
Supplementary Infomation863

A Supplementary Figures864

Figure S1: Experimental details for CAR-T. (A) Structure of CAR-T protein. Experiments
A,B, and C used the CD28 protein while experiment D used 41BB. (B) Flow cytometry plot showing
CD19 staining (blue) versus isotype control (red) in MEC1 cells. (C) Co-culture set up in 96 well
plate. (D) Demonstrated dose-response cytotoxicity for different ratios of effector:target cells. E.
Representative gating strategy for isolating CAR-T cells for use in experiment
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Figure S2: DIISCO performance on additional replicate experiments (A). Learned pro-
portions from DIISCO for experiment A. Dots represent calculated proportions at each time point,
line represents mean prediction and shaded region depicts 85% percentile confidence region. (B)
Learned W over time for experiment A. (C) Inferred proportions from DIISCO for experiment D.
(D) Learned W over time for experiment D. (E-F) W dynamics over time for interactions between
Exhausted-Activated T cells (E) and Exhausted MEC1 cells (F) across experiments A, C, D. (G)
Average W interaction score across all experiments.
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Figure S3: Confidence intervals for W predictions in Experiment C. All non-zero inter-
actions are shown, blue line depicts mean predicted interaction over time while the shaded region
depicts the 85% confidence interval.
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Figure S4: DIISCO robustness to downsampling. (A) DIISCO predicted cell type propor-
tions when downsampling and removing 90% of cells from the data. (B) DIISCO predicted cell
type proportions when downsampling and removing 50% of time points. (C) Average W inferred
interaction for varying numbers of time points. (D) Exhausted-Activated T cell interaction over
time for varying downsampled time points. (E) Exhausted T cell - MEC1 interaction over time for
varying downsampled time points.
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Figure S5: DIISCO robustness to clustering method. (A) DIISCO predicted cell type dy-
namics on individual Phenograph clusters (without grouping into metaclusters). Cells colored by
metacluster cell type assignment. (B) Average interaction between all cluster pairs. (C) Interaction
over time. (D) Predicted cell type dynamics when applying DIISCO to individual Leiden clusters.
Cells colored by cell type assignment. (E) Average interaction between all cluster pairs. (F) Inter-
action over time.
