
Supplementary Methods
Evaluation metrics and tools used

To compute recall, precision, and F1 for read classification, we used the following commands, which
can be run after setting the current working directory to https://github.com/bo1929/shared.KRANK:

1. python scripts/evaluate.py --output-dir $OUTPUT_DIR \
--taxonomy-database-path data/ReferenceTaxonomy-nodes.dmp --tvth 0.03 \
--reference-ranks-path data/10kBacteria-ranks_tid.tsv \
--query-ranks-path data/uDance-ranks_tid.tsv --results-path $RESULTS_FILE
where $RESULTS_FILE is the output report of CONSULT-II, including the prediction for each read,
and $OUTPUT_DIR is simply the output directory,

2. python scripts/summarize_evaluations.py $OUTPUT_FILE \
data/dist-to-closest.txt 1 > $EVALUATION_SUMMARY
where $OUTPUT_FILE is the output of the previous command, and $EVALUATION_SUMMARY is the
summary results across all reads used to generate figures.

For the CAMI-II challenge, we ran the commands given at https://github.com/CAMI-challenge/
second_challenge_evaluation/tree/master/profiling, using the results of all participants pro-
vided in the same repository. For CAMI-I, we used the ground-truth given at https://github.com/
CAMI-challenge/OPAL/blob/master/data/gs_cami_i_hc.profile. To post-process abundance es-
timates of each tool to the CAMI profiling Bioboxes format, we used scripts found at https://github.
com/CAMI-challenge/docker_profiling_tools.

Parameter configurations of tools
For CONSULT-II, we used l=2 and k=32 (minimized from canonical 35-mers) for all memory levels.

We set hash table parameters h and b to -h 15 -b 7, -h 13 -b 14, -h 12 -b 16, and -h 12 -b 9,
respectively for 140.7GB, 16GB, 5GB and 3GB libraries. For other parameters (LCA probability function
and maximum match distance), default values were used.

As Rachtman, Balaban, et al. (2020) found default settings to be preferable for query identification,
we used default settings for Kraken 2 (--kmer-len 35, --minimizer-len 31, and --minimizer-spaces
7) and CLARK (k=31, default classification mode, species rank for classification, and -m 1). We used
--max-db-size parameter to adjust Kraken 2 database sizes (4GB, 16GB, and default 46GB).

For KRANK, we used the following parameter configurations for corresponding library sizes; 76.8GB:
-k 30 -w 33 -h 14 -b 16 with l=3, 51.2GB: -k 30 -w 33 -h 14 -b 16 with l=2 (high-sensitivity),
25.6GB: -k 30 -w 33 -h 14 -b 16 with l=1, 12.8GB: -k 29 -w 32 -h 13 -b 16 with l=2 (lightweight),
6.4GB: -k 29 -w 32 -h 13 -b 16 with l=1, 3.2GB: -k 28 -w 31 -h 12 -b 16 with l=2, 1.6GB: -k
28 -w 31 -h 12 -b 16 with l=1.

Software versions and commands used
Here, we provide the exact commands that we used to run external tools, CONSULT-II, and KRANK

throughout our experiments, together with their version information.

Genomic distance estimation using Mash (Ondov et al., 2016)
We used Mash (version 2.3) to estimate genomic distances. To create a Mash sketch from a

genome and then use it to estimate genomic distance, we used the below commands.
1. mash sketch -k 30 -s 750000 -p $NTHREADS -o $SKETCH_FILE $INPUT_FASTA
2. mash dist $SKETCH_FILE1 $SKETCH_FILE2

1

https://github.com/bo1929/shared.KRANK
https://github.com/CAMI-challenge/second_challenge_evaluation/tree/master/profiling
https://github.com/CAMI-challenge/second_challenge_evaluation/tree/master/profiling
https://github.com/CAMI-challenge/OPAL/blob/master/data/gs_cami_i_hc.profile
https://github.com/CAMI-challenge/OPAL/blob/master/data/gs_cami_i_hc.profile
https://github.com/bioboxes/rfc/tree/master/data-format
https://github.com/CAMI-challenge/docker_profiling_tools
https://github.com/CAMI-challenge/docker_profiling_tools

Short read simulation with reference using ART (Huang et al., 2012)
We simulated short reads with length L=150 and coverage c, with the default error and quality

profiles of Illumina HiSeq 2500 using ART (version 2.5.8 – single read mode) with the command
below.

art_illumina -ss HS25 -l 150 -f c -na -s 10 -i $INPUT_FASTA -o $OUTPUT_FASTQ

Extraction of k-mer sets using Jellyfish (Marçais and Kingsford, 2011)
We used Jellyfish (v2.3.0) to compute distinct k-mer sets and k-mer profiles (for canonical 32-mers

and 35-mers) of concatenated reference genomes (in FASTA format). The command is given below.
jellyfish count -m 35 -s 100M -t 24 -C $INPUT_FASTA -o $COUNT_FILE
Then, to output the list of distinct k-mers together with their counts into a FASTA file, we used the

following command. Note that we do not use count values.
jellyfish dump $COUNTS_FILE > $OUTPUT_FASTA

