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Figure S1: Experimental details for CAR-T. (A) Structure of CAR-T protein. Experiments
A B, and C used the CD28 protein while experiment D used 41BB. (B) Flow cytometry plot showing
CD19 staining (blue) versus isotype control (red) in MEC1 cells. (C) Co-culture set up in 96 well
plate. (D) Demonstrated dose-response cytotoxicity for different ratios of effector:target cells. E.
Representative gating strategy for isolating CAR-T cells for use in experiment
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Figure S2: DIISCO performance on additional replicate experiments (A). Learned pro-
portions from DIISCO for experiment A. Dots represent calculated proportions at each time point,
line represents mean prediction and shaded region depicts 85% percentile confidence region. (B)
Learned W over time for experiment A. (C) Inferred proportions from DIISCO for experiment D.
(D) Learned W over time for experiment D. (E-F) W dynamics over time for interactions between
Exhausted-Activated T cells (E) and Exhausted MECI cells (F) across experiments A, C, D. (G)
Average W interaction score across all experiments.
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Figure S3: Confidence intervals for W predictions in Experiment C. All non-zero inter-
actions are shown, blue line depicts mean predicted interaction over time while the shaded region
depicts the 85% confidence interval.
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Figure S4: DIISCO robustness to downsampling. (A) DIISCO predicted cell type propor-
tions when downsampling and removing 90% of cells from the data. (B) DIISCO predicted cell
type proportions when downsampling and removing 50% of time points. (C) Average W inferred
interaction for varying numbers of time points. (D) Exhausted-Activated T cell interaction over
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Figure S5: DIISCO robustness to clustering method. (A) DIISCO predicted cell type dy-
namics on individual Phenograph clusters (without grouping into metaclusters). Cells colored by
metacluster cell type assignment. (B) Average interaction between all cluster pairs. (C) Interaction
over time. (D) Predicted cell type dynamics when applying DIISCO to individual Leiden clusters.
Cells colored by cell type assignment. (E) Average interaction between all cluster pairs. (F) Inter-
action over time.
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Figure S6: Adjusting binarization threshold to compensate for incomplete R-L
databases. (A) Average predicted interactions from OmnipathDB when 30% of R-L interac-
tions are masked from database. Red line indicates binarization threshold. (B) Average predicted
interactions from OmnipathDB when 70% of R-L interactions are masked from database. Red line
indicates binarization threshold. (C) Prior matrix used in DIISCO model, generated based on user
defined thresholds. Both A and B threshold choices, as indicated by the red lines, lead to the same

interaction prior matrix.
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Model # timepoints |[R2_Y RMSE_Y AUC AUPRC F1