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Figure S6: Adjusting binarization threshold to compensate for incomplete R-L
databases. (A) Average predicted interactions from OmnipathDB when 30% of R-L interac-
tions are masked from database. Red line indicates binarization threshold. (B) Average predicted
interactions from OmnipathDB when 70% of R-L interactions are masked from database. Red line
indicates binarization threshold. (C) Prior matrix used in DIISCO model, generated based on user
defined thresholds. Both A and B threshold choices, as indicated by the red lines, lead to the same
interaction prior matrix.
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Model # timepoints R2_Y RMSE_Y AUC AUPRC F1
DIISCO 10 0.999±0.0 0.03±0.0 0.975±0.02 0.922±0.08 0.855±0.03
LM_PRIOR 10 0.687±0.17 0.577±0.26 0.965±0.03 0.888±0.08 0.908±0.05
LM 10 1.0±0.0 0.0±0.0 0.572±0.01 0.304±0.01 0.347±0.01
RLM_PRIOR 10 0.803±0.13 0.439±0.15 0.981±0.01 0.904±0.07 0.87±0.05
RLM 10 0.951±0.03 0.211±0.09 0.631±0.02 0.445±0.03 0.445±0.03
DIISCO 20 0.999±0.0 0.034±0.0 0.977±0.01 0.931±0.03 0.854±0.01
LM_PRIOR 20 0.601±0.08 0.635±0.13 0.951±0.03 0.872±0.06 0.888±0.03
LM 20 1.0±0.0 0.0±0.0 0.571±0.0 0.305±0.0 0.346±0.0
RLM_PRIOR 20 0.903±0.05 0.302±0.08 0.983±0.01 0.923±0.03 0.886±0.02
RLM 20 0.976±0.01 0.148±0.04 0.613±0.03 0.421±0.03 0.437±0.02
DIISCO 30 0.999±0.0 0.039±0.0 0.982±0.01 0.946±0.02 0.871±0.02
LM_PRIOR 30 0.54±0.04 0.726±0.06 0.964±0.02 0.9±0.04 0.9±0.01
LM 30 1.0±0.0 0.0±0.0 0.571±0.0 0.304±0.0 0.346±0.0
RLM_PRIOR 30 0.928±0.05 0.273±0.1 0.983±0.0 0.917±0.03 0.896±0.02
RLM 30 0.989±0.01 0.11±0.02 0.635±0.02 0.417±0.03 0.442±0.01
DIISCO 40 0.998±0.0 0.041±0.0 0.982±0.0 0.952±0.01 0.859±0.01
LM_PRIOR 40 0.54±0.05 0.726±0.07 0.973±0.01 0.917±0.03 0.906±0.01
LM 40 1.0±0.0 0.0±0.0 0.569±0.0 0.306±0.0 0.344±0.0
RLM_PRIOR 40 0.946±0.03 0.236±0.06 0.983±0.01 0.913±0.04 0.9±0.01
RLM 40 0.989±0.01 0.107±0.02 0.617±0.02 0.4±0.02 0.433±0.01
DIISCO 60 0.998±0.0 0.042±0.0 0.981±0.0 0.947±0.01 0.859±0.01
LM_PRIOR 60 0.517±0.03 0.748±0.06 0.949±0.03 0.88±0.03 0.88±0.03
LM 60 1.0±0.0 0.0±0.0 0.571±0.0 0.305±0.0 0.346±0.0
RLM_PRIOR 60 0.972±0.01 0.176±0.02 0.983±0.0 0.918±0.02 0.892±0.01
RLM 60 0.993±0.0 0.087±0.01 0.627±0.02 0.409±0.02 0.437±0.01
DIISCO 70 0.998±0.0 0.043±0.0 0.981±0.0 0.946±0.02 0.863±0.02
LM_PRIOR 70 0.545±0.03 0.705±0.05 0.968±0.02 0.915±0.03 0.894±0.02
LM 70 1.0±0.0 0.0±0.0 0.571±0.0 0.304±0.0 0.346±0.0
RLM_PRIOR 70 0.98±0.0 0.149±0.01 0.983±0.0 0.915±0.01 0.889±0.01
RLM 70 0.994±0.0 0.08±0.0 0.627±0.01 0.414±0.01 0.436±0.01

