
‭# we would download genomes from Gisaid EpiCoV https://www.epicov.org/epi3/frontend‬
‭# Download the fasta which contains all fasta files (access must be requested)‬
‭# We would then use scripts that are part of the augur pipeline‬
‭https://docs.nextstrain.org/projects/augur/en/stable/ to sanitze sequences and metadata files:‬

‭# e.g.:‬

‭sanitize_sequences.py --sequences SEQUENCES.tar.xz --strip-prefixes‬‭'hCoV-19/'‬

‭--output SEQUENCES.fasta.gz‬

‭sanitize_metadata.py --metadata METADATA.tar.xz --database-id-columns‬‭'Accession‬

‭ID'‬‭--parse-location-field Location --rename-fields‬‭'Virus name=strain'‬‭'Accession‬

‭ID=gisaid_epi_isl'‬‭'Collection date=date'‬‭--strip-prefixes‬‭'hCoV-19/'‬‭--output‬

‭METADATA.sanitized.gz‬

‭# This produces a very large compressed fasta file. To help parallelize the downstream analyses, the file‬
‭is split into smaller parts using GNU Parallel, pigz, and bioawk. We create a tab separated file (TSV) with‬
‭the sequence accession and the sequence. For example:‬

‭pigz -dc SEQUENCES.fasta.gz | parallel --pipe -j 8 --block 2000M --recend‬‭'\n'‬

‭"bioawk -c fastx '{print \$name\"\t\"\$seq}' | pigz -p 4 >‬

‭split-fastas/sequences_gisaid_sanitized_split_{#}.tsv.gz"‬

‭# to organize the files by date, we used a custom R script. This script will read in the TSV file (chunked),‬
‭merge it with metadata tsv file. Then output fasta files into directories, one for each day:‬

‭library‬‭(data.table)‬

‭args <- commandArgs(trailingOnly =‬‭TRUE‬‭)‬

‭if‬‭(length(args) ==‬‭0‬‭) {‬‭stop‬‭(‬‭"No file provided. Exiting."‬‭)}‬

‭metafile <- args[‬‭1‬‭]‬

‭if‬‭(!file.exists(metafile)) {‬‭stop‬‭(paste(‬‭"File"‬‭, metafile,‬‭"not found. Exiting."‬‭))}‬

‭seqfile <- args[‬‭2‬‭]‬

‭if‬‭(!file.exists(seqfile)) {‬‭stop‬‭(paste(‬‭"File"‬‭, seqfile,‬‭"not found. Exiting."‬‭))}‬

‭meta<-fread(metafile, sep=‬‭'\t'‬‭, header=‬‭T‬‭)‬

‭seqs<-fread(seqfile, sep=‬‭'\t'‬‭, header=‬‭F‬‭)‬

‭colnames(seqs)<-c(‬‭"strain"‬‭,‬‭"seq"‬‭)‬

‭meta.seqs<-merge(meta,seqs, by=‬‭"strain"‬‭)‬

‭if‬‭(nrow(meta.seqs) <‬‭1‬‭){‬‭stop‬‭(paste(‬‭"File"‬‭, seqfile,‬‭"does not have samples.‬

‭Exiting."‬‭))}‬

‭meta.seqs$strain<-gsub(‬‭"[/|]"‬‭,‬‭"_"‬‭, meta.seqs$strain)‬

‭for‬‭(i‬‭in‬‭1‬‭:nrow(meta.seqs)){‬

‭file_name <- paste0(‬‭"fastas-by-date/"‬‭,as.character(meta.seqs$date[i]),‬‭"/"‬‭,‬

‭meta.seqs$strain[i],‬‭".fa"‬‭);‬

‭file_content<-paste0(‬‭">"‬‭, meta.seqs$strain[i],‬‭"\n"‬‭,meta.seqs$seq[i]);‬

‭write(file_content, file=file_name)‬

‭}‬

‭# and then run the Rscript for each split fasta to organize the fastas by date. e.g.:‬

‭Rscript organize-fastas-by-date.R METADATA.sanitized.gz split_fasta/[IN].fa‬

‭# note: We would parallelize this with PBS scripts specific to our HPC system.‬

‭# After files are organized into directories by date, we would run the Khill Script available from:‬
‭https://github.com/deanbobo/khill‬

