

Supplementary Note 1: RNase treatments do not increase the proportion of vector-aligned reads

As the percentage of vector aligned reads is relatively low (particularly in the WAS samples), we investigated the use of an RNase treatment to degrade human RNAs while the lentiviral RNA remained protected inside the virus. This slightly increased the percentage of reads aligning to the vector reference sequence (3.21% vs 2.01% in the control; Supplementary table 4), although because the median read length of RNase treated reads (425 bp) was much shorter than the control (722 bp) there was little difference in the number of bases aligned to the vector.

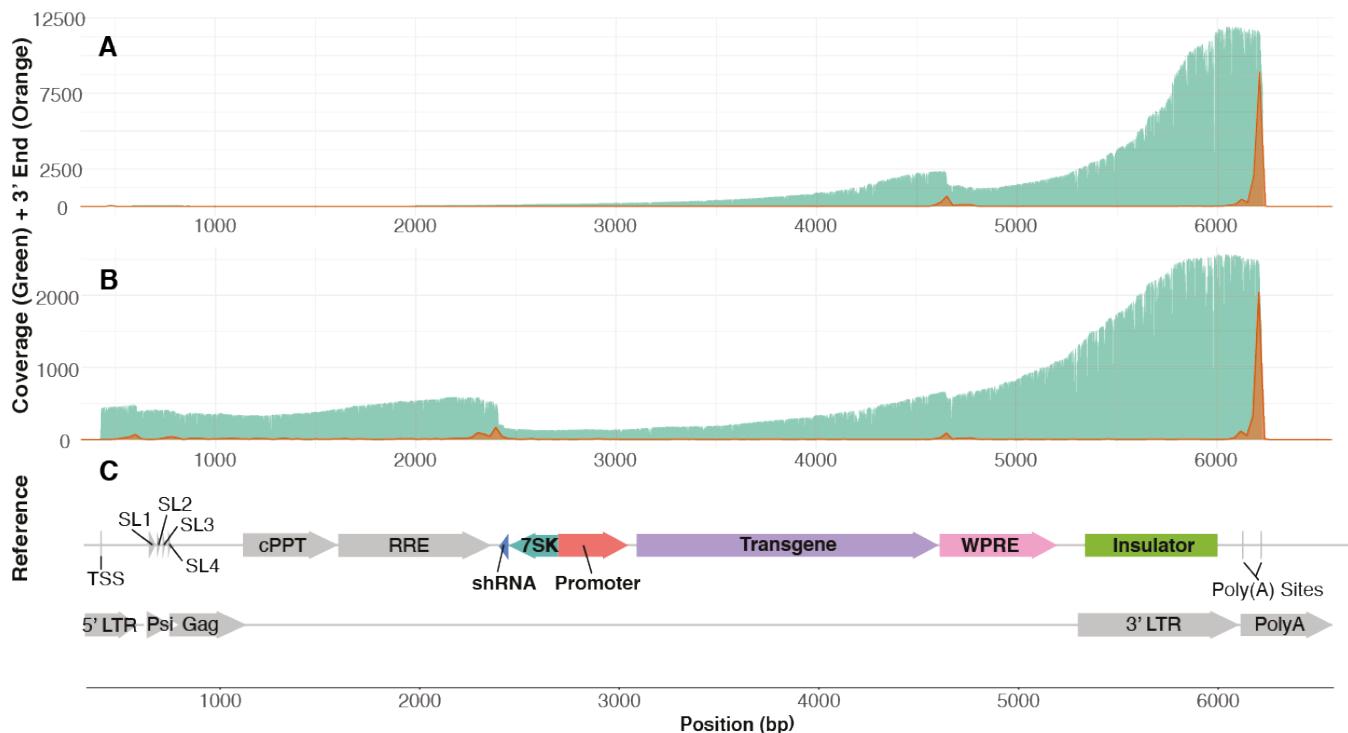

Sequencing coverage of the RNase treated sample (Supplementary figure 1B) displayed a much stronger 3' to 5' decay when compared to the control (Supplementary figure 1A) which agrees with the shorter median read length (Supplementary table 4). As a result, although the overall pattern of peaks (both 3' end and sequencing coverage peaks) was the same, due to low coverage at the 5' end, the RNase treated sample fails to capture many of the splicing events that occur in that region.