Table S1: Method performance for varying number of timepoints. Noise parameter for
dynamics set by ✏, which is a random variable sampled from a normal distribution with standard
deviation of 0.1, as described in Methods. R2 calculated between inferred and ground-truth W (t).
Mean and SD across 10 iterations are shown. Model acronyms denote the following: LM-PRIOR =
Linear Model with prior. LM = Linear Model. RLM-PRIOR = Rolling Linear Model with prior.
RLM = Rolling Linear Model. Model details can be found in Methods. Comparison metrics used
are as follows: R2_Y , R2_W : R2 value comparing predictions to ground truth for dynamics (Y) or
interactions (W). Higher is better. RMSE_Y , RMSE_W : Root mean squared error for dynamics
(Y) or interactions (W). Lower is better. AUC: Area under ROC curve. Higher is better. AUPRC:
Area under Precision-Recall curve. Higher is better. F1: Max F1 score. Higher is better. AUC,
AUPRC, and F1 scores calculated comparing predicted interactions to ground truth interactions.
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Model # timepoints R2_Y RMSE_Y AUC AUPRC F1
DIISCO 10 0.999±0.0 0.039±0.01 0.936±0.01 0.762±0.05 0.849±0.02
LM_PRIOR 10 0.671±0.13 0.734±0.23 0.958±0.02 0.846±0.08 0.907±0.02
LM 10 1.0±0.0 0.0±0.0 0.569±0.01 0.306±0.01 0.344±0.01
RLM_PRIOR 10 0.374±0.55 0.954±0.45 0.982±0.01 0.924±0.05 0.897±0.04
RLM 10 0.848±0.12 0.481±0.19 0.597±0.04 0.397±0.05 0.44±0.02
DIISCO 20 0.999±0.0 0.045±0.0 0.938±0.01 0.755±0.05 0.847±0.01
LM_PRIOR 20 0.506±0.07 0.886±0.09 0.962±0.01 0.876±0.06 0.905±0.01
LM 20 1.0±0.0 0.0±0.0 0.57±0.01 0.306±0.0 0.344±0.01
RLM_PRIOR 20 -0.002±0.84 1.163±0.39 0.978±0.0 0.896±0.04 0.863±0.02
RLM 20 0.895±0.04 0.404±0.08 0.592±0.03 0.377±0.04 0.427±0.01
DIISCO 30 0.999±0.0 0.046±0.0 0.947±0.01 0.804±0.06 0.843±0.01
LM_PRIOR 30 0.517±0.05 0.874±0.1 0.963±0.01 0.885±0.03 0.901±0.01
LM 30 1.0±0.0 0.0±0.0 0.571±0.0 0.304±0.0 0.346±0.0
RLM_PRIOR 30 0.275±0.75 0.988±0.44 0.98±0.0 0.902±0.02 0.87±0.02
RLM 30 0.889±0.03 0.413±0.05 0.6±0.02 0.373±0.03 0.427±0.01
DIISCO 40 0.999±0.0 0.048±0.0 0.953±0.01 0.831±0.03 0.845±0.0
LM_PRIOR 40 0.505±0.04 0.923±0.07 0.966±0.01 0.895±0.03 0.903±0.01
LM 40 1.0±0.0 0.0±0.0 0.571±0.0 0.305±0.0 0.345±0.0
RLM_PRIOR 40 -0.246±1.08 1.327±0.66 0.979±0.0 0.895±0.03 0.869±0.02
RLM 40 0.918±0.02 0.372±0.03 0.597±0.02 0.362±0.02 0.426±0.01
DIISCO 60 0.999±0.0 0.049±0.0 0.947±0.01 0.802±0.04 0.842±0.0
LM_PRIOR 60 0.502±0.03 0.91±0.05 0.961±0.01 0.878±0.02 0.9±0.0
LM 60 1.0±0.0 0.0±0.0 0.571±0.0 0.304±0.0 0.346±0.0
RLM_PRIOR 60 0.516±0.16 0.886±0.15 0.98±0.0 0.904±0.01 0.859±0.01
RLM 60 0.915±0.01 0.374±0.03 0.595±0.01 0.367±0.01 0.419±0.01
DIISCO 70 0.998±0.0 0.049±0.0 0.943±0.01 0.79±0.05 0.841±0.0
LM_PRIOR 70 0.501±0.03 0.896±0.07 0.945±0.03 0.849±0.04 0.886±0.03
LM 70 1.0±0.0 0.0±0.0 0.572±0.0 0.304±0.0 0.347±0.0
RLM_PRIOR 70 0.438±0.21 0.935±0.17 0.978±0.0 0.893±0.01 0.863±0.01
RLM 70 0.912±0.01 0.375±0.02 0.591±0.01 0.365±0.01 0.417±0.0

