Supplementary Material to
“Spatial Cellular Networks from omics data with SpaCeNet”

1 Simulation studies

Data simulation Data were simulated from the full probability density (main article, Eq. (1))
with potentials p;;(rap) = Apijexp(—di;rap), using the following procedure:

1. Initialize empty p X p matrices for 2 and Ap.

2. Randomly draw a set of symmetric edges (we chose 5% of all possible edges) for Ap from
Unif(—1,1) and draw corresponding range parameters ¢;; = ¢;; for given positive ¢, and
(bmam fI‘OIIl Unlf(¢m1n7 ¢mar)~

3. Randomly draw a set of symmetric edges (we chose 10% of all possible edges) for © from
Unif(—1,1).

4. Draw s = 1,...,S samples of spatial coordinates, uniformly sampled from 3d space with an
average density of 100 cells per volume unit, each with n cells and calculate the pairwise
distances R(®) for each sample.

5. Based on 2, Ap, ¢;; and R construct A® for all s.

6. Calculate the row-wise sum of the absolute values of all A®). For each of the p variables, select
the maximum value from the corresponding n - S sums, add a small constant (we chose 10~7)
and fill the respective diagonal element of €2 with it to ensure that A is positive definite.

7. Update all A®, sample £€® from A® by means of a Cholesky decomposition and add a
random g if desired.

With this setup, we simulated 24 scenarios with different parameter settings for n, S and ¢;; with
20 independently seeded replicates for each. All simulations used p = 20 variables. Note that the
data are simulated from the full joint probability Eq. (1) of the main manuscript with a precision
matrix of size pn X pn, making data simulation computationally expensive for large p and n.

In our studies, ¢;; was chosen between 5 and 20. The rationale behind this choice is motivated as
follows. Given a unit density of 7, k cells on average occupy a volume Vi, = k/n, which corresponds
to a sphere of radius r, = (3k/(47n))'/3. We used rj as an estimate for the average distance
between a cell and its k nearest neighbors. For n = 100, this yields r; ~ 0.13, rg = 2r; ~ 0.27, and
ro7 = 3r1 ~ 0.40. The range of the potentials exp(—¢;;r) can be quantified by 1/¢;;. With the
average nearest-neighbor distance r; as reference point, ¢;; = 5 therefore corresponds to a long-range
and ¢;; = 20 to a short-range potential.



SpaCelNet model selection We set the expansion order to L = 3 and chose ry to equal the
minimal observed distance between two cells. Note that there are reasonable alternative choices for
o, €.g., the average nearest-neighbor distance provides a length scale that might be more appropriate
for larger numbers of cells n. We then performed a grid search on all data sets with 4 values for
a € [1075,1073,1071,10] and 8 € [107°,1073,107%, 10] each. The grid was then successively refined
6 times such that about 100 different hyper-parameter combinations were evaluated in total. The
best set of hyper-parameters was chosen based on the maximum pseudo-log-likelihood of test data.
To this end, the full data set was split 70:30 into a training and a test set. If more than one
sample was available (S > 1), the split was performed between different samples and otherwise
(S = 1) all observations in 30 % of the spatial volume were used for testing. We initialized the
optimization with a step size of 1075, If overflows were encountered, we successively reduced the
step size by a factor of 10. The convergence threshold for the proximal gradient algorithm was set to
107° and training was terminated after a maximum of 3,088 optimization steps. The AUROC and
AUPRC based evaluation methods rely on a threshold-based classification of estimated parameters
into positives and negatives. When considering the spatial association parameters we classify an
association between two variables i and j to be positive if |Ap§?| is greater than the threshold for
at least one considered order [/ in the expansion.

Reconstruction of interaction potentials Data for the reconstruction of the interaction po-
tentials (main article Figure 2) was generated in line with previous procedure, but using p = 5 and
only a single spatial edge connecting two of the variables with the potentials given in the caption
of main article Figure 2A to D, respectively. We simulated data for n = 10 and .S = 1000, and the
potentials were fitted with rq = 0.1.