Fig. 1. Sequencing coverage (green), location of the 3' ends of reads (orange) and splicing patterns (purple lines connecting splice donors and acceptors) for Wiskott-Aldrich Syndrome vectors sequenced by Nanopore direct RNA sequencing, with and without RNase treatment **(A)** Control sequencing data (no RNase treatment). **(B)** RNase treated sequencing data. **(C)** Reference sequence of the Wiskott-Aldrich Syndrome vector, with various features annotated.

Supplementary Note 2: Artificial polyadenylation produces consistent results for both WAS LV1 and 2

Similar to the results for WAS LV1, the artificially polyadenylated sample from WAS LV2 shows a similar pattern to the normal (non-polyadenylated) data (green, Supplementary figure 2). 4.19% of all reads terminate at the potential cryptic poly(A) site in the WPRE, while 11.66% terminate around the location of the shRNA and 5.53% in the 5' LTR of the vector. This is in contrast to WAS LV1, where more reads terminated in the 5' LTR (11.26%) than at the shRNA site (8.61%) which may suggest that the mechanisms behind lentiviral vector truncation have batch-to-batch variability. The estimated percentage of full-length RNA was similar to that of WAS LV1 (60-78% and 60-75%, respectively), and no splicing was detected.

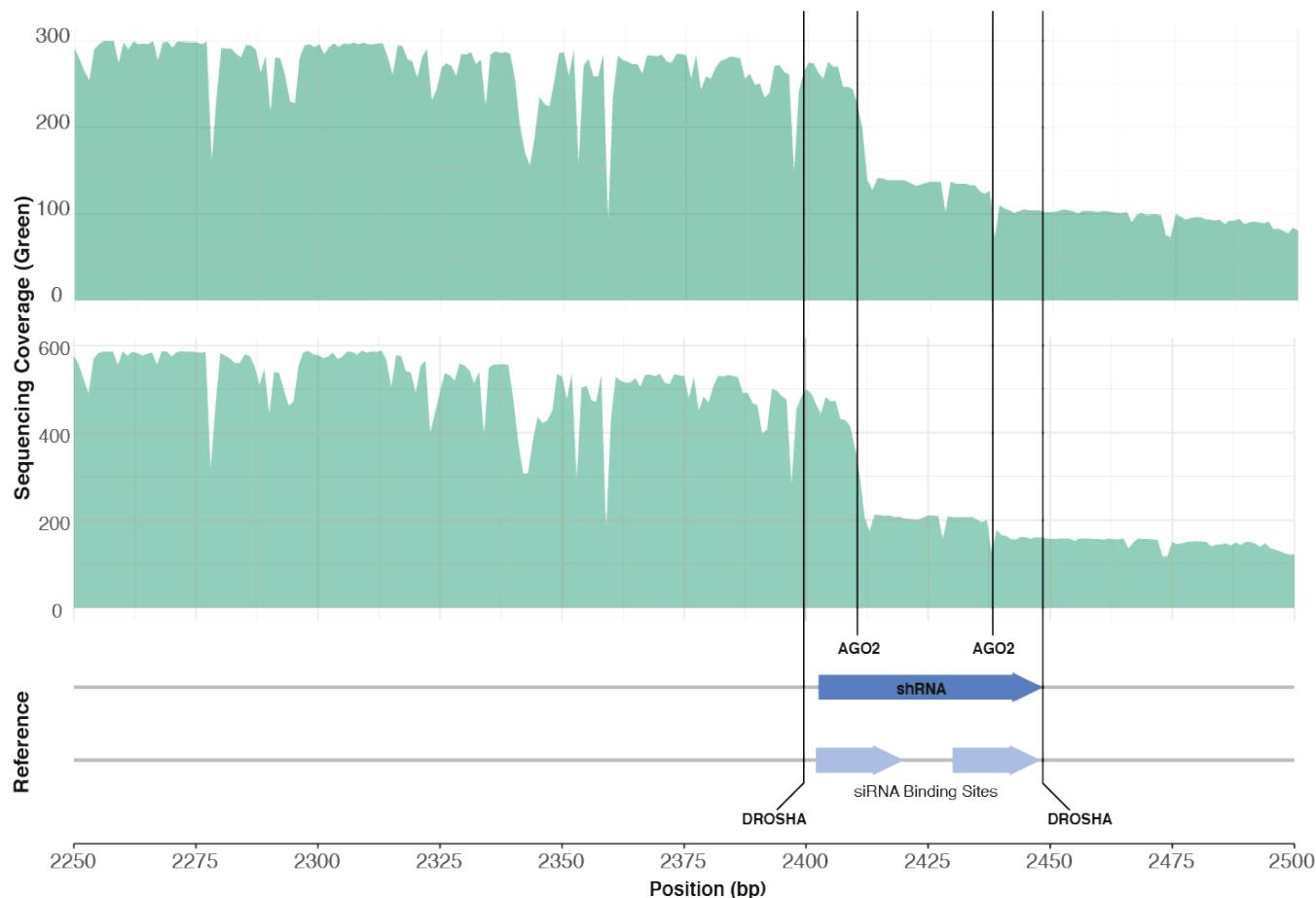


Fig. 2. Plot showing the sequencing coverage (green) and location of the 3' ends of reads (orange) for Wiskott-Aldrich Syndrome WAS LV2 vectors sequenced by Nanopore direct RNA technology, with and without artificial polyadenylation **(A)** Standard library preparation protocol (no artificial polyadenylation). **(B)** Artificially polyadenylated sequencing data. **(C)** Reference sequence of the Wiskott-Aldrich Syndrome vector, with various features annotated.

Supplementary Note 3: Sequencing coverage in the shRNA region aligns with Ago2 cut sites

The sharp coverage changes clearly line up with AGO2 cut sites, as opposed to DROSHA cut sites. This suggests that AGO2 may be responsible for the truncations associated with the shRNA in WAS vectors LV1 and LV2.