DIISCO 10]0.999%0.0 0.03+0.0 0.975%0.02 |0.922+0.08 |0.855+0.03
LM_PRIOR 10]10.687+0.17 |0.577+0.26  |0.965+0.03 |0.888+0.08 |0.908%+0.05
LM 10{1.0£0.0 0.0%0.0 0.572+0.01 0.304+0.01 0.347+0.01
RLM_PRIOR 10]10.803+x0.13  |0.439+0.15 ]0.981+0.01 |0.904+0.07 |0.87+0.05
RLM 10[{0.951+0.03 ]0.211+0.09 |0.631+0.02 |0.445+0.03 |0.445+0.03
DIISCO 20[0.999£0.0 0.034+0.0 0.97710.01 ]0.931£0.03  |0.854+0.01
LM_PRIOR 20[/0.601£0.08 |0.635+0.13 |0.951+0.03 |0.872+0.06 |0.888%0.03
LM 20]1.0£0.0 0.0%0.0 0.571+0.0 0.305+0.0 0.346+0.0
RLM_PRIOR 20[0.903+£0.05 |0.302+0.08 |0.983%0.01 |0.923%0.03 |0.886%0.02
RLM 20]0.976+0.01 0.148+0.04 |0.613£0.03 |0.421+0.03 ]0.437+0.02
DIISCO 30(0.999£0.0 0.039+0.0 0.98210.01 0.946x0.02 ]0.871+0.02
LM_PRIOR 30(0.54+0.04 0.726x0.06  10.964+0.02 |0.9+0.04 0.9+0.01
LM 30(1.0£0.0 0.0£0.0 0.571+0.0 0.304+0.0 0.3460.0
RLM_PRIOR 30[0.928+£0.05 [0.273%0.1 0.983%0.0 0.917+0.03  ]0.896%0.02
RLM 30]0.989+0.01 0.11+0.02 0.635+0.02 |0.417+0.03 [0.442+0.01
DIISCO 40]0.9980.0 0.041+0.0 0.98210.0 0.952+0.01 0.859+0.01
LM_PRIOR 40]0.54+0.05 0.726x0.07 10.973x0.01 0.917+0.03  10.906%0.01
LM 40(1.0£0.0 0.010.0 0.569+0.0 0.306+0.0 0.344+0.0
RLM_PRIOR 40]0.946+0.03 |0.236+0.06  |0.983+0.01 |0.913+0.04 |0.9+0.01
RLM 40(0.989+0.01 0.107+0.02 |0.617+0.02 |0.4+0.02 0.433+0.01
DIISCO 60(0.998£0.0 0.042+0.0 0.981+0.0 0.947+0.01 0.859+0.01
LM_PRIOR 60[0.517+0.03  |0.748+0.06 |0.949+0.03 |0.88+0.03 0.88%0.03
LM 60(1.0£0.0 0.010.0 0.571+0.0 0.305+0.0 0.346+0.0
RLM_PRIOR 60(0.972+0.01 0.176x0.02  10.9830.0 0.918+0.02  10.892+0.01
RLM 60(0.993+0.0 0.087+0.01 0.627+0.02 10.409+0.02 ]0.437+0.01
DIISCO 70[0.998£0.0 0.043+0.0 0.981+0.0 0.946+0.02 10.863+0.02
LM_PRIOR 70[0.545+£0.03 |0.705+0.05 [0.968+0.02 |0.915+0.03 |0.894%0.02
LM 70]1.0£0.0 0.010.0 0.571+0.0 0.304+0.0 0.346+0.0
RLM_PRIOR 70[0.98+0.0 0.149+0.01 0.9830.0 0.915+0.01 0.88910.01
RLM 70[0.994+0.0 0.08+0.0 0.627+0.01 0.414+0.01 0.436x0.01