Downsampling reads with seqtk (Li, 2018)
To subsample read collection down to a specified number of reads, denoted by n here, we used

seqtk (version 1.3r106) with the command below.
seqtk sample -s150 INPUT_FASTQ n > OUTPUT_FASTQ

Building a KRANK library and querying sequences
The version of KRANK we presented in this paper is v0.4.0. Running the following commands in

order creates a KRANK library that can be queried against to find k-mer matches.
1. We first initialize a library, and preprocess all input genomes to extract k-mers. We built two

libraries to use together: one with --adaptive-size option and the other with --free-size
option, random seeds set to 0 and 19, respectively. We set k-mer length (-k) to 30, minimizer
window size (-w) to 33, number of LSH positions (-h) to 14, number of table columns (-b) to
16, and number of bits to determine batch IDs (-s) to 9 (hence 29 batches in total). Two files
are required to be given with arguments (-t and -i): $TAXONOMY_NODES is an NCBI taxonomy
nodes.dmp file and $INPUT_MAP_FILE is a tab-separated file, its first column is for the species IDs
and the second column is for the genome paths. The option --input-sequences specifies that
input files are genomes, not k-mers extracted by some external tool, --from-scratch specifies
that the library is to be initialized.
krank --seed $RANDOM_SEED build -k 30 -w 33 -h 14 -b 16 -s 9 \
--l $LIBRARY_DIR -t $TAXONOMY_NODES -i $INPUT_MAP_FILE \
--kmer-ranking 1 --adaptive-size \
--from-scratch --input-sequences --num-threads $NTHREADS

2. Once the library is initialized, each batch can be built separately (i.e., --target-batch 1 to 512)
using the below command. Note that this command also adds the soft-LCA information to the
library.
krank --seed $RANDOM_SEED build \
--l $LIBRARY_DIR -t $TAXONOMY_NODES -i $INPUT_MAP_FILE \
--kmer-ranking 1 --adaptive-size -from-library --num-threads $NTHREADS \
--target-batch $BATCH_NUM --input-sequences

3. Lastly, we queried sequences against the constructed library and generated a CONSULT-II com-
patible k-mer match information file for further classification and profiling.
krank query -l $LIBRARY_DIR -o $OUTPUT_DIR -q $QUERY_PATHS_FILE \
--save-match-info --max-match-distance 5 --num-threads $NTHREADS

2

Taxonomic identification with Kraken 2 (Wood et al., 2019) and Bracken (Lu et al., 2017)
We used v2.1.3 and v2.8 for Kraken 2 and Bracken in our experiments with their default param-

eters, respectively. For CAMI-II (Meyer, Bremges, et al., 2019), the presented results are for Bracken
v2.2, which was the version submitted to the challenge.

In order to construct a custom Kraken 2 reference library from WoL-v1 genomes, and to extend it
with Bracken for abundance profiling, we used the following commands:

1. We first initialized a library named $DBNAME.
kraken2-build --download-taxonomy --db $DBNAME

2. Next, we changed the downloaded taxonomy to match the taxonomy files provided with the WoL-
v1 database, retrieved from https://biocore.github.io/wol/data/taxonomy/.

3. We then added our custom genomes to the reference database.
find $REFERENCE_GENOMES_DIR -name ’*.fna’ -print0 | \
xargs -0 -I -t -n1 kraken2/kraken2-build --add-to-library --db $DBNAME

4. After that, we built the database with specified k-mer & minimizer lengths $KMER_LEN (35) &
$MINIMIZER_LEN (31) and default number of wind-carding positions s = 7.
kraken2-build --build --db $DBNAME --threads 14 --max-db-size $MAX_SIZE \
--kmer-len $KMER_LEN --minimizer-len $MINIMIZER_LEN --minimizer-spaces s

5. Lastly, given read length $READ_LEN (150), we processed the constructed library with Bracken.
./bracken-build -d $DBNAME -t $NTHREADS -k $KMER_LEN -l $READ_LEN

To query against the Kraken 2 reference library for read classification and Bracken for abundance
profiling, we used the commands below.

1. kraken2 --use-names --threads $NTHREADS --report $REPORT_FILE \
--db $DBNAME $QUERY_FASTQ > $KRAKEN_OUTPUT

2. bracken -d $DBNAME -i $KRAKEN_OUTPUT -o $BRACKEN_OUTPUT \
-r $READ_LEN -l S -t $NTHREADS

Taxonomic identification with CLARK (Ounit, Wanamaker, et al., 2015)
We used CLARK v1.2.6.1 with its default parameters. CLARK failed to set target IDs for 494

genomes out of 10,470 WoL-v1 genomes during the construction of its database. These genomes
were added manually by setting their corresponding taxon.