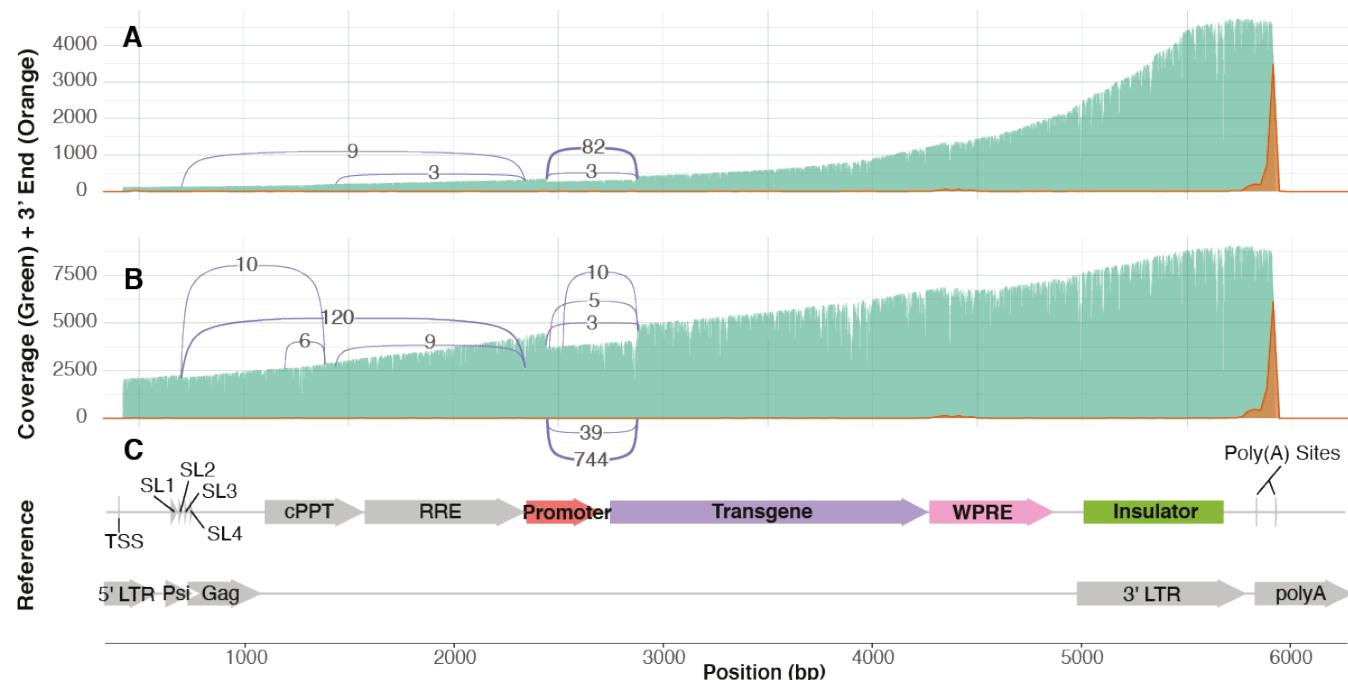

It should be noted that the coverage plot looks a little patchy at this close resolution, likely due to low sequencing coverage of artificially polyadenylated data and also the relatively lower per-base accuracy of Nanopore direct RNA sequencing.

Fig. 3. Plot showing the sequencing coverage (green) for Wiskott-Aldrich Syndrome vectors sequenced by Nanopore direct RNA technology with artificial polyadenylation **(A)** WAS LV1. **(B)** WAS LV2. **(C)** Reference sequence of the shRNA region, with DROSHA and AGO2 cut sites annotated.

Supplementary Note 4: Induro reverse transcriptase optimises the sequencing protocol by generating longer reads