2 Estimates from conditional densities

By construction, we assume a spatially constant mean vector X = p for all cells in the full density
distribution of SpaCeNet. Then, we directly obtain from the conditional densities that
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where the mean of the normal distribution is shifted. Eq. (1) can be used as an estimate for the
variable 27 provided all other variables are known.

This method was used to calculate the residuals for the mouse visual cortex data (main article
Fig. 4), where Ap(') was either set to 0 or the estimated parameters. In this case, information x‘\lj
is required, i.e., all other variables of cell a have to be known already.

Similarly, the joint conditional density for all variables of one cell a is given by
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The mean vector X® can be used as an estimate for the variables of cell a, provided that all variables
of all other cells are known. Note that p® only depends on other cells b # a since @aa =0 for all {.
A comparison of the results obtained with the two methods is shown in main article Fig. 6.

3 SpaCeNet analysis of high-throughput spatial transcrip-
tomics from Chen et al. [2022]

For both datasets Mosta A and B, the top hits predominantly showed a positive spatial association
(Ap;; < 0). For instance, among the top 5 hits in both analyses, we observed the gene pairs M¢1-Mt2
and Mobp-Mbp. The melatonin receptors Mtl and Mt2 are G protein-coupled receptors that are
activated by the release of melatonin in response to darkness from the pineal gland, which is tightly
controlled by circadian pacemaker cells in the suprachiasmatic nucleus (SCN) of the hypothalamus
through a multi-synaptic pathway. The clock rhythm is entrained by daily and seasonal changes in
the environmental light-dark cycle, which are sensed by melanopsin in a subset of retinal ganglion
cells that innervate the SCN [Berson et al., 2002]. The human MT1 and MT2 receptors are 350
and 362 amino acids long, respectively, with molecular weights of 39-40 kDa and 55% amino acid
homology overall (70% within the transmembrane domains), while the respective receptors in mouse
are 353 and 365 amino acids long. Activation of MT1 receptors promotes sleep and has been mainly
implicated in the regulation of rapid eye movement (REM) sleep, whereas MT2 receptors selectively
increase non-REM (NREM) sleep and phase shift circadian rhythms of activity and neuronal fir-
ing [Dubocovich, 2007]. Aside from these well-known functions, melatonin receptors are involved
in various other physiological activities such as blood pressure regulation and immunomodulation
[Pandi-Perumal et al., 2008]. Spatial distribution of MT1 and MT2 in mammalian brains has been
investigated by various techniques, including receptor autoradiography with [125IJiodomelatonin,
nested RT-PCR, Western blotting, immunohistochemistry, and genetically modified mouse models
expressing fluorescent protein or a marker enzyme under control of the endogenous MT1 and MT2
promoters. MT1 and MT2 mRNA has been amplified from human cerebellum, cortex, thalamus,
hippocampus, suprachiasmatic nucleus, and retina. Expression of MT1/2 in the latter two structures
is consistent with their important role in biological rhythmicity [Dubocovich et al., 2010]. Expression
of MT1 and MT2 mRNA was also found in rat SCN tissue and confirmed in protein extracts by
Western blot using polyclonal rabbit anti-human MT1 and MT2 antiserum [Rivera-Bermudez et al.,
2004]. Protein expression of MT1 receptor in rat SCN varies across the circadian cycle, compared to
non-SCN areas, and is the highest at dusk [Waly and Hallworth, 2015]. In contrast, MT2 receptor
labeling could not be detected in the rat SCN, but was clearly visible in the paraventricular nucleus
and retina. These findings could be corroborated by an immunohistochemical study conducted on
the entire adult rat brain using also polyclonal anti-MT1 and anti-MT2 antibodies, which revealed
selective MT1 and MT2 localization on neuronal cell bodies and dendrites in numerous regions of
the rat telencephalon, mesencephalon, and diencephalon [Lacoste et al., 2015]. This study reported
the highest density for MT2 labeling in the hippocampus, thalamus and hypothalamus, except for
the SCN. Density of MT1 labeling, in contrast, was the highest in the cerebral cortex and basal