Table S2: Method performance for varying number of timepoints on noisier dynamics.
Noise parameter for dynamics set by ✏, which is a random variable sampled from a normal distri-
bution with standard deviation of 0.5, as described in Methods. R

2 calculated between inferred
and ground-truth W (t). Mean and SD across 10 iterations are shown. Model acronyms denote the
following: LM-PRIOR = Linear Model with prior. LM = Linear Model. RLM-PRIOR = Rolling
Linear Model with prior. RLM = Rolling Linear Model. Model details can be found in Methods.
Comparison metrics used are as follows: R2_Y , R2_W : R2 value comparing predictions to ground
truth for dynamics (Y) or interactions (W). Higher is better. RMSE_Y , RMSE_W : Root mean
squared error for dynamics (Y) or interactions (W). Lower is better. AUC: Area under ROC curve.
Higher is better. AUPRC: Area under Precision-Recall curve. Higher is better. F1: Max F1 score.
Higher is better. AUC, AUPRC, and F1 scores calculated comparing predicted interactions to
ground truth interactions.
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Experiment CAR
Effector:Target 
Ratio

Time post co-
culture

Hashing 
antibody 1

Hashing 
antibody 2 Counts

28z 1:1 24h 1 2 190
28z 1:1 12h 1 3 112
28z 1:1 4h 1 4 263
28z 1:1 2h 1 5 390
28z 1:1 1h 2 3 756
28z 1:1 45min 2 4 375
28z 1:1 30min 2 5 580
28z 1:1 15min 3 4 704
28z 1:1 5min 3 5 872
28z 1:1 0min 4 5 7756
28z 1:1 20.5h 1 2 3
28z 1:1 12.5h 1 3 289
28z 1:1 8.5h 1 4 545
28z 1:1 4h 1 5 431
28z 1:1 2h 2 3 994
28z 1:1 1h 2 4 1065
28z 1:1 30min 2 5 1248
28z 1:1 15min 3 4 2591
28z 1:1 5min 3 5 2454
28z 1:1 0min 4 5 4219
41BBz 1:1 20.5h 1 2 13
41BBz 1:1 12.5h 1 3 120
41BBz 1:1 8.5h 1 4 411
41BBz 1:1 4h 1 5 609
41BBz 1:1 2h 2 3 790
41BBz 1:1 1h 2 4 468
41BBz 1:1 30min 2 5 1200
41BBz 1:1 15min 3 4 2774
41BBz 1:1 5min 3 5 1890
41BBz 1:1 0min 4 5 2924

A

C

D

Table S3: Experimental details for each co-culture experiment.
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B Justification of Inference Algorithm865

According to the model, we are interested in computing the posterior866

p(Yu,Wu,Fu,Wo,Fo | Yo).

Although, it is not possible to tractably compute or sample from this distribution, we can use867

its structure to obtain a reasonable approximation. First, using the chain rule of probability, we868

have:869

p(Yu,Wu,Fu,Wo,Fo | Yo) = p(Yu | Wu,Fu,Wo,Fo,Yo) (8)

p(Wu | Fu,Wo,Fo,Yo) (9)

p(Fu | Wo,Fo,Yo) (10)

p(Wo,Fo | Yo). (11)

However, based on Figure (1) we see that in this factorization some dependencies are irrelevant.870

In particular, we note that the observations Yo are independent of everything else given Wo and871

Fo. Therefore, equation (8) can be written as p(Yu | Wu,Fu), that conditioned on Wo, Wu is872

independent of everything. Hence, equation (9) can be written as p(Wu | Wo), and a similar873

relationship holds between Fu and Fo, so equation (10) can be written as p(Fu | Fo).874

Using these simplifications, we have:875

p(Yu,Wu,Fu,Wo,Fo | Yo) = p(Yu | Wu,Fu) p(Wu | Wo) p(Fu | Fo) p(Wo,Fo | Yo). (12)

Consequently, if we can obtain a good approximation to the last term, and the first three876

terms on the right hand side are tractable to compute, we can obtain a good approximation to877

the full posterior by performing ancestral sampling where we first sample from our approximation878

p(Wo,Fo | Yo) and then condition p(Yu | Wu,Fu), p(Wu | Wo), and p(Fu | Fo). In the next sections,879

we describe how we obtain an approximation to to p(Wo,Fo | Yo) and provide a brief description880

of how we perform ancestral sampling.881
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C Inference Algorithm Details882

The simplified inference algorithm is shown in Algorithm 2.883

C.1 Ancestral Sampling.884

To perform ancestral sampling, we execute the following steps:885

1. Sample Wo and Fo from q�(Wo,Fo).886

2. Compute the posterior distribution p(Wu | Wo) using the samples from step 1 using algorithm887

2.1 from (Rasmussen and I., 2008) and sample Wu from it.888

3. Compute the posterior distribution p(Fu | Fo) using the samples from step 1 using algorithm889

2.1 from (Rasmussen and I., 2008) and sample Fu from it.890

4. Compute the posterior distribution p(Yu | Wu,Fu) using equation (1) and sample Yu from it.891

5. Return Yu, Wu, Fu, Wo, and Fo.892

In practice, since steps 2 and 3 are computationally expensive due to the computation of the893

posterior of a Gaussian Process, we sample p(Wu | Wo) and p(Fu | Fo) multiple times per sampling894

of Wo and Fo respectively.895

C.1.1 Additional Practical Considerations.896

During training, we use early stopping by defining an epoch as 1000 iterations of the optimization897

