, DEL, INV, DUP, and BND) were counted per sample and individual VCFs for each call set (minimap2 pipeline: Sniffles2, cuteSV, and SVIM; Napu pipeline: Sniffles2 and hapdiff) were concatenated and parsed by SV type. After concatenation, the length of all INS or DEL events for all 100 samples were calculated. We then calculated novel SVs per sample (for each caller) by adding samples in reverse alphanumeric order by reverse alphabetical ancestry and counting the number of new SVs included, with samples of AFR ancestry added last. For each iteration, SVs within a call set were merged with Jasmine (--allow_intrasample --output_genotypes --ignore_strand --dup_to_ins --centroid_merging) and then the resultant output VCF was parsed by SV type.
To analyze overlapping SVs, calls from all 5 callers were merged using Jasmine. The Jasmine output for each sample was parsed using the “SUPP_VEC'' field indicating which of the 5 callers supported each output variant. The minimum support flag was included to retain only SVs that were called by at least a minimum number of the 5 callers. A confident call set was defined by variants called (per sample) by hapdiff and at least 2 unique alignment-based callers (i.e., Sniffles2 and CuteSV from our internal pipeline, or Sniffles2 from the Napu pipeline and SVIM from the internal pipeline), but not if the call was supported only by Sniffles2 calls from both the Napu and internal pipeline.
To perform SV benchmarking, downsampled ONT data from HG002/NA24385, HG00733, and HG02723 were processed using the Napu pipeline and SV calls from Sniffles2 and hapdiff were preprocessed as above. We obtained Sniffles2 calls from the HPRC and preprocessed them as above. Each ONT sample (for both Sniffles2 and hapdiff) was benchmarked to the HPRC (truth) calls using Truvari (v4.1.0) (English et al. 2022) with the following options: --pick multi --chunksize 2000 -r 2000 --dup-to-ins --pctseq 0. A GRCh19 to GRCh38 liftover of the GIAB HG002 SV Tier1 benchmarking BED was used to define regions for inclusion. 
We benchmarked HG002 SV calls against the draft GIAB T2TQ100 HG002 GRCh38 SV benchmark (https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/analysis/NIST_HG002_DraftBenchmark_defrabbV0.015-20240215/). The draft benchmark was generated using v0.015 of DeFrABB (https://github.com/usnistgov/giab-defrabb). Briefly, DeFrABB uses the variant calls and diploid assembled regions identified by dipcall (Li et al. 2018) from assembly–assembly alignments. V1.01 of the HG002 Q100 assembly (https://github.com/marbl/hg002) and a modified version of GRCh38 (https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/references/GRCh38/GRCh38_GIABv3_no_alt_analysis_set_maskedGRC_decoys_MAP2K3_KMT2C_KCNJ18.fasta.gz) were used as inputs. 
[bookmark: _147n2zr]
Filtering and prioritization of SVs
Sniffles2 SV calls made using our internal pipeline from cases sequenced on the ONT platform that were known to have a disease-causing SV were preprocessed as above and merged using Jasmine (parameters above) along with Sniffles2 SV calls from the Napu pipeline from the 100 samples. The Jasmine output was parsed for SVs present only in the case sample and annotated with the following: 1) does the variant intersect a protein-coding gene as defined by GENCODE release 45 (Frankish et al. 2021); 2) is the gene associated with a phenotype in OMIM; 3) does the SV intersect an exon of a canonical protein-coding exon defined by GENCODE release 45; and 4) does the SV intersect a complex genomic feature such as a centromere, segdup, or gap in GRCh38.