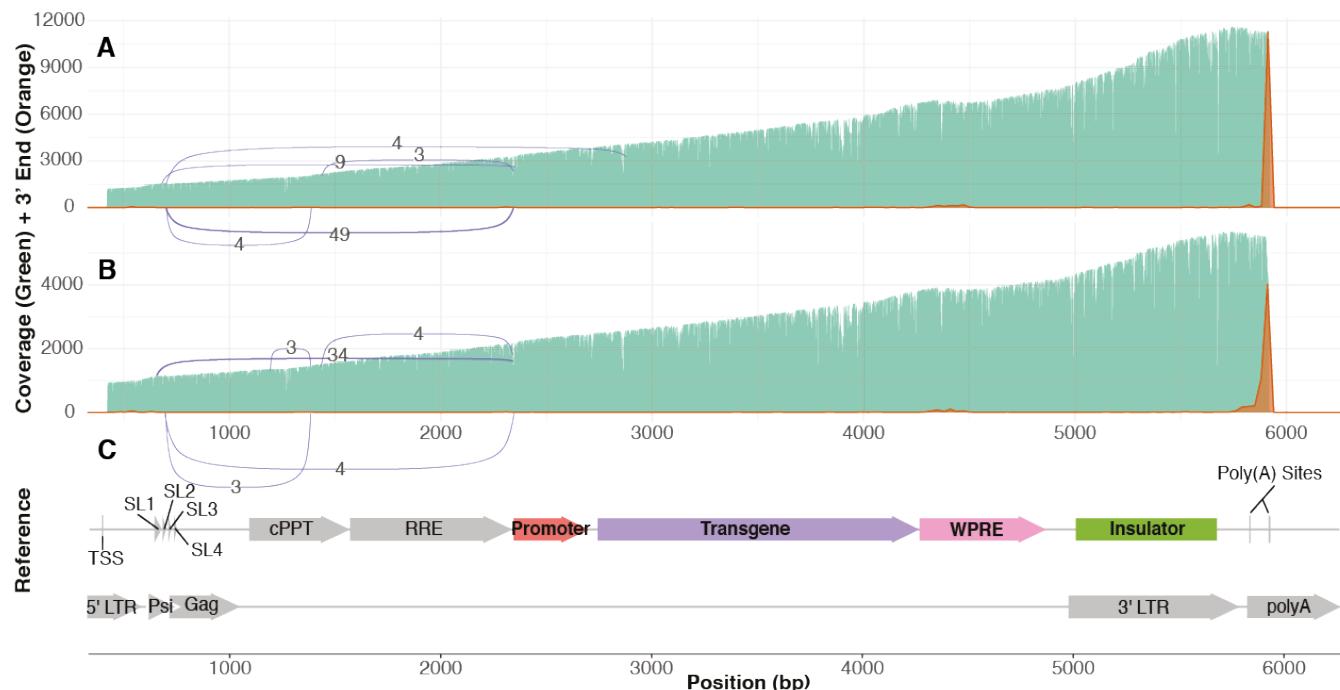

In order to improve the read length from the Nanopore direct RNA sequencing approach and thus reduce the 3' coverage bias observed (Supplementary figure 4A), we trialled a new library preparation method using the Induro reverse transcriptase. Although only the RNA is sequenced, synthesising a strand of cDNA is an important step in Nanopore direct RNA sequencing library preparation as it helps to increase throughput, likely through the prevention of RNA secondary structure formation (which may block translocation through the Nanopore). The Induro reverse transcriptase has been shown to generate longer reads, improving the throughput and 5' coverage in Nanopore direct RNA sequencing. Thus, we compared the conventional Nanopore direct RNA sequencing approach (using SuperScript III) to the improved method (using Induro) to determine whether such increases would be beneficial for the quality control of lentiviral RNA. Despite coming from the same input RNA (from the WAS LV5 vector), reads in the Induro sample (Supplementary figure 4B) were much longer than those from the conventional approach (Supplementary figure 4A), with coverage at the 5' end being much higher. This reveals additional, although rare, splicing patterns at the 5' end of the vector, as well as making it easier to visually identify more abundant splicing patterns (Supplementary figure 4B). However, the percentage of reads involved in the most common splicing pattern (calculated as the number of spliced reads divided by the total number of reads at that position) is similar for both reverse transcriptases (23.91% for SuperScript III vs 19.35% for Induro).