algorithm and stopping when the ELBO has not increased for 10 epochs. For hyper-parameter898

selection, we follow the recommendations detailed in Supplementary Information Section D but set899

a hyper-prior on the length scale of W (t) to allow for flexibility in the model. To infer this value we900

augment the variational family above with an additional term q�⌧w
(⌧w) = �(exp(�⌧w)) where � is901

the delta distribution. As further discussed in Supplementary Information Section D we emphasize902

that choosing these hyper-parameters is crucial for the model to adequately perform its function as903

incorrectly setting these values can lead to degenerate solutions with non-identifiability.904
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Algorithm 2 Simplified Inference Algorithm used by DIISCO
1: Input: Set of time points T , Number of latent features K, Noise covariance �

2
y .

2: Initialize �.
3: while not converged do
4: for i 2 [Nelbo] do
5: ✏i ⇠ D
6: end for
7: � �� ↵

1
Nelbo

PNelbo
i=1 r�h�(z(✏i,�))

8: end while

9: for s 2 {1, . . . , Nsamples} do
10: (Ws

o ,Fs
o ) ⇠ q�(Wo,Fo)

11: Ys
u ⇠ p(Yu|Ws

u,Fs
u)

12: Ws
u ⇠ p(Wu|Ws

o) . Using Algorithm 2.1 in (Rasmussen and I., 2008)
13: Fs

u ⇠ p(Fu|Fs
o ) . Using Algorithm 2.1 (Rasmussen and I., 2008)

14: Ys
u ⇠ p(Yu|Ws

u,Fs
u)

15: end for
16:
17: Return {(Ws

o ,Fs
o ,Ws

u,Ws
u,Ys

u)}s2[Nsamples]

D Hyper-parameter Selection Guide905

Choosing the adequate hyper-parameters is crucial for the success of the model. In particular, a906

suboptimal selection of hyper-parameters can lead to non-identifiability.907

In this section, we provide a summary of the most relevant hyper-parameters of the model, their908

interpretation, and suggestions and reasoning for how to set them.909

Table S4: Hyperparameters and their Descriptions
Symbol Description

⌧f Lengthscale for f , controls how flexible is the prior over the latent features.
⌧w Lengthscale for W , controls how flexible is the matrix and how much information is shared

across time points.
vf Variance for f , controls the magnitude of the latent features.
vw Variance for W , controls the magnitude of W matrix
�f Standard deviation for f , controls the amount of non informative noise we believe is in the

latent features.
�w Standard deviation for W , controls the amount of non informative noise we believe is in

W and serves mostly as a stability parameter during optimization.
�y Standard deviation for y, controls the amount of noise the model assumes is in the data.

Table S4 contains a summary of the hyper-parameters used by the model. We will describe910
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below the role that each of these hyper-parameters play and how to set them. We will go from most911

important one to least important one:912

1. Lengthscale ⌧w: This is by far the most important parameter of the model. It controls the913

flexibility and smoothness of the W matrix which determines both how much information is914

used to inform the value at a predicted time point and how quickly this value changes. Ideally,915

one would like to set it from domain knowledge but it can be set with intuition derived from916

the data as follows. Intuitively, two points a distance of a length-scale away have correlation917

of ⇡ 0.6 ⇡ 1/2 where this correlation is measured with respect to random function draws. A918

good rule of thumb is that the length scale should be roughly at least as big as the maximum919

distance in the data between the largest and the smallest of any j sequential data points,920

where j is the largest number of non-zero entries in a row of ⇤. Mathematically,921

⌧w � max{|ti+j � ti| : i 2 {1 . . . , tn�j}}

where922

j = max

(
X

k0

⇤i,k0 : i 2 1, . . . ,K

)

Consequently, the sampling frequency of the data should be such that this length-scale is923

adequate to model the flexibility we expect in the W matrix. This is not a rule applicable924

everywhere but it adheres to the intuition that our model is performing a form of approximate925

local linear regression and this is the minimum number of points we would need for such a926

scheme to work approximately, taking into account the fact that a lot of information is being927

shared.928

2. Lengthscale ⌧f : This plays the normal role of the length-scale in traditional Gaussian Processes929

and can be set so that the prior matches the intuition of the user about the latent functions,930

or using one of the traditional methods implemented in any package for setting this hyper-931

parameter.932

3. Variances vf , vw: These values play the same role as the variance in a standard Bayesian933

linear regression and can determine the magnitude of the functions drawn. In our case when934