forebrain, the epithalamus, the pars tuberalis of the pituitary gland, and the SCN. The most com-
prehensive mapping of the distribution of melatonin receptors in mouse brain, to date, has been
accomplished by a knock-in strategy replacing the Mt1 and Mt2 coding sequences, respectively,
with the LacZ reporter enzyme without modifying the endogenous upstream and downstream reg-
ulatory elements [Klosen et al., 2019]. Expression during the light phase, when melatonin binding
and expression of melatonin receptor mRNA are the highest, was measured in mouse brain sections
by both, LacZ histoenzymological staining of beta-galactosidase activity and immunohistochemistry
using a chicken anti-LacZ antibody. This strategy showed striking differences in the distribution of
Mt1l and Mt2 receptors. Histoenzymological staining of Mtl-LacZ yielded high density labeling in
very few structures, notably the SCN, the pars tuberalis, as well as the paratenial and paraventric-
ular nuclei of the thalamus, which perfectly coincided with the distribution of [125I]iodomelatonin
binding, which exhibits a higher affinity for Mt1 than Mt2. However, the findings are completely at
odds with RT-PCR studies, which have detected expression of Mt mRNA in the caudate-putamen,
substantia nigra, ventral tegmental area, olfactory tubule, and hippocampus of the mouse brain
[Uz et al., 2005, Jenwitheesuk et al., 2017], which may reflect differences in detection sensitivity or
indicate that the presence of mRNA may not necessarily represent protein expression, as some mR-
NAs are translationally controlled. Expression of Mt2, on the other hand, was far more widespread
and particularly dense in the forebrain, the paraventricular nucleus of the hypothalamus, and the
amygdaloid complex. Co-expression of both melatonin receptors was rare, with the exception of the
SCN that showed high and medium density staining for Mt1 and Mt2, respectively. Regardless of
the published ambiguity over the differential expression of Mt1l and Mt2, no study has ever reported
the extent of co-expression of the two melatonin receptors in adult mouse brain as displayed in the
mouse organogenesis spatiotemporal transcriptomic atlas (Suppl. Figure S18), raising concerns over
the ability of the Stereo-seq chip to capture selectively Mt1 and Mt2 mRNA. Thus, the strong spatial
association computed by SpaCeNet based on the MOSTA data, which implies that high expression of
Mt1 is associated with high expression of Mt2 in neighboring cells, is not supported by the extensive
body of literature available on melatonin receptor localization and function. Expression of myelin-
associated oligodendrocytic basic protein (Mobp) and myelin basic protein (Mbp), which yielded
the second highest positive spatial assoiation, is in contrast to the neuro-specific expression of Mt1
and Mt2 specific to oligodendrocytes. They are major components of the myelin sheath, which is
formed from cellular processes that extend from oligodendrocytes and wrap in a spiral fashion mul-
tiple times around the nerve axons. The major function of Mbp is intracellular compaction of the
myelin, whereby it binds to the two opposing cytoplasmic leaflets of the myelin bilayer and brings
them closely together via its polymerization into a fibrous network, giving rise to the so-called major
dense line in electron microscope images [Bakhti et al., 2014]. Mobp, on the other hand, reinforces
apposition of the compacted cytoplasmic leaflets and contributes to the normal arrangement of the
so-called radial component, which ensures extracellular apposition between myelin membranes [Ya-
mamoto et al., 1999]. A single oligodendrocyte myelinates between 40 and 60 different axons but
only one segment per axon, which ranges from 20 - 200 um in length in the CNS [Stadelmann et al.,
2019]. Thus, each axon in the CNS is myelinated by multiple oligodendrocytes. Both Mobp and
Mbp are highly basic polypeptides. To minimize interference with other proteins, the mRNAs of
Mbp and Mobp are packed into granules in the perikaryon and transported along the peripheral
processes to the myelin compartments for localized protein synthesis [Holz et al., 1996, Ainger et al.,
1997]. Thus, given the branching structure of oligodendrocytes, which support numerous myelin
ensheathments [Osanai et al., 2022], Mbp and Mobp mRNAs localizing to the various myelin com-
partments of an oligodendrocyte over an extended area may be interpreted as belonging to different
cells, i.e. axons, using an array-based method for spatial transcriptomics. This may explain the
positive spatial association observed for these two genes, which may have been further confounded