Fig. 4. Sequencing coverage (green), location of the 3' ends of reads (orange) and splicing patterns (purple lines connecting splice donors and acceptors) for the same RNA from Wiskott-Aldrich Syndrome lentiviral vectors sequenced by Nanopore direct RNA sequencing with different reverse transcriptases **(A)** Control sequencing data (using the standard protocol with SuperScript III reverse transcriptase). **(B)** Improved protocol sequencing data (using a modified protocol with Induro reverse transcriptase) **(C)** Reference sequence of the Wiskott-Aldrich Syndrome vector, with various features annotated.

Supplementary Note 5: The induro-based protocol is also highly reproducible

To validate the reproducibility of the induro-based protocol, we sequenced two highly similar vectors: WAS LV6 and WAS LV7 (Supplementary table 6), as was done for the original protocol with WAS LV1-4. Results for WAS LV6 and WAS LV7 are almost identical (Supplementary figure 5), demonstrating the reproducibility of this technique, even across different lentiviral and sequencing library preparations.

Fig. 5. Sequencing coverage (green), location of the 3' ends of reads (orange) and splicing patterns (purple lines connecting splice donors and acceptors) for Wiskott-Aldrich Syndrome lentiviral vectors sequenced by Nanopore direct RNA sequencing **(A)** WAS LV6 sequencing data (contains mutations in the promoter to remove splice donor sites) **(B)** WAS LV7 sequencing data (contains mutations in the promoter to remove splice donor sites, plus an additional mutation in the start of the transgene to remove the splice acceptor) **(C)** Reference sequence of the Wiskott-Aldrich Syndrome vector, with various features annotated.