51



standardizing we set them to values slightly above one for f and higher for vw to indicate935

a weak prior. As vf affects the covariance, it should be handled jointly with ⌧w to express936

beliefs about the flexibility of the functions.937

4. Noise �f and �y: Indicate how much noise we believe is in our observations. The higher the938

noise, the more points the model will need to change the latent distribution. In our case, we939

used values lower than one to indicate low noise in our observations.940

5. Noise �w: In our case, this is mostly an optimization stability parameter that can be set very941

small and is only useful to avoid numerical problems. We set it to 0.001 in our experiments942

and can be left to this default value.943

E Assumptions for Application to Cell Type Proportions944

Our model is designed to work equally with proportions as well as raw count data. However, one945

must have particular care when working with proportions to make sure that the assumptions of the946

model are met.947

As detailed by Aitchison (Aitchison, 2003), compositional data, i.e data points that lie on the948

simplex, present a particular challenge when thinking about their correlation structure and what it949

implies about the real biological process.950

In particular, if we assume that our proportions y(t) 2 �K�1 emerge from some real process with951

some absolute number of counts c(t) 2 ZK
�0 and it is the case that

P
k ck(t), i.e the total number952

of counts, varies widely through time then it is possible that the correlations that the model learns953

will not be meaningful. This is a limitation not only for this model but also for any model that954

only uses proportions to understand the relationship between the variables. If however, it is the955

case that
P

k ck(t) ⇡ C for all t the inferences made by the model will be valid.956

We demonstrate this issue with the following example. Assume that we have two clusters with957
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the following dynamics:958

c1(t) = t
2 (13)

c2(t) = tc1(t) (14)

c3(t) = t (15)

And with proportions959

y1(t) =
t
2

t3 + t2 + t
(16)

y2(t) =
t
3

t3 + t2 + t
(17)

y3(t) =
t

t3 + t2 + t
(18)

(19)

Clearly
P

k ck(t) = t
3+ t

2+ t is not constant. If one were working with raw values, we would like960

to say that c1, c2 positively interact in that they increase simultaneously. However, when considering961

proportions, the interpretation is different because now as y2 is increasing, y1 is decreasing which962

would suggest a negative interaction.963

We thus advise using DIISCO in settings where the total number of cells across time points does964

not have extreme variability or to drop low-quality samples.965

F Complexity: Further details966

To determine the computational complexity of DIISCO we need to take into account the two967

steps in the algorithm: Approximate inference for estimating P (Wo,Fo|Yo), and exact inference968

for P (Yu,Wu,Fu|Fo,Wo). Below we describe the reasoning for the bounds provided in text for969

each of these steps.970

F.1 Computing971

We approximate P (Wo,Fo,Yo) using stochastic variational inference (SVI). Each gradient step in972

SVI requires computing the estimate of the ELBO and backpropagating through it. In our case,973
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this amounts to an estimate of the term.974

ELBO = Eq�(Wo,Fo)[log p✓(Yo,Wo,Fo)� log q�(Wo,Fo)] (20)

where ✓ represents any hyper-parameters we might be simultaneously optimizing and � represents975

the parameters of the variational family. In the algorithm, we obtain an estimate of this quantity976

by sampling from q, computing the log probability of the model using this sample (the first term977

in Eq 20), and computing the entropy of q analytically (the second term in Eq 20). Therefore,978

for computing the big O complexity we need to take three computations into account: 1) The979

complexity of computing the log probability 2) The complexity of computing the expectation of the980

q term and 3) The complexity of sampling. We describe these steps in detail for both variational981

families proposed in the paper.982

As a reminder to the reader, the log probability allows the following factorization:983

"
Y

k

P (fk(To))
#2

4
Y

k,k0

P (Wk,k0(To))

3

5

2

4
Y

k,t

p(yk(t)|Fo,Wo)