by the low sequencing depth (Suppl. Figure S17). Finally, we observed a strong negative spatial
association between the genes Ptgds and Apoe, which encode prostaglandin-H2 D-isomerase and
apolipoprotein E, respectively. The former is expressed in oligodendrocytes and the leptomeninges
[Urade et al., 1993] and catalyzes the conversion of prostaglandin H2 (PGH2) to prostaglandin D2
(PGD2), which is unstable and readily undergoes non-enzymatic dehydration to yield biologically
active prostaglandins of the J series, including PGJ2, deltal2,14-PGJ2, and 15-deoxy-deltal2,14-
PGJ2 (15d-PGJ2). The latter is a potent agonist of the nuclear transcription factor peroxisome
proliferator—activated receptor-gamma (PPARgamma) [Waku et al., 2009] that has been shown to
decrease transcription of Apoe, whereas PPARgamma knock-down results in a strong increase in
expression of Apoe-mRNA [Subramanian et al., 2017]. Apolipoprotein E is mainly produced by
astrocytes to facilitate transport of lipids to other brain cells such as neurons [Konings et al., 2021].
In summary, even in scenarios where SpaCeNet’s model assumptions are challenged, it may yield
promising findings for further analyses. However, spatial transcriptomic data should be subjected
to careful scrutiny before drawing any conclusions.



4 Tables and Figures

Table S1: SpaCeNet results of simulation studies.

AUROC © AUPRC Q AUROC Ap AUPRC Ap
mean s.d. mean s.d. mean s.d. mean  s.d.
¢min ¢max TLS S
5.0 5.0 1000 1 0.89 0.04 0.85 0.04 0.55 0.07 0.28 0.21
10 0.91 0.04 0.88 0.04 0.63 0.11 0.27 0.17
100 0.96 0.02 0.94 0.02 0.93 0.07 0.73 0.12
10000 10 0.95 0.02 0.94 0.02 0.87 0.10 0.64 0.16
100 0.97 0.02 0.96 0.02 0.94 0.06 0.83 0.11
100000 100 0.98 0.02 0.98 0.02 0.98 0.03 0.92 0.12
20.0 1000 1 0.96 0.02 0.94 0.03 0.59 0.10 0.25 0.17
10 0.97 0.02 0.95 0.02 0.62 0.09 0.26 0.17
100 0.97 0.01 0.96 0.02 0.78 0.10 0.40 0.12
10000 10 0.98 0.02 0.98 0.02 0.84 0.13 0.64 0.15
100 0.99 0.01 0.98 0.01 0.90 0.06 0.75 0.14
100000 100 0.99 0.01 0.99 0.01 0.96 0.06 0.88 0.13
10.0 10.0 1000 1 0.95 0.02 0.93 0.02 0.62 0.10 0.24 0.15
10 0.96 0.02 0.94 0.03 0.63 0.09 0.25 0.16
100 0.97 0.01 0.96 0.02 0.84 0.12 0.48 0.13
10000 10 0.98 0.01 0.98 0.02 0.88  0.08 0.72 0.13
100 0.99 0.01 0.98 0.01 0.93 0.07 0.81 0.12
100000 100 0.99 0.01 0.99 0.01 0.98 0.02 0.92 0.11
20.0 20.0 1000 1 0.98 0.02 0.97 0.02 0.57 0.08 0.20 0.17
10 0.98 0.02 0.97 0.02 0.55 0.06 0.22 0.20
100 0.98 0.01 0.97 0.02 0.67 0.10 0.26 0.13
10000 10 0.99 0.01 0.99 0.01 0.76 0.15 0.49 0.16
100 1.00 0.01 0.99 0.01 0.88  0.09 0.65 0.14
100000 100 1.00 0.01 1.00 0.01 0.94 0.07 0.84 0.14




Table S2: Spatial edge recovery in terms of AUPRC for the correlation baseline for a varying number
of nearest neighbours considered for the spatial environment.