[bookmark: _3o7alnk]eQTL analysis
Following the SV-eQTL method presented by (Kirsche et al. 2023), we performed SV-eQTL calling within the 65 samples that have both long-read ONT DNA sequencing data and short-read RNA sequencing data from MAGE (Supplemental Figure S11). Briefly, this approach fits a linear model between the SV genotypes (0=homozygous ref, 1=heterozygous alt, 2=homozygous alt) with the normalized MAGE expression measurements and sex information using the OLS module in python. To calculate gene-level eQTL p-values, we applied Bonferroni correction to the minimal eQTL p-value for each gene, adjusting by the number of eQTLs associated with that gene. Then, we further adjusted these gene-level p-values for multiple testing using the Benjamini-Hochberg method with an FDR rate below 5%. 
To expand the sample sizes for SV-eQTL association testing, we genotyped the SVs detected by long reads within the short-read genomic data from Byrska-Bishop et al. (2022) for each MAGE sample (n=731) using Paragraph (Chen et al. 2019). We then merged the individual calls into one unified callset using BCFtools merge. To produce a high-confidence callset, we filtered out variants found to be significant using an exact test of Hardy–Weinberg equilibrium (p < 0.0001), variants that were not called in over 50% of samples, and variants that were within 50 bp of a tandem repeat region (Benson 1999). Using these high-confidence genotyping results, we performed the SV-eQTL analysis following the method described in Kirsche et al. (2023).

[bookmark: _23ckvvd]Identification of SVs in medically relevant genes
The 5 SV callers (internal pipeline: Sniffles2, cuteSV, and SVIM; Napu pipeline: Sniffles2 and hapdiff) for each of the 100 samples were merged using Jasmine and parsed for confident calls for each sample. The confident calls for each sample were then merged using Jasmine. The output from the intersample Jasmine merge was intersected with a custom-built BED file of genomic coordinates of medically relevant exons. An ideogram of the genomic locations of each of the “custom confident” SVs that intersects a medically relevant exon was plotted in R using KaryoploteR (Gel and Serra 2017). All genomic boundaries were defined by GENCODE release 45 using the following definitions: 1) protein-coding genic regions are genes with gene_type and protein_coding, 2) UTRs are defined as Ensembl_canonical and in protein_coding genes, 3) intronic regions are defined as protein_coding genic regions outside of Ensembl_canonical protein_coding exons, and 4) medically relevant exons are defined as Ensembl_canonical exons in OMIM genes.

[bookmark: _ihv636]Repeat masking of the first 100 assemblies
Each assembled haplotype from the Napu pipeline (Shasta-Hapdup) was masked using RepeatMasker (http://www.repeatmasker.org/)  with the rmblast search engine (‘-e rmblast’) and the built-in human transposable element database (‘-species human’). HG002 and HG005 RepeatMasker output was downloaded from the HPRC. CHM13 T2T (hs1) RepeatMasker output was downloaded from UCSC (Nurk et al. 2022). The transposable element fraction data of the Shasta-Hapdup assemblies, HG002, and HG005 were extracted from the standard ‘.tbl’ output of Repeat Masker. The CHM13 T2T genome transposable element fraction data was adapted from Hoyt et al. (Hoyt et al. 2022). The number of L1HS in each genome was counted by extracting lines matching ‘L1HS’ from the RepeatMasker standard ‘.out’ output. The number of full-length L1HS elements was counted by extracting the lines from the RepeatMasker output file by searching for ‘L1HS’ and filtering for the distance between the starting and ending coordinate of the L1HS is ≥ 6,000 bp.

[bookmark: _32hioqz]Tandem Repeat Genotyping
Repeats were genotyped using vamos v1.2.6 (Ren et al. 2023) and a list of genome-wide simple repeat loci was made by intersecting the original motif set from vamos (https://zenodo.org/records/8357361) with the GIAB Tier 1 regions and the UCSC simple repeat regions (Benson 1999; Zook et al. 2020). This was combined with the position and motifs for 66 disease-associated loci derived from the STRchive (https://github.com/hdashnow/STRchive). This resulted in 562,005 total loci. Non-reference alleles for ATXN10 not included in the STRchive were obtained from (Morato Torres et al. 2022) and codons for the non-repetitive region of the AR locus were added. A BED file with the coordinates and metadata for each STRchive locus is provided (Supplemental Table S9). The haplotype-resolved hapdiff assemblies from the NAPU pipeline were used to genotype the repeat and evaluate sequence context. Since haplotypes are assigned arbitrarily, all “mat” assemblies were assigned haplotype 1, and all “pat” assemblies were assigned haplotype 2. Because the haplotype-resolved assemblies can fill in missing sequences, only the haplotype 1 value for X Chromosome loci was considered for 46,XY individuals. The output from vamos is a per-sample per-haplotype VCF of the genotype of each allele. The VCFs were combined with the vamos combine_vcf.py script (https://github.com/ChaissonLab/vamos/blob/master/snakefile/pyscript/combine_vcf.py). Each haplotype is a separate sample in the combined VCF in Supplemental File S3.
	ExpansionHunter v5.0.0 was run to genotype STRs on all samples using the ExpansionHunter genome-wide STR catalog v1.0.0 (https://github.com/Illumina/RepeatCatalogs/tree/master) containing 174,293 STR loci using the streaming analysis mode (-m streaming) as recommended for large variant catalogs (Dolzhenko et al. 2019). TRTools v5.0.2 mergeSTR method was then used to generate a multi-sample VCF file (Mousavi et al. 2021). 

