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Supplemental Methods

Fibertools algorithm for semi-supervised training
We derive m6A labels from GMM-filtered ipdRatios from ipdSummary. These labels can contain
false positives. The lack of clean m6A labels makes the supervised training approach less
suitable since it assumes that accurate labels are available. Therefore, we developed a
semi-supervised approach, which assumes that our m6A class is a mixed population of true and
false positives and that our non-m6A class is a clean set. Our training approach derives from
Percolator and mokapot, proteomics tools for identifying peptides from mass spectrometry data
(Käll et al. 2007; Fondrie and Noble 2021).

Given a set of candidate m6A calls, Fibertools aims to maximize the number of m6A calls at a
target estimated precision. First, we split our dataset into training and validation sets stratified by
class labels (see Table S3 for the training and validation datasets sizes for different Fiber-seq
chemistry experiments). Then our method proceeds in two phases. In the first phase, we use
the central base’s interpulse duration (IPD) score as a classifier and generate an m6A
classification score for all examples in the validation set. The validation examples are then
ranked by the classification score, and estimated precision is computed at every score
threshold. In general, precision is defined as the ratio of true positives over the total number of
positive calls (i.e., true positives plus false positives). In our case, for a set of m6A (P) and
non-m6A calls (N) meeting a score threshold, the denominator of the precision calculation is
simply P + N. For the numerator, i.e., the number of true positives, we assume that some of the
P m6A calls are false positives. In particular, we assume that each non-m6A call above the
threshold corresponds to c false positive m6A calls, where c is the ratio of positive to negative
labels in our validation dataset. Thus, we define estimated precision, EP, as

𝑃 − 𝑐𝑁
𝑃 + 𝑁

Using a ranked list of EP at different score thresholds we select the score threshold with the
target EP in the validation set. At the end of this phase, we have a score threshold for identifying
m6A calls at the target estimated precision. In practice, 12-14% of our data had m6A labels, and
we used the target estimated precision of 95%.

The second phase is iterative, and each iteration consists of three steps. The first step is
selecting a high-confidence m6A training set using the score threshold from the first phase for
the first iteration and step 3 of the second phase for subsequent iterations. The second step
consists of training a CNN model on this training data. In the final step, the validation data is
rescored using the trained CNN model from the second step, and a new score threshold is
generated with the rescored validation data. We will now describe each step in detail.

In the first step, a score threshold is used to select a putative m6A set. This score threshold is
derived from the IPD score classifier in the first iteration and a trained CNN in subsequent
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iterations. At the end of this step, we have a training set selected using a given score threshold
and classifier.

The second step is training a CNN model to discriminate between m6A and non-m6A examples.
We initialize our model using the CNN model from the supervised approach. This transfer
learning approach allows fast convergence of our training procedure. We retain the same
training hyper-parameters as the supervised approach. At the end of this step, we produce a
CNN classifier trained on training data from the previous step. We train the 2.2, 3.2, and Revio
chemistry models for two epochs. During an epoch, we compute average precision on the
validation data every x iteration, where x refers to the number of batches corresponding to 10%
of training data. We save the model with the best average precision on validation data. Training
for two epochs was sufficient to learn a model with better average precision than the previous
round for all three Fiber-seq chemistries.

The final step is finding a new score threshold by rescoring the validation examples using the
trained CNN from step two. The initial process of estimating EP at different score thresholds is
repeated, and a new score threshold with a target EP (95%) is selected.

In the case of a successful second phase training, the number of positives in the validation data
identified at target precision increases with every iteration and plateaus when most m6A
examples in the validation data have been identified. We define two conditions for convergence,
both of which must be satisfied. First, more than 70% of putative m6A calls from the validation
set have been identified. Second, the number of additional m6A calls in a new iteration is less
than 1% of the total putative m6A calls. In practice, it took 12, 11, and 3 repetitions of phase two
training to converge 2.2, 3.2, and Revio chemistry Fiber-seq experiments, respectively (Fig. S9).

Applying previous models to new chemistries.
To quantify the improvement gained by training chemistry-specific models, we applied fibertools
with the v2.2 model to v3.2 sequencing data treated with m6ATP. Using the 3.2 model, we
identified 275,232,818 m6A modifications and 191,599,074 using the 2.2 model. We validated
the predictions of the 3.2 model using mass spectrometry in Fig. 2c. Therefore, using the 2.2
model resulted in a 30.4% reduction in the expected recall, highlighting the importance of
training chemistry-specific models.





Supplemental Figures

Figure S1. Interpulse duration (IPD) at m6A and adenine base pairs. Violin plots of the IPD
value following unmethylated adenines (FALSE, red) and m6As (TRUE, cyan). Different
columns show values for ipdSummary (ipd) and fibertools (ft) calls and different chemistries
(2.0, 2.2, 3.2, and Revio).



Figure S2. Percent m6A as a function of read length. Percent of methylated adenines
relative to all adenines called by the subread model as a function of read length (2.2 chemistry
model).