Table S1: Method performance for varying number of timepoints. Noise parameter for
dynamics set by €, which is a random variable sampled from a normal distribution with standard
deviation of 0.1, as described in Methods. R? calculated between inferred and ground-truth W (t).
Mean and SD across 10 iterations are shown. Model acronyms denote the following: LM-PRIOR =
Linear Model with prior. LM = Linear Model. RLM-PRIOR = Rolling Linear Model with prior.
RLM = Rolling Linear Model. Model details can be found in Methods. Comparison metrics used
are as follows: R? Y, R?_W: R? value comparing predictions to ground truth for dynamics (Y) or
interactions (W). Higher is better. RMSE Y, RMSE _W: Root mean squared error for dynamics
(Y) or interactions (W). Lower is better. AUC: Area under ROC curve. Higher is better. AUPRC:
Area under Precision-Recall curve. Higher is better. F1: Max F1 score. Higher is better. AUC,
AUPRC, and F1 scores calculated comparing predicted interactions to ground truth interactions.
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Model # timepoints |[R2_Y RMSE_Y AUC AUPRC F1
DIISCO 10]0.999%0.0 0.039+0.01 0.936+0.01 0.762+0.05 10.849+0.02
LM_PRIOR 1010.671+£0.13  |0.734+0.23 |0.958+0.02 |0.846+0.08 |0.907+0.02
LM 10{1.0£0.0 0.0£0.0 0.569+0.01 0.306+0.01 0.344+0.01
RLM_PRIOR 10]10.374+0.55 |0.954+0.45 ]0.982+0.01 |0.924+0.05 |0.897+0.04
RLM 10[/0.848+0.12 10.481+0.19 |0.597+0.04 |0.397+0.05 |0.44+0.02
DIISCO 20[0.999£0.0 0.045+0.0 0.938+0.01 0.755+0.05 10.847+0.01
LM_PRIOR 20[0.506+£0.07 [0.886+0.09 [0.962+0.01 0.876+0.06  10.905+0.01
LM 20]1.0£0.0 0.0%0.0 0.57+0.01 0.306+0.0 0.344+0.01
RLM_PRIOR 20[-0.002+0.84 [1.163£0.39 [0.978%0.0 0.896+0.04 |0.863+0.02
RLM 20/0.895+0.04 |0.404+0.08 ]0.592+0.03 [0.377+0.04 ]0.427+0.01
DIISCO 30(0.999£0.0 0.0460.0 0.947+0.01 0.804+0.06  10.843+0.01
LM_PRIOR 30[0.517+0.05 |0.874+0.1 0.963+0.01 0.885+0.03  10.901%0.01
LM 30(1.0£0.0 0.0£0.0 0.571+0.0 0.304+0.0 0.3460.0
RLM_PRIOR 30[0.275+0.75 [0.988+£0.44  [0.98+0.0 0.902+0.02 |0.87+0.02
RLM 30/0.889+£0.03 |0.413+0.05 ]0.6+0.02 0.373+0.03  [0.427+0.01
DIISCO 40]0.99910.0 0.048+0.0 0.953+0.01 0.831+0.03  10.845+0.0
LM_PRIOR 40]0.505+0.04 10.923+0.07 |0.966x0.01 0.895+0.03  |0.903%0.01
LM 40(1.0£0.0 0.010.0 0.571+0.0 0.305+0.0 0.345+0.0
RLM_PRIOR 40]-0.246+1.08 |1.327+0.66 |0.979%0.0 0.895+0.03 |0.869+0.02
RLM 40[0.918+0.02 ]0.372+0.03 |0.597+0.02 [0.362+0.02 ]0.426+0.01
DIISCO 60(0.999£0.0 0.049+0.0 0.947+0.01 0.802+0.04 10.842+0.0
LM_PRIOR 60[0.502+0.03  |0.91+0.05 0.961+0.01 0.878+0.02 10.9%0.0
LM 60(1.0£0.0 0.010.0 0.571+0.0 0.304+0.0 0.346+0.0
RLM_PRIOR 60[0.516+0.16  [0.886+0.15 [0.98+0.0 0.9040.01 0.859+0.01
RLM 60(0.915+0.01 0.374+0.03  10.595+0.01 0.367+0.01 0.419+0.01
DIISCO 70[0.998£0.0 0.049+0.0 0.943+0.01 0.79+0.05 0.841+0.0
LM_PRIOR 70[/0.501£0.03  |0.896+0.07 |0.945+0.03 |0.849+0.04 |0.886%0.03
LM 70]1.0£0.0 0.010.0 0.572+0.0 0.304+0.0 0.347+0.0
RLM_PRIOR 70[0.438+0.21 0.935+0.17 10.978%0.0 0.8930.01 0.863+0.01
RLM 70[0.912+0.01 0.375+0.02 10.591+0.01 0.365+0.01 0.417+0.0