1lknn Ap S5knn Ap 10knn Ap 20knn Ap 50knn Ap
mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
(bmin (bmax n-S S
5.0 5.0 1000 1 0.07 0.05 0.08 0.06 0.08 0.05 0.07 0.03 0.07 0.04
10 0.06 0.03 0.07 0.05 0.08 0.05 0.07 0.04 0.07 0.04
100 0.18 0.10 0.33 0.14 0.33 0.14 0.33 0.14 0.33 0.14
10000 10 0.10 0.07 0.16 0.09 0.24 0.12 0.23 0.14 0.25 0.12
100 0.22 0.12 0.48 0.17 0.55 0.20 0.57 0.20 0.43 0.15
100000 100 0.62 0.16 0.81 0.10 0.85 0.11 0.88 0.10 0.85 0.10
20.0 1000 1 0.12 0.08 0.14 0.08 0.10 0.05 0.08 0.04 0.07 0.04
10 0.07 0.04 0.08 0.06 0.09 0.05 0.07 0.03 0.06 0.03
100 0.15 0.11 0.11 0.07 0.11  0.07 0.11 0.07 0.11 0.07
10000 10 0.39 0.19 0.39 0.15 0.39 0.19 0.25 0.16 0.18 0.11
100 0.42 0.19 0.53 0.19 0.48 0.19 0.39 0.16 0.18 0.10
100000 100 0.84 0.13 0.84 0.10 0.80 0.12 0.76 0.12 0.64 0.12
10.0 10.0 1000 1 0.13 0.08 0.16 0.09 0.11  0.05 0.10 0.04 0.07 0.04
10 0.07 0.04 0.09 0.06 0.09 0.05 0.07 0.04 0.06 0.03
100 0.16 0.12 0.12 0.07 0.12 0.07 0.12 0.07 0.12 0.07
10000 10 0.41 0.19 0.48 0.16 0.48 0.20 0.33 0.17 0.24 0.13
100 0.46 0.18 0.60 0.20 0.55 0.20 0.48 0.20 0.21 0.11
100000 100 0.88 0.11 0.89 0.09 0.89 0.10 0.88 0.10 0.81 0.11
20.0 20.0 1000 1 0.11 0.07 0.09 0.06 0.07 0.05 0.06 0.03 0.06 0.03
10 0.07 0.04 0.07 0.05 0.07 0.04 0.06 0.03 0.06 0.03
100 0.11  0.09 0.06 0.04 0.06 0.04 0.06 0.04 0.06 0.04
10000 10 0.38 0.18 0.21 0.13 0.16 0.10 0.10 0.11 0.08 0.05
100 0.37 0.17 0.29 0.16 0.22 0.15 0.14 0.11 0.06 0.03
100000 100 0.81 0.12 0.78 0.13 0.69 0.17 0.55 0.17 0.31 0.18




Table S3: Spatial edge recovery in terms of AUPRC for the partial correlation baseline for a varying
number of nearest neighbours considered for the spatial environment.