3

5

where the terms fk(To) and Wk,k0(To) denote that the coordinates fk and Wk,k0 are evaluated at the984

time points in the set To, and where the first two terms are made up of t dimensional GPs and the985

last term is a one-dimensional Gaussian distribution. We will use this factorization throughout.986

Complexity of Fully Factorized Family987

• Computing the log probability: First, we look at computing the log probability – the988

first term in the ELBO. The terms P (fk(To) and P (Wk,k0(To)) are Gaussian processes of one989

dimensions but with |To| timepoints. Computing this is O(|To|3) because it requires inverting990

the covariance matrix. This can be cached so that we do it only once for all iterations991

but if we are computing the gradient with respect to the hyper-parameters as we do in our992

implementation, we have do it again for every iteration. We have to do this K times for993

P (fk(To)) and K
2 times for P (Wk,k0(To)).994

To compute p(yk(t)|f(To),W (To)) we need to multiply W (t)f(t) for every t (which is O(|To|K2))995

and have to compute the log probability which is in total |To|K O(1) . Hence the complexity996
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of the forward computation is997

KO(|To|3) +K
2
O(|To|3) +O(|To|K2) +O(|To|K) = O|To|3K2)

In order, these terms correspond to computing P (fk(To), P (Wk,k0(To)),W (t)f(t) and the y998

terms.999

• Computing the expectation of the q term: To handle the q term we decompose it as1000

the entropy of (K + K
2)|To| one-dimensional Gaussian terms. This is O(1) per term so the1001

complexity is O(|To|K2)1002

• Sampling: Sampling a one dimensional normal distribution is O(1). Therefore, as we have1003

|To|(K +K
2) variables to sample from the complexity is O(|To|K2).1004

• Total: Adding all of these together we conclude that the total complexity of the forward1005

computation is O(K2|To|3) per gradient step.1006

Complexity of Partially Factorized Family If we use the partially factorized family the num-1007

ber of parameters increases due to the covariance matrices. Each term now takes O(|To|2) space1008

rather than O(|To|) as before. This is a significant increase in memory that makes this family slower1009

slower. However, the complexity is the same, although with worse constant factors. We detail the1010

reasoning below.1011

• Computing the log probability: This is exactly the same as before.1012

• Computing the expectation of the q term: We now decompose Eq[log q] into K + K
2

1013

terms each corresponding to a gaussian process. Each of these terms takes usually O(|To|3) to1014

compute as the entropy is given by1015

�1

2
ln |⌃|+ T

2
(1 + ln(2⇡))

where ⌃ is the covariance matrix. However, computing the determinant can be done in O(|To|)1016

time with the cholesky decomposition. Therefore, computing the entropy takes O(|To|K2)1017
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• Sampling: For the sampling step we have to sample K + K
2 gaussian processes. This is1018

usually O(|To|3) but we can use the cholesky decomposition to make it more efficient. In1019

detail, we have to sample (K2 + K)|To| standard normal distributions, and then use the1020

cholesky decomposition alongside the trick that if X is standard normal LX + µ is normal1021

with mean µ and covariance LL
>. Putting this together we end up with a complexity of1022

O(|To|2K2), which is an extra factor of To.1023

• Total: The total complexity of the forward computation is just as bad as before. However,1024

memory is much worse and the sampling becomes much less efficient.1025

F.2 Computing1026

Computing the term P (Yu,Wu,Fu|Fo,Wo) involves sampling Fo,Wo from the distribution above,1027

fitting one GP per coordinate and then drawing samples from each GP. We ignore the initial sampling1028

step because we accounted for it above an focus on the last two here.1029

First, fitting one GP per coordinate is O(|To|3) and there are K
2+K such coordinates, therefore1030

the total complexity of the initial step is O(|To|3K2). After fitting each GP, evaluating a new point1031

has complexity O(|To|2). Because we want to evaluate |Tu| points for each of the coordinates we get1032

a bound for this step O(K2
T
2|Tu|). Putting all of this together, one draw of Yu,Wu,Fu is1033

O(K(|To|3 + |Tu||To|2))

In practice, we repeat the second step multiple times to avoid paying the large |To|3 term.1034
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