Table S2: Method performance for varying number of timepoints on noisier dynamics.
Noise parameter for dynamics set by e, which is a random variable sampled from a normal distri-
bution with standard deviation of 0.5, as described in Methods. R? calculated between inferred
and ground-truth W(¢). Mean and SD across 10 iterations are shown. Model acronyms denote the
following: LM-PRIOR = Linear Model with prior. LM = Linear Model. RLM-PRIOR = Rolling
Linear Model with prior. RLM = Rolling Linear Model. Model details can be found in Methods.
Comparison metrics used are as follows: R? Y, R? W: R? value comparing predictions to ground
truth for dynamics (Y) or interactions (W). Higher is better. RMSE Y, RMSE W: Root mean
squared error for dynamics (Y) or interactions (W). Lower is better. AUC: Area under ROC curve.
Higher is better. AUPRC: Area under Precision-Recall curve. Higher is better. F1: Max F1 score.
Higher is better. AUC, AUPRC, and F1 scores calculated comparing predicted interactions to
ground truth interactions.
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Effector:Target Time post co- Hashing Hashing
Experiment CAR Ratio culture antibody 1 antibody 2 Counts
28z 1:1 24h 1 2 190
28z 1:1 12h 1 3 112
28z 1:1 4h 1 4 263
28z 1:1 2h 1 5 390
A 28z 1:1 1h 2 3 756
28z 1:1 45min 2 4 375
28z 1:1 30min 2 5 580
28z 1:1 15min 3 4 704
28z 1:1 5min 3 5 872
28z 1:1 Omin 4 5 7756
28z 1:1 20.5h 1 2 3
28z 1:1 12.5h 1 3 289
28z 1:1 8.5h 1 4 545
28z 1:1 4h 1 5 431
c 28z 1:1 2h 2 3 994
28z 1:1 1h 2 4 1065
28z 1:1 30min 2 5 1248
28z 1:1 15min 3 4 2591
28z 1:1 5min 3 5 2454
28z 1:1 Omin 4 5 4219
41BBz  1:1 20.5h 1 2 13
41BBz 1:1 12.5h 1 3 120
41BBz  1:1 8.5h 1 4 411
41BBz  1:1 4h 1 5 609
D 41BBz  1:1 2h 2 3 790
41BBz  1:1 1h 2 4 468
41BBz 11 30min 2 5 1200
41BBz  1:1 15min 3 4 2774
41BBz  1:1 5min 3 5 1890
41BBz 1:1 Omin 4 5 2924

Table S3: Experimental details for each co-culture experiment.
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B Justification of Inference Algorithm

According to the model, we are interested in computing the posterior

p(yu7Wu7Fu7Wmfo ‘ yo)-

Although, it is not possible to tractably compute or sample from this distribution, we can use
its structure to obtain a reasonable approximation. First, using the chain rule of probability, we

have:

PV Wy Fus Wo, Fo | Vo) = p(Vu | Wa, Fu, Wo, Fo, Vo) (8)
PWu | Fus Wo, Fo, Vo) (9)
P(Fu | Wo, Fo, Vo) (10)
PWo, Fo | Vo). (11)

However, based on Figure we see that in this factorization some dependencies are irrelevant.
In particular, we note that the observations ), are independent of everything else given W, and
Fo. Therefore, equation can be written as p(Yy, | Wy, Fu), that conditioned on W,, W, is
independent of everything. Hence, equation (9) can be written as p(W, | W,), and a similar
relationship holds between F,, and F,, so equation can be written as p(Fy | Fo).

Using these simplifications, we have:

P(Vuy Wu, Fus Wo, Fo | Vo) = p(Vu | Was Fu) DWu | Wo) D(Fu | Fo) DWo, Fo | Vo). (12)

Consequently, if we can obtain a good approximation to the last term, and the first three
terms on the right hand side are tractable to compute, we can obtain a good approximation to
the full posterior by performing ancestral sampling where we first sample from our approximation
pWo, Fo | Vo) and then condition p(Y,, | W, Fu), P(Wu | Wa), and p(Fy | Fo). In the next sections,
we describe how we obtain an approximation to to p(W,, F, | V,) and provide a brief description

of how we perform ancestral sampling.
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C Inference Algorithm Details

The simplified inference algorithm is shown in Algorithm

C.1 Ancestral Sampling.

To perform ancestral sampling, we execute the following steps:
1. Sample W, and F, from q,(W,, Fo).

2. Compute the posterior distribution p(W,, | W,) using the samples from step 1 using algorithm

2.1 from (Rasmussen and 1., 2008) and sample W, from it.