‭# We would also run pangolin available from here: https://github.com/cov-lineages/pangolin‬
‭# pangolin installed with a conda environment‬
‭# note: it's faster to concatenate all the fasta files for a particular day and run them through the pangolin‬
‭pipeline all at once. Again, we would parallelize this with our HPC system.‬

‭conda activate pangolin‬

‭pangolin --update‬

‭pangolin --update-data‬

‭pangolin --threads 4 --outfile PANGOLIN.csv IN.fa‬

‭#We would then load Khill and pangolin results and overlay summarized pangolin clade data using R.‬
‭#load and summarize pangolin:‬

‭library‬‭(data.table)‬

‭library‬‭(tidyverse)‬

‭# load pangolin results‬

‭pang<-fread(‬‭"PANGOLIN.csv"‬‭, sep=‬‭","‬‭, header=‬‭F‬‭)‬

‭#rename columns‬

‭colnames(pang)<-c(‬‭"date"‬‭,‬

‭"taxon"‬‭,‬‭"lineage"‬‭,‬‭"conflict"‬‭,‬‭"ambiguity_score"‬‭,‬‭"scorpio_call"‬‭,‬‭"scorpio_support"‬‭,‬‭"sc‬

‭orpio_conflict"‬‭,‬‭"scorpio_notes"‬‭,‬‭"version"‬‭,‬‭"pangolin_version"‬‭,‬‭"scorpio_version"‬‭,‬‭"con‬

‭stellation_version"‬‭,‬‭"is_designated"‬‭,‬‭"qc_status"‬‭,‬‭"qc_notes"‬‭,‬‭"note"‬‭)‬

‭#filter out header rows‬

‭pang<-pang[!pang$taxon==‬‭"taxon"‬‭,]‬

‭#format date‬

‭pang$date<-as.Date(pang$date)‬

‭#select only date and clade‬

‭pang<-pang[,c(‬‭1‬‭,‬‭3‬‭)]‬

‭colnames(pang)<-c(‬‭"Date"‬‭,‬‭"Clade"‬‭)‬

‭#summarize the results by date and clade‬

‭pang.freqs<-pang %>% group_by(Date, Clade) %>% summarise(count = n()) %>%‬

‭mutate(freq=count/sum(count))‬

‭#format date‬

‭pang.freqs$Date<-as.Date(pang.freqs$Date)‬

‭# load khill results:‬

‭khill<-fread(‬‭"khill.results.tsv"‬‭, sep=‬‭"\t"‬‭, header=‬‭F‬‭)‬

‭colnames(khill)<-c(‬‭"date"‬‭,‬‭"khill"‬‭)‬

‭#format date‬

‭khill$date<-as.Date(khill$date)‬

‭#for plotting purposes, normalize khill values 0 to 1‬

‭normalize <-‬‭function‬‭(x) {‬

‭return‬‭((x - min(x)) / (max(x) - min(x)))‬

‭}‬

‭khill$khill.norm<-normalize(khill$khill)‬

‭# Plot results‬

‭ggplot() +‬

‭theme_classic() +‬

‭geom_bar(data=pang.freqs, aes(x=Date, y=freq, colour=Clade), stat=‬‭"identity"‬‭,‬

‭width=‬‭1‬‭) +‬

‭geom_point(data=khill, aes(x=Date, y=khill.norm, fill=count), colour=‬‭"black"‬‭,‬

‭pch=‬‭21‬‭, size=‬‭3‬‭) +‬

‭scale_y_continuous(name =‬‭"Clade Frequency"‬‭, position=‬‭"right"‬‭,‬‭sec.axis =‬

‭sec_axis(~ scales::rescale(., range(khill$khill), range(khill$khill.norm)) ,‬

‭name=‬‭"KHILL"‬‭)) +‬

‭scale_x_date(date_labels =‬‭"%Y %b"‬‭, date_breaks‬‭=‬‭"2 month"‬‭) +‬

‭theme(legend.position=‬‭"none"‬‭, axis.text.x=element_text(angle=‬‭60‬‭,‬‭hjust=‬‭1‬‭),‬

‭panel.background = element_blank()) +‬

‭labs(title=‬‭"K-Hill"‬‭, x=‬‭"Date"‬‭)‬