1lknn Ap 5knn Ap 10knn Ap 20knn Ap 50knn Ap
mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
¢min ¢max n-S= S
5.0 5.0 1000 1 0.07 0.05 0.08 0.05 0.08 0.05 0.08 0.05 0.07 0.04
10 0.06 0.04 0.07 0.04 0.08 0.04 0.07 0.03 0.06 0.04
100 0.18 0.13 0.32 0.17 0.32 0.17 0.32 0.17 0.32 0.17
10000 10 0.11  0.09 0.18 0.11 0.25 0.12 0.23 0.13 0.24 0.11
100 0.20 0.11 0.46 0.17 0.53 0.20 0.53 0.18 0.42 0.15
100000 100 0.59 0.16 0.75 0.12 0.79 0.13 0.83 0.11 0.82 0.10
20.0 1000 1 0.11  0.08 0.13 0.08 0.11 0.06 0.08 0.05 0.08 0.06
10 0.07 0.05 0.08 0.05 0.08 0.05 0.06 0.03 0.06 0.04
100 0.14 0.11 0.11 0.08 0.11 0.08 0.11  0.08 0.11  0.08
10000 10 0.40 0.16 0.37 0.16 0.37 0.16 0.24 0.13 0.16 0.09
100 0.40 0.18 0.51 0.18 0.47 0.18 0.35 0.15 0.16 0.10
100000 100 0.78 0.15 0.77 0.13 0.75 0.15 0.73 0.16 0.64 0.19
10.0 10.0 1000 1 0.12 0.07 0.15 0.09 0.13 0.07 0.10 0.06 0.07 0.04
10 0.07 0.05 0.09 0.06 0.09 0.05 0.07 0.04 0.06 0.04
100 0.15 0.13 0.13 0.09 0.13 0.09 0.13 0.09 0.13 0.09
10000 10 0.41 0.16 0.46 0.16 0.46 0.16 0.33 0.15 0.21 0.11
100 0.43 0.17 0.57 0.18 0.54 0.20 0.45 0.18 0.19 0.12
100000 100 0.81 0.13 0.82 0.11 0.82 0.12 0.83 0.11 0.79 0.11
20.0 20.0 1000 1 0.11  0.08 0.08 0.05 0.06 0.04 0.07 0.05 0.07 0.04
10 0.07 0.05 0.06 0.04 0.06 0.03 0.06 0.03 0.06 0.04
100 0.11 0.10 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.03
10000 10 0.36 0.16 0.20 0.14 0.15 0.10 0.08 0.07 0.07 0.04
100 0.35 0.16 0.29 0.14 0.21 0.11 0.11  0.06 0.07 0.04
100000 100 0.75 0.13 0.71 0.14 0.64 0.17 0.54 0.17 0.31 0.19

Table S4: Performance in terms of AUROC to recover intra- (left) and intercellular (right) interac-
tions from in silico tissues generated via mechanistic modeling for MISTy and SpaCeNet.

AUROC (intracellular) ‘ MISTy ‘ SpaCeNet ‘

’ AUROC (intercellular) ‘ MISTy ‘ SpaCeNet

Tissue 1 0.66 0.81 Tissue 1 0.60 0.62
Tissue 2 0.66 0.81 Tissue 2 0.62 0.64
Tissue 1+2 0.66 0.80 Tissue 1+2 0.60 0.65




Table S5: Top 10 spatial interactions discovered by SpaCeNet on the StarMap data on natural scale
(left), on log scale (middle) and for two copies of gene Mbp denoted as Mbp* and Mbp** on a
natural scale (right).

Recovered edges Recovered edges Artificial Mbp* colinear to Mbp**
(natural scale) (log scale) (natural scale)

Gene 1 Gene 2 Ap | Genel  Gene 2 Ap
Mbp Flt1 0.327 | Sst Pualb 0.178 | Mbp* Mbp** -0.173
Ctof Gjal 0.102 | Mbp Flt1 0.150 | Mbp*  Flt1 0.165
Ctgf Pcep/ 0.083 | Ctgf Pep/, 0.115 | Fit1 Mbp** 0.165
Sst Reln 0.077 | Ctgf Gjal 0.114 | Ctgf Gjal 0.110
Slc17a7  FEgrl 0.075 | Npy Sst 0.111 | Ctgf Pcp/ 0.083
Cuz2 Gjal 0.060 | Sst Vip 0.107 | Sst Reln 0.078
Cuz2 Egri 0.055 | Cuz2 Pep4, -0.104 | Slc17a7 FEgri 0.077
Npy Vip 0.054 | Cuz2 Plcxzd2  0.098 | Cux2 Gjal 0.062
Egri Egr2 0.052 | Mgp Cck 0.098 | Cuz2 Egri 0.057
Cuz?2 Pcpy4 -0.048 | Slc17a7 Pcp4 0.095 | Npy Vip 0.055

Table S6: Top 10 spatial interactions discovered by SpaCeNet on the Drosophila data obtained on

natural scale (left) and on log-scale (right).