3. Compute the posterior distribution p(F, | F,) using the samples from step 1 using algorithm

2.1 from (Rasmussen and .| 2008) and sample F,, from it.
4. Compute the posterior distribution p()y, | Wi, Fu) using equation and sample ), from it.
5. Return YV, Wy, Fu, W,, and F,.

In practice, since steps 2 and 3 are computationally expensive due to the computation of the
posterior of a Gaussian Process, we sample p(W,, | W,) and p(F, | F,) multiple times per sampling

of W, and F, respectively.

C.1.1 Additional Practical Considerations.

During training, we use early stopping by defining an epoch as 1000 iterations of the optimization
algorithm and stopping when the ELBO has not increased for 10 epochs. For hyper-parameter
selection, we follow the recommendations detailed in Supplementary Information Section [D but set
a hyper-prior on the length scale of W (t) to allow for flexibility in the model. To infer this value we
augment the variational family above with an additional term gy, (7w) = d(exp(¢r,)) where § is
the delta distribution. As further discussed in Supplementary Information Section [D] we emphasize
that choosing these hyper-parameters is crucial for the model to adequately perform its function as

incorrectly setting these values can lead to degenerate solutions with non-identifiability.
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Algorithm 2 Simplified Inference Algorithm used by DIISCO

10:
11:
12:
13:
14:
15:
16:
17:

1
2
3
4:
5:
6
7
8

2

Input: Set of time points 7, Number of latent features K, Noise covariance o .

: Initialize ¢.
: while not converged do

for i € [New,o) do
€; D
end for
¢ < ¢ — = YN Vyhy(2(ei, )

: end while

for s € {1,..., Nsamples} do
(W2, F2) ~ 45(Wo, Fo)
y{j ~ p(yu|W1i> ]:5)
WS ~ p(Wy|W2) > Using Algorithm 2.1 in (Rasmussen and I., 2008))
F5 o~ p(Ful F?) > Using Algorithm 2.1 (Rasmussen and 1., 2008)
Ya ~ p(VulWy, F2)

end for

Return {(Wga fga WZ’ W{j? yi)}se[Nsamples]

D Hyper-parameter Selection Guide

Choosing the adequate hyper-parameters is crucial for the success of the model. In particular, a

suboptimal selection of hyper-parameters can lead to non-identifiability.

In this section, we provide a summary of the most relevant hyper-parameters of the model, their

interpretation, and suggestions and reasoning for how to set them.

Table S4: Hyperparameters and their Descriptions

Symbol Description

Tf Lengthscale for f, controls how flexible is the prior over the latent features.

Tw Lengthscale for W, controls how flexible is the matrix and how much information is shared
across time points.

vy Variance for f, controls the magnitude of the latent features.

Vw Variance for W, controls the magnitude of W matrix

oy Standard deviation for f, controls the amount of non informative noise we believe is in the
latent features.

Ow Standard deviation for W, controls the amount of non informative noise we believe is in
W and serves mostly as a stability parameter during optimization.

oy Standard deviation for y, controls the amount of noise the model assumes is in the data.

Table contains a summary of the hyper-parameters used by the model. We will describe
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below the role that each of these hyper-parameters play and how to set them. We will go from most

important one to least important one:

1. Lengthscale 7,: This is by far the most important parameter of the model. It controls the

flexibility and smoothness of the W matrix which determines both how much information is
used to inform the value at a predicted time point and how quickly this value changes. Ideally,
one would like to set it from domain knowledge but it can be set with intuition derived from
the data as follows. Intuitively, two points a distance of a length-scale away have correlation
of ~ 0.6 ~ 1/2 where this correlation is measured with respect to random function draws. A
good rule of thumb is that the length scale should be roughly at least as big as the maximum
distance in the data between the largest and the smallest of any j sequential data points,

where j is the largest number of non-zero entries in a row of A. Mathematically,
Tw = max{\tiﬂ — tl'| NS {1 - ,tn,j}}

where

j:max{ZAi,k/:iel,...,K}
k/

Consequently, the sampling frequency of the data should be such that this length-scale is
adequate to model the flexibility we expect in the W matrix. This is not a rule applicable
everywhere but it adheres to the intuition that our model is performing a form of approximate
local linear regression and this is the minimum number of points we would need for such a
scheme to work approximately, taking into account the fact that a lot of information is being

shared.