Supplementary Note 6: Tables

Table 1. Alignment statistics for long-read RNA sequencing technology comparison

Sequencing technology	Number of reads	Percentage of reads mapped to vector	Percentage of reads mapped to human genome	Median read length (bp)
Nanopore direct RNA	273,029	7.97%	90.71%	701
Nanopore direct cDNA	491,270	17.18%	82.40%	980
PacBio cDNA	50,159	6.71%	83.37%	1,795

Table 2. Sequences of selected vector elements

Element	Sequence	Lentivirus constructs with this element
cHS4 650bp insulator	agccccatcctcactgactccgtcctggagttggatgagagataatggc cttacgttgcgcaggggagggtcggctggatttagcaagatttacct tctccaaagagcggtgctgcagtggcacagctgcccacggaggtgggg ggtaccgtccctggaggtatgaagaactgtggggatgtggcactgag ggacatggccagtgggcacgggtgggtgggtgggttggcttgggat cttggagggtttccagcctcatgatttgcacgttgcatttttttt acatggcaattctccagctgcctgtccactgcacccagctgtat tctccaggcaagcttccacccctctgttcacatccagacaccat caaacatgcaggctcagacacatgatcaagctttttccgtatccc cccagggtctgcaggctcaaagagcagcggagaagcggttgcaggaaag cgatcccgtgccaccttccctgtgcggggctgtccccgcacgctgccc gctcgggatgcggggggagcgcggaccggagcggagccccggcggc tcgtctgtgccttgcggggatgcggggggagggacgttaattacatcc tttggggggggctgtccccgtgagctc	WAS LV1
cHS4 650bp with two point mutations to remove splice acceptor sites	agccccatcctcactgactccgtcctggagttggatgagagataatggc cttacgttgcgcaggggagggtcggctggatttagcaagatttacct tctccaaagagcggtgctgcagtggcacagctgcccacggaggtgggg ggtaccgtccctggaggtatgaagaactgtggggatgtggcactgag ggacatggccagtgggcacgggtgggtgggtgggttggat cttggagggtttccagcctcatgatttgcacgttgcatttttt acatggcaattctccagctgcctgtccactgcacccagctgtat tctccaggcaagcttccacccctctgttcacatcc caaacatgcaggctcagacacatgatcaagctttttccgtatccc ccctgggtctgcaggctcaaagagcagcggagaagcggttgcaggaaag cgatcccgtgccaccttccctgtgcggggctgtccccgcacgctgccc gctcgggatgcggggggagcgcggaccggagcggagccccggcggc tcgtctgtgccttgcggggatgcggggggagggacgttaattacatcc tttggggggggctgtccccgtgagctc	WAS LV2
cHS4 650bp with three point mutations to remove splice acceptor sites	agccccatcctcactgactccgtcctggagttggatgagagataatggc cttacgttgcgcaggggagggtcggctggatttagcaagatttacct tctccaaagagcggtgctgcagtggcacagctgcccacggaggtgggg ggtaccgtccctggaggtatgaagaactgtggggatgtggcactgag ggacatggccagtgggcacgggtgggtgggtgggttggat cttggagggtttccagcctcatgatttgcacgttgcatttttt acatggcaattctccagctgcctgtccactgcacccagctgtat tctccaggcaagcttccacccctctgttcacatcc caaacatgcaggctcagacacatgatcaagctttttccgtatccc ccctgggtctgtcggtcaaagagcagcggagaagcggttgcaggaaag cgatcccgtgccaccttccctgtgcggggctgtccccgcacgctgccc gctcgggatgcggggggagcgcggaccggagcggagccccggcggc tcgtctgtgccttgcggggatgcggggggagggacgttaattacatcc tttggggggggctgtccccgtgagctc	WAS LV3