Natural scale Log scale
Gene 1 Gene 2 Ap | Genel Gene 2 Ap
sna twi -0.0360 | sna twi -0.0316
ems noc 0.0301 | dan danr -0.0316
Dfd lok 0.0210 | ems noc 0.0312
Ance CG10479  0.0205 | Ance CG10479  0.0215
dan danr -0.0193 | Dfd lok 0.0194
cne erm 0.0175 | apt tll -0.0159
apt til -0.0171 | enc erm 0.0150
Blimp-1 brk 0.0156 | Blimp-1  brk 0.0129
CG14427  kni 0.0122 | kni Nek2 0.0126
cne kni 0.0117 | enc kni 0.0118




Table S7: Top 10 absolute highest values of Ap for genes appearing in at least 30% of all cells (left)
and genes appearing in 10% of cells (right).

30% 10%
Gene 1 Gene 2 Ap | Genel Gene 2 Ap
Mt2 Mti1 —0.363 | Mobp Mbp —0.448
Mobp Mbp —0.355 | Sst Npy 0.374
Ptgds Apoe 0.319 | Fthi Mbp —0.356
1l31ra Camk1d —0.287 | Mt2 Mt1 —0.347
Bel Hpss —0.287 | Il31ra  Camkid —0.331
Gm42418 1l81ra 0.260 | Bct Hpsb —0.318
Fth1 Mbp —0.218 | Mbp Plekhbl  —0.308
Bel Ppmle —0.208 | Nefl Nefm —0.296
Olfm1 Camk2n1  —0.206 | Nrsnl  Rgs4 —0.257
Plp1 Cds1 —0.200 | Bcl Ppmle —0.249

- o o
- - -

distance r
» ab,,

Figure S1: Associations estimated by SpaCeNet: SpaCeNet estimates intracellular and in-
tercellular Spatial Conditional Independence (SCI) relationships reflected by network edges. Two
cells a (left) and b (right) are shown. The circles of the same color represent the same molecular
variable in each of the two cells. The solid lines represent edges of intracellular networks, indicating
a direct association between molecular variables observed within the same cell. The dashed lines
represent the intercellular network edges between cells a and b, indicating a direct spatial associa-
tion between respective molecular variables. The potentials p;;(rq,) parameterize the intercellular
interaction strength between variables ¢ and j between cell a and cell b at distance r4. For instance,
the missing dashed green lines between the blue and yellow variable imply SCI between the two
(pij(rap) = 0), while SCI does not apply between the yellow and red variable (p;;(rqp) # 0).
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Pij(ran) = exp(=@jirap)

Figure S2: Illustration of different exponential potentials p;;(rq5) = exp(—¢i;7qp) used in the simula-
tion studies, where ¢;; ~ Unif(5, 20) controls the interaction range. Small values correspond to long
range associations (¢;; = 5, solid line), large values to short range associations (¢;; = 20, dotted
line) and values in between to medium range associations (¢;; = 10, dashed line).
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Figure S3: Parameters for a simulated data set with n = 103, S = 100, ¢;; € [5,20]. (a) True pa-
rameters that have been used for sampling. (b) Estimated parameters, where the hyper-parameters
were selected based on test-set loss, and (c) estimated parameters, where the hyper-parameters were
manually chosen.
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Figure S4: Edge recovery by SpaCeNet assessed in a simulation study using (A-C) fixed, radially
decreasing potentials p(rqp) = Ap;j exp(—ijrap) for all cell-cell interactions with constant range
parameters ¢;; € {5, 10,20}, respectively, and (D) flexible potentials p;;(7es) = Apij exp(—dijTap)
with ¢;; ~ Unif(5,20) that mediate the interaction between molecular variables i and j. The y-axes
give the performance in terms of the area under the precision recall curve (AUPRC). Left figures
correspond to the inner-cellular networks (the intracellular precision matrix §2) and the right figures
to the extracellular networks (the cell-cell interaction parameters Ap). The z-axis stratifies the
analysis with respect to total cell numbers n-S, where n is the number of cells within a measurement
and S the number of measurements. Here, S = 1 is shown in blue, S = 10 in orange, and S = 100
in green.
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Figure S5: Edge recovery for intercellular associations Ap of the correlation baseline considering
a spatial environment given by the K nearest neighbours. Row 1 to 4 correspond to simulation
settings A-D, respectively (see Fig. S4). Results from SpaCeNet are shown in green.
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Figure S6: Edge recovery for intercellular associations Ap of the partial correlation baseline consid-
ering a spatial environment given by the K nearest neighbours. Row 1 to 4 correspond to Simulation
settings A-D, respectively (see Fig. S4). Results from SpaCeNet are shown in green.
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Figure S7: Cellular positions in the mouse visual cortex. Colors indicate the training (blue, orange,
green) and validation (red) batches used for hyper-parameter screening and model development.
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Figure S8: Evaluated hyper-parameter space and corresponding validation pseudo-log-likelihoods
colored in blue (low values) to yellow (high values) based on the mouse visual cortex data provided
by [Wang et al., 2018]. Black dots are tested hyper-parameters and the red dot corresponds to the
optimal set of hyper-parameters in the grid search.
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Figure S9: Network of spatial interactions between molecular variables estimated by SpaCeNet using
data of the mouse visual cortex provided by [Wang et al., 2018]. Blue edges correspond to positive
associations (negative entries of Ap(')) and red edges to negative associations (positive entries of
ApW).
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Figure S10: Estimated pair-wise spatial correlations (Figure A). The shown matrix is not symmetric