Figure S3. Dorado m6A calling on ONT Fiber-seq. a) Comparison of the percent m6A
observed in ONT Fiber-seq (blue) and a gDNA negative control sample (red) as a function of
the precision reported by Dorado. The horizontal line indicates the percent m6A in the ONT
Fiber-seq sample as measured by MS/MS. b) Estimated precision-recall curve for Dorado m6A
calling. The text indicates the estimated recall at 10% increments of precision, and the red line
marks a 95% precision level. We estimated the fraction of true positive calls by subtracting the
fraction of m6A calls in the gDNA negative control from the fraction of m6A calls in ONT
Fiber-seq. We calculated precision by dividing the estimated fraction of true positive calls over
the total fraction of m6A calls, and we calculated recall by dividing the estimated fraction of true
positive calls by the total percent m6A in the ONT Fiber-seq sample (14.67%) which we
identified using MS/MS. c) Distribution of read accuracy for PacBio (pink) and ONT (blue)
Fiber-seq HG002 samples, as determined by comparison to the reference genome.



Figure S4. Size comparison of CCS and subread files. File size in GB for CCS files with
kinetics (purple) compared to the equivalent subread file (green).



Figure S5. Example locus showing Fiber-seq data in CHM13. Each line represents an
individual sequencing read. Purple ticks represent m6A events called by the subread model.
Nucleosome footprints (~150 bp patches devoid of m6A) and MTase-sensitive patches
(internucleosomal region at least 65 bp) are indicated. The inset is a zoomed-in view of a CTCF
binding element depicting fibers that are bound and unbound (bottom three reads) by CTCF.



Figure S6. Percent m6A of all different heptamers. Count of 7-mers (y-axis) binned by % of
that 7-mer containing a central m6A with respect to all instances of the same 7-mer. m6A calls
were made by the fibertools 3.2 model on Fiber-seq K562 data.



Figure S7. m6A autocorrelation from different callers. Autocorrelation is shown for calls
made by the subread model (teal), ipdSummary model (gray), semi-supervised CNN for PacBio
2.2 chemistry (purple), and semi-supervised CNN for PacBio Revio chemistry (pink).



Figure S8. False positive rate in WGA data as a function of CCS passes. Percentage of
m6A calls with respect to all adenines as a function of CCS pass number.



Figure S9: Single m6A internucleosomal linker regions. Percent of all internucleosomal
linker regions defined by only a single m6A separating two nucleosomes. Data is shown for
three SMRT cells of PS00075 and three SMRT cells of PS00109 (n=6).



Figure S10. Increase in m6A calls for fibertools. The top plot shows the number of m6A
bases in reads with increasing CCS coverage. The bottom plot shows the percent increase of
m6A calls for fibertools over the subread model as a function of CCS coverage. The x-axis is
shared between the top and bottom plots.



Figure S11. IGV screenshot of the HMBS promoter. The IGV screenshot shows the encoding
of m6A methylation (green) in the BAM format using the MM and ML tags for the HMBS
promoter with Fiber-seq data from K562.



Fig. S12. Multiple non-TTAGGG telomere variant repeats (TVRs) (Baird et al. 1995;
Allshire et al. 1989) are absent from the HG002 reference sequence.
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Figure S13: Fibertools applied to a sample prepared with EcoGII. top left) Histogram of
nucleosome lengths within the EcoGII sample. top right) Histogram of proportion of adanines
with m6A in the sequencing reads. bottom) Autocorrelation between adjacent m6A calls,
identifying the exact length of the nucelosomes within the data (147 bp).



Figure S14. Ablation study of the Fibertools fully-supervised CNN model. Precision-Recall
curve for five versions of the fibertools fully-supervised CNN model. The Area Under the
Precision-Recall (AUPR) curve values of each variant are reported in the legend. A description
of each variant follows. Central IPD value: A method that uses only the IPD value of the central
adenine base without any surrounding sequence information, IPD values, or Pulse Width
values. CNN 5bp+IPD: A CNN model using IPD values and sequence information from a 5 bp
window surrounding the central adenine base. CNN 5bp+IPD+PW: A CNN model using IPD
values, Pulse Width values, and sequence information from a 5 bp window surrounding the
central adenine base. CNN 15bp+IPD: A CNN model using IPD values and sequence
information from a 15 bp window surrounding the central adenine base. CNN 15bp+IPD+PW: A
CNN model using IPD values, Pulse Width values, and sequence information from a 15 bp
window surrounding the central adenine base.



Figure S15: Number of m6A calls identified at 95% precision increases with
semi-supervised training epoch. The number of m6A calls identified at 95% estimated
precision in the validation data from three different chemistries (2.2, 3.2, and Revio) as the
training epochs progress. The x-axis shows the number of training epochs, and the y-axis
shows the number of m6A calls in the validation set at 95% estimated precision (see
Supplementary Methods for the definition of estimated precision).



Supplemental Tables
Supplemental Tables 1-6 can be found in the supplemental materials file called
Supplemental_Tables.xlsx.

Supplemental Code
A permanent copy of fibertools-rs, the code used in training, and the code used to make figures
can be found in the supplemental materials file Supplemental_Code.zip and on Zenodo
(10.5281/zenodo.6913294, 10.5281/zenodo.10989909, DOI 10.5281/zenodo.10989911).
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