We followed the below steps to build a custom CLARK database in the directory $DIRDB.
1. Create the directory Custom/ inside $DIRDB directory.
2. Copy reference WoL-v1 genomes with accession numbers into the Custom/ directory.
3. Similar to Kraken 2, we set the taxonomy to the one provided with the WoL-v1 database, retrieved

from https://biocore.github.io/wol/data/taxonomy/.
4. We ran ./set_target.ssh $DIRDB custom --species.
We queried sequences against the CLARK database using the default mode (i.e., -m 1), and then

used these classification results to estimate abundances by running the commands below.
1. ./classify_metagenome.sh -O $QUERY_FASTQ -R $RESULT_FILE -n $NTHREADS -m 1
2. ./estimate_abundance.sh -F $RESULT_FILE -D $DIRDB

Taxonomic identification with CONSULT-II (Şapcı et al., 2024)
We used CONSULT-II version v0.4.0 for all experiments except profiling with KRANK databases,

for which we used version v0.5.0. Note that, v0.5.0 was not used in the original manuscript of
CONSULT-II and differs from v0.4.0 mainly at species-level abundance profiling. For CAMI-II profiling,
we directly used results presented in Şapcı et al. (2024) (for CONSULT-II) and Meyer, Fritz, et al. (2022)
(for all other tools).

We used the commands below to build CONSULT-II reference libraries.

3

https://biocore.github.io/wol/data/taxonomy/
https://biocore.github.io/wol/data/taxonomy/

1. First, we minimized canonical reference 35-mers (output of jellfish dump) to 32-mer minimizers
with a custom script (version v0.3.0), provided with CONSULT-II.
minimize -i $INPUT_35MERS_FASTA -o $OUTPUT_32MERS_FASTA

2. For the default 140.7GB memory level, we used the command below to create the library. Here,
$INPUT_FASTA is the output of above command: $OUTPUT_32MERS_FASTA. For 16GB and 5GB
versions, one can set -h 13 -b 14 and -h 12 -b 16, respectively.
consult_map --input-fasta-file $INPUT_FASTA --output-library-dir $LIBDIR \
--number-of-positions 15 -t 2 -l 2 -b 7.

3. After constructing the reference library, we added taxonomic information (soft-LCA information
per k-mer) by using the following three commands:

(a) Adding soft-LCAs requires an auxiliary file ($TAXONOMY_LOOKUP) that can be generated from
a taxonomy file ($TAXONOMY_NODES, i.e., nodes.dmp), using a script CONSULT-II provides.
python scripts/construct_taxonomy_lookup.py \
-from-taxonomy-database $TAXONOMY_NODES

(b) Then, running these two commands in order would finalize the library construction. Note
that $REFERENCE_GENOMES_DIR is the directory in which all reference genomes are stored
as FASTQ files.
consult_search -i $LIBDIR --taxonomy-lookup-path $TAXONOMY_LOOKUP \
-q $REFERENCE_GENOMES_DIR --filename-map-path $FILENAME_MAP \
--thread-count $NTHREADS --init-ID
consult_search -i $LIBDIR --taxonomy-lookup-path $TAXONOMY_LOOKUP \
-q $REFERENCE_GENOMES_DIR --filename-map-path $FILENAME_MAP \
--thread-count $NTHREADS --update-ID

Performing taxonomic classification and profiling contains two stages: finding k-mer matches and
reporting them in an appropriate file format and then utilizing them to predict read-level assignments or
to estimate sample-level composition estimates.

1. The below command outputs the match information files per query ($MATCH_INFO), with filenames
that are query filenames prefixed with match-info_∗, to $OUTPUT_DIR. This file format can also
be generated by KRANK, and hence, the next steps are identical to CONSULT-II.
consult_search -i $LIBDIR -q $QUERY_FASTQ -o $OUTPUT_DIR \
--maximum-distance 5 --save-matches --thread-count $NTHREADS

2. To classify each read, simply run:
consult_classify -i $MATCH_INFO -o $OUTPUT_DIR \
--taxonomy-lookup-path $TAXONOMY_LOOKUP

3. For profiling, the below two commands are needed.

(a) We first predict the number of reads belonging to each taxon.
consult_profile -i $MATCH_INFO -o $OUTPUT_DIR \
--taxonomy-lookup-path $TAXONOMY_LOOKUP

(b) Then, using the output of the above command, we perform normalization and genome size
correction. Here, $THRESHOLD (1000 in our case) is the total vote threshold for a taxon to be
included, $ABUNDANCE_REPORT is the consult_profile’s output, $NCBI_TAXONOMY_DIR is a
directory which stores nodes.dmp and names.dmp files, $METADATA_FILE is a tab seperated
file which is required to contain species_id and total_length columns for each reference
genome. The total_length corresponds to the genome size of the genome belonging to
species species_id. $S_ID is a sample identifier name for the header of the report.
python scripts/postprocess_profiles.py $THRESHOLD $ABUNDANCE_REPORT \
$NCBI_TAXONOMY_DIR $METADATA_FILE $S_ID

4

	DISCUSSION
	METHODS
	Algorithmic details of KRANK
	ExtractKmers
	Populating LSH tables (FillTable