by definition, although empirically approximately symmetric. This finding is supported by the
histogram of differences r;; — r;; (Figure B).
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Figure S11: Ordinary correlations calculated between gene expression levels based on the individual
cells’ molecular profiles (Figure A). Figure B shows a histogram of the differences between the

ordinary and spatial correlations.

Figure S12: Spatial coordinates (mapped from 3D to 2D via a principal component analysis) of the
virtual Drosophila embryo [Fowlkes et al., 2008] and the corresponding training/test splitting used
for the SpaCeNet hyper-parameter screening shown in blue/orange, respectively.
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Figure S13: Evaluated hyper-parameter space and corresponding validation pseudo-log-likelihoods
colored in blue (low values) to yellow (high values) based on the virtual Drosophila embryo data
provided by [Fowlkes et al., 2008]. Black dots are tested hyper-parameters and the red dot corre-
sponds to the optimal set of hyper-parameters in the grid search.
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Figure S14: Network of spatial interactions between molecular variables estimated by SpaCeNet
using data of the virtual Drosophila embryo provided by [Fowlkes et al., 2008]. Blue edges correspond
to positive associations (negative entries of Ap(')) and red edges to negative associations (positive

entries of Apl)).

20



XL
S 200t ensrnsen
ORI Y P

Figure S15: SpaCeNet is an inferential tool which can predict gene expression from cel-
lular context. A, expression of the Kriippel protein gene Kr based on the Drosophila blastoderm
data of [Fowlkes et al., 2008]. B, corresponding SpaCeNet prediction, where each cell’s expression
was predicted in a leave-one-cell-out approach (here, the density f(x*|R,X\?) was used). C, cor-
responding predictions based on cellular context and the expression of the remaining genes in the
predicted cell (using density f(z}|R, X\e, x{;)), meaning that the expression xj is predicted using
the expression levels of all other cells x? with b # a and the expression levels of cell a except j. The
red arrow highlights an area where the predictions of B and C differ most.
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Figure S16: Evaluated hyper-parameter space and corresponding validation AIC colored in blue
(low values) to yellow (high values) based on the MOSTA data, for genes appearing in at least 30%
of all cells (left) and genes appearing in 10% of cells (right). Black dots are tested hyper-parameters
and the red dot corresponds to the optimal set of hyper-parameters in the grid search.

Mobp Mbp

Figure S17: Scatter plot of the Mobp and Mbp genes in the MOSTA mouse adult brain colored in
blue (low UMI count) to yellow (high UMI count).
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Figure S18: Scatter plot of the Mt2 and Mt! genes in the MOSTA mouse adult brain colored in
blue (low UMI count) to yellow (high UMI count).
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