Continued on next page

Table 2. Sequences of selected vector elements (Continued)

cHS4 650bp insulator inverted	<pre> gagctcacggggacagccccccccaaagccccccaggatgtattacg tccctccccgctagggggcagcagcgcagcccccgggctccgtccg gtccggcgctcccccccatccccgagccggcagcgtgcggggacagcc cgggcacgggaaagggtggcacggatcgcttcctgtgaacgcttcg ctgctcttgagcctgcagacacctggggatacggggaaaaagcttg atatcatgtgtctgagcctgcatgtttgatgggtctggatgcaagcag aagggttggaaagagctgcctggagagatacagctgggtcagtaggact gggacaggcagctggagaattgcctgttagatgttcatacaatcgtcaa atcatgaaggctggaaaagccctccaagatccccaaagaccaacccaaac ccacccaccgtgcccactggccatgtccctcagtgcacatccccacag ttcttcatcacctccaggacggtgcaccccccacccgtggcagct gtgccactgcagcaccgctttggagaaggtaaatctgtctaaatcca gcccgaccctccctggcacaacgtaaaggcattatctctcatccaaact ccaggacggagtcagtgaggatggggct </pre>	WAS LV4
HPRT shRNA expression cassette	<pre> acgcgtcaaaaaggatatgccttgactatgtcgacaaatagtcaag ggcatatctcgaggtacccaggcgccacaagctatataaacctgaag aaaatctcaactttacacttagtcaagttacttatcgtactagagtt cagcaggaaatthaactaaaatctaatttaaccagcatagcaaataatca tttattccaaaatgtctaaagttgatgataaaacggacttgattccggc tgtttgacactatccagaatgcctgcagatgggtgggcatgtaaa tactgcacgtcgatacgcgt </pre>	WAS LV1, WAS LV2, WAS LV3, WAS LV4
HPRT shRNA expression cassette removed	acgcgt	WAS LV5, WAS LV6
WPRE with 6 point mutations	<pre> aatcaacctctggattacaaaattgtgaaagattgactggtattctta actatgttgccttttacgctatgtggatacgctgtttatgcctt gtatcatgtattgtctccgtatggctttcatttcctcctgtat aaatcctgttgctgtctttatgaggagtgtggccgtgtcaggc aacgtggcgtgtgtgcactgtgtttgctgacgcaaccccaactgggt ggcattggcaccacctgtcagtccttccggactttcgcttcccc ctccctattgccacggcgaactcatcgccgcctgcctggccgtct ggacaggggctggctgttggcactgacaattccgtgttgcacccgtt gaaatcatgtccttctggctgtcgctgtgttgcacccgtt ctgcgcgggacgtcctctgtacgtccctcgccctcaatccagcgg accttccttcccggccgtgtcgccgtctggccctttcccggtct tcgccttcggccctcagacgatcgatctcccttggccgcctcccg ca </pre>	WAS LV1, WAS LV2, WAS LV3, WAS LV4

Continued on next page

Table 2. Sequences of selected vector elements (Continued)