[bookmark: _1hmsyys]Methylation analysis
Haplotype-resolved, whole-genome methylation pileup files were generated using Modkit v0.1.11 (ONT). Pileup files were generated from the PMDV haplotagged BAM file from the Napu pipeline. Haplotype-resolved pileup files were subset for CpGs within defined X Chromosome CpG islands using BEDTools v2.30.0 (Quinlan and Hall 2010). For X Chromosome analysis, the average fraction of methylated reads was calculated for each CpG island on the X Chromosome. Visualizing patterns at this level, we selected 20 samples that exhibited a skewed distribution and filtered CpG islands found in the majority of samples (≥16) where the average fraction methylated +/– the standard deviation did not overlap across haplotypes. This resulted in 397 informative CpG islands, which were plotted for each sample. Samples were filtered to include only CpG islands within that list where the mean coverage was ≥ 5 reads. The X-Chromosome inactivation pattern was then predicted by taking the median difference between the fraction methylated between haplotypes at each informative CpG island.
We subsetted CpG islands at the H19 (Chr11:1997582-2003510) and KCNQ1OT1 (Chr11:2698718-2701029) loci and SNURF-SNRPN (Chr15:24954857-24956829) (Akbari et al. 2022). The average fraction of reads methylated was calculated per sample and per haplotype.
Unique DMRs were identified with the Methylation Operation Wizard (MeOW) using a leave-one-out analysis (Zalusky and Miller 2024). Whole-genome methylation frequencies were quantified for CpG dinucleotide positions within previously defined CpG islands. To simplify analysis, 24 datasets that included 5hmCG methylation in addition to 5mCG methylation were excluded. The probability of methylation across all reads for each position was averaged and rescaled to a [0,1] interval. The probability of differential methylation was determined using the bootstrapped beta regression test option in MeOW and filtered using both the benjamin-hochberg corrected p-values and a Cohen’s d cutoff of 1.5. Comparisons were restricted to CpG islands with 50 or more CpG positions containing non-N bases in all 76 sample datasets, comprising 20,836 regions. Methylation for the SLC29A3 DMR was visualized with modbamtools v0.4.8 (Razaghi et al. 2022). 
Principal component analysis of methylation data was performed by taking the average fraction methylated of each CpG island calculated from the per-CpG dataset. PCA was performed comparing 75 samples using prcomp from the stats package in R 4.3.1.
To evaluate associated changes in gene expression, DMRs were subset to those occurring in African Functional Genomics Resource (AFGR) samples that had RNA-sequencing data available for analysis (n=15 individuals, n=66 DMRs) (DeGorter et al. 2023). The coordinates of each DMR were expanded by 10 kbp and intersected with protein-coding genes based on Gencode v35 gene models using plyranges left_overlap_join (Frankish et al. 2021). Expression Z-scores were pulled for the 85 genes occurring near DMRs based on those criteria. To test enrichment, a varying expression absolute Z-score threshold (0.1, 0.5, 1, 1.5,  . . . , 4) was set to determine expression outliers, then the log odds ratio estimates and standard errors (SE) were calculated from a logistic regression across all sample-gene pairs, (model: Expression_Outlier ~ Sample_has_DMR + ε). Log odds ratios were plotted with 95% CI, estimate +/– 1.96*SE.
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