. Lengthscale 7;: This plays the normal role of the length-scale in traditional Gaussian Processes

and can be set so that the prior matches the intuition of the user about the latent functions,
or using one of the traditional methods implemented in any package for setting this hyper-

parameter.

. Variances vy, v,: These values play the same role as the variance in a standard Bayesian

linear regression and can determine the magnitude of the functions drawn. In our case when
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standardizing we set them to values slightly above one for f and higher for v, to indicate
a weak prior. As vy affects the covariance, it should be handled jointly with 7,, to express

beliefs about the flexibility of the functions.

4. Noise oy and o0y: Indicate how much noise we believe is in our observations. The higher the
noise, the more points the model will need to change the latent distribution. In our case, we

used values lower than one to indicate low noise in our observations.

5. Noise 0,: In our case, this is mostly an optimization stability parameter that can be set very
small and is only useful to avoid numerical problems. We set it to 0.001 in our experiments

and can be left to this default value.

E Assumptions for Application to Cell Type Proportions

Our model is designed to work equally with proportions as well as raw count data. However, one
must have particular care when working with proportions to make sure that the assumptions of the
model are met.

As detailed by Aitchison (Aitchison, 2003), compositional data, i.e data points that lie on the
simplex, present a particular challenge when thinking about their correlation structure and what it
implies about the real biological process.

In particular, if we assume that our proportions y(t) € AX~! emerge from some real process with
some absolute number of counts c(t) € ZIZ{O and it is the case that ), ¢x(t), i.e the total number
of counts, varies widely through time then it is possible that the correlations that the model learns
will not be meaningful. This is a limitation not only for this model but also for any model that
only uses proportions to understand the relationship between the variables. If however, it is the
case that ), c¢x(t) = C for all ¢ the inferences made by the model will be valid.

We demonstrate this issue with the following example. Assume that we have two clusters with
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the following dynamics:

c1(t) =t (13)

ea(t) = ter (t) (14)

e3(t) =t (15)

And with proportions

D) = s (16

) = s (17

O e (18)

(19

Clearly Y, cr(t) = t3+t>+t is not constant. If one were working with raw values, we would like
to say that c1, co positively interact in that they increase simultaneously. However, when considering
proportions, the interpretation is different because now as ys is increasing, y; is decreasing which
would suggest a negative interaction.

We thus advise using DIISCO in settings where the total number of cells across time points does

not have extreme variability or to drop low-quality samples.

F Complexity: Further details

To determine the computational complexity of DIISCO we need to take into account the two
steps in the algorithm: Approximate inference for estimating P(W,, F,|),), and exact inference
for P(Vu, Wu, FulFo, Wo). Below we describe the reasoning for the bounds provided in text for

each of these steps.

F.1 Computing

We approximate P(W,, F,,Y,) using stochastic variational inference (SVI). Each gradient step in

SVI requires computing the estimate of the ELBO and backpropagating through it. In our case,

o3



974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

this amounts to an estimate of the term.

ELBO = E%(WO’]:O)[IngQ(yO, W, Fo) — log ‘I<Z>(W07-/r0)] (20)

where 6 represents any hyper-parameters we might be simultaneously optimizing and ¢ represents
the parameters of the variational family. In the algorithm, we obtain an estimate of this quantity
by sampling from ¢, computing the log probability of the model using this sample (the first term
in Eq , and computing the entropy of ¢ analytically (the second term in Eq . Therefore,
for computing the big O complexity we need to take three computations into account: 1) The
complexity of computing the log probability 2) The complexity of computing the expectation of the
q term and 3) The complexity of sampling. We describe these steps in detail for both variational
families proposed in the paper.