WPRE with 6 point mutations plus another point mutation to change the ATTACA motif to ATTCA	aatcaacctctggatttcaaaatttgtaaaagattgactggattcttaa ctatgttgcctttacgctatgtggatacgcgtgtttatgccttgccttgc atcatgtattgttcgtatggcttcatttctccctgtataaa tctcgtgtgtgtgcactgtgttgcacgcaacccccactggttggggca ttgccaccacctgtcagtccttcgggacttgcgttccccccctccct attgccacgcggaactcatgcgcgcgtgcctgcccgtgtggacagg ggctcggctgtggactgacaattccgtgtgtgtcggggaaatcat cgtccttcgtggctgcgcgtgttgcacctggattctgcgcgg acgtccttcgtacgtccctggccctcaatccagcggaccttc ccgcggcgtgtgcgcgtctgcggccttcgcgtctgcgccttc ctcagacgagtcggatcccttggccgcctccccca	WAS LV5, WAS LV6
MND promoter unmodified	gaacagagagacagcagaatatggccaaacaggatatctgtggtaagca gttcctgccccggctcaggccaaagaacagttggaaacacgcagaatatggg ccaaacaggatatctgtggtaagcagttcctgccccggctcaggccaaag aacagatgttcccccagatgcgggtccgcctcagcagttctagagaacc atcagatgttccagggtgccccaaaggacctgaaatgaccctgtgcctta tttgaactaaccatcagttcgcttcgttctgttgcgcgcttc tccccgagcttatataaggcagagctcgtagtgaaccgtcagatc	WAS LV1, WAS LV2, WAS LV3, WAS LV4, WAS LV5
MND promoter with two point mutations to remove splice donor sites	gaacagagagacagcagaatatggccaaacaggatatctgtggaaagca gttcctgccccggctcaggccaaagaacagttggaaacacgcagaatatggg ccaaacaggatatctgtggaaagcagttcctgccccggctcaggccaaag aacagatgttcccccagatgcgggtccgcctcagcagttctagagaacc atcagatgttccagggtgccccaaaggacctgaaatgaccctgtgcctta tttgaactaaccatcagttcgcttcgttctgttgcgcgcttc tccccgagcttatataaggcagagctcgtagtgaaccgtcagatc	WAS LV6

Table 3. Alignment statistics for Nanopore direct RNA sequencing data of WAS vectors

Sample	Number of reads	Percentage of reads mapped to vector	Percentage of reads mapped to human genome	Median read length (bp)
WAS LV1	743,182	2.44%	96.18%	630
WAS LV2	445,076	3.12%	96.35%	709
WAS LV4	621,958	2.04%	96.99%	644
WAS LV3	489,502	1.47%	97.99%	712
WAS LV5	205,061	4.95%	94.19%	918
WAS LV6	314,174	4.25%	85.95%	761
WAS LV7	124,639	5.22%	85.13%	841

Table 4. Alignment statistics for Nanopore direct RNA sequencing data of RNase treated sample and control

Sample	Number of reads	Percentage of reads mapped to vector	Percentage of reads mapped to human genome	Median read length (bp)
RNase treated	407,517	3.21%	96.05%	425
Control	304,079	2.01%	98.00%	722

Table 5. Alignment statistics for Nanopore direct RNA sequencing data of artificially polyadenylated samples

Sample	Number of reads	Percentage of reads mapped to vector	Percentage of reads mapped to human genome	Median read length (bp)
Poly(A) treated WAS LV1	476,115	0.61%	96.33%	295
Poly(A) treated WAS LV2	380,551	1.13%	96.36%	335

Table 6. Summary of vectors used in this study.

LV name	Transgene	shRNA	Insulator	WPRE and promoter
Globin LV	Gamma globin	yes	cHS4 400bp	WPRE with 6 point mutations
WAS LV1	WAS	yes	cHS4 650bp	WPRE with 6 point mutations
WAS LV2	WAS	yes	cHS4 650bp with two point mutations	WPRE with 6 point mutations
WAS LV3	WAS	yes	cHS4 650bp with three point mutations	WPRE with 6 point mutations
WAS LV4	WAS	yes	cHS4 650bp inverted	WPRE with 6 point mutations
WAS LV5	WAS	no	cHS4 650bp with three point mutations	WPRE with 6 point mutations plus another point mutation to change the ATTACA motif to ATTTCA
WAS LV6	WAS	no	cHS4 650bp with three point mutations	WPRE with 6 point mutations plus another point mutation to change the ATTACA motif to ATTTCA and two point mutations in the promoter to remove splice donor sites
WAS LV7	WAS	no	cHS4 650bp with three point mutations	WPRE with 6 point mutations plus another point mutation to change the ATTACA motif to ATTTCA, two point mutations in the promoter to remove splice donor sites and an additional point mutation in the transgene to remove a splice acceptor site