As a reminder to the reader, the log probability allows the following factorization:

HP<fk<To>>] 1P () | T P ()1 Fo W)
k

k&' kit

where the terms fi(7,) and Wy, 1/(7,) denote that the coordinates fi, and W, js are evaluated at the
time points in the set 7,, and where the first two terms are made up of ¢ dimensional GPs and the

last term is a one-dimensional Gaussian distribution. We will use this factorization throughout.

Complexity of Fully Factorized Family

e Computing the log probability: First, we look at computing the log probability — the
first term in the ELBO. The terms P(f;(7,) and P(Wj,1/(7,)) are Gaussian processes of one
dimensions but with |7,| timepoints. Computing this is O(|7,|?) because it requires inverting
the covariance matrix. This can be cached so that we do it only once for all iterations
but if we are computing the gradient with respect to the hyper-parameters as we do in our
implementation, we have do it again for every iteration. We have to do this K times for

P(f(T5)) and K? times for P(Wj 1 (T5)).

To compute p(yx ()| f(To), W(T,)) we need to multiply W () f(t) for every ¢ (which is O(|T,|K?))

and have to compute the log probability which is in total |7,/ K O(1) . Hence the complexity
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of the forward computation is
KO(|T,]*) + K*O(ITo|*) + O(ITo| K?) + O(ITo| K) = O| T’ K?)

In order, these terms correspond to computing P(fi(75), P(Wy i (T5)), W(t) f(t) and the y

terms.

e Computing the expectation of the ¢ term: To handle the ¢ term we decompose it as
the entropy of (K + K?)|T,| one-dimensional Gaussian terms. This is O(1) per term so the

complexity is O(|T5|K?)

e Sampling: Sampling a one dimensional normal distribution is O(1). Therefore, as we have

|To|(K + K?) variables to sample from the complexity is O(|To| K?).

e Total: Adding all of these together we conclude that the total complexity of the forward

computation is O(K?|7,|?) per gradient step.

Complexity of Partially Factorized Family If we use the partially factorized family the num-
ber of parameters increases due to the covariance matrices. Each term now takes O(|7T,|?) space
rather than O(|7,|) as before. This is a significant increase in memory that makes this family slower
slower. However, the complexity is the same, although with worse constant factors. We detail the

reasoning below.

e Computing the log probability: This is exactly the same as before.

e Computing the expectation of the ¢ term: We now decompose E,[logq] into K + K2
terms each corresponding to a gaussian process. Each of these terms takes usually O(|7,|%) to

compute as the entropy is given by
1 T
—3 In|X| + 5(1 + In(27))

where ¥ is the covariance matrix. However, computing the determinant can be done in O(|7,|)

time with the cholesky decomposition. Therefore, computing the entropy takes O(|T,|K?)
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e Sampling: For the sampling step we have to sample K + K? gaussian processes. This is
usually O(|75|?) but we can use the cholesky decomposition to make it more efficient. In
detail, we have to sample (K2 + K)|T,| standard normal distributions, and then use the
cholesky decomposition alongside the trick that if X is standard normal LX + p is normal
with mean g and covariance LLT. Putting this together we end up with a complexity of

O(|T,|?K?), which is an extra factor of 7.

e Total: The total complexity of the forward computation is just as bad as before. However,

memory is much worse and the sampling becomes much less efficient.

F.2 Computing

Computing the term P(Yy, Wy, FulFo, W,) involves sampling F,, W, from the distribution above,
fitting one GP per coordinate and then drawing samples from each GP. We ignore the initial sampling
step because we accounted for it above an focus on the last two here.

First, fitting one GP per coordinate is O(|75|?) and there are K2+ K such coordinates, therefore
the total complexity of the initial step is O(|To|>K?). After fitting each GP, evaluating a new point
has complexity O(|7,|?). Because we want to evaluate |7, | points for each of the coordinates we get

a bound for this step O(K2T?|T,|). Putting all of this together, one draw of V,,, W,, F, is

O(K (1T + Tall o))

In practice, we repeat the second step multiple times to avoid paying the large |7,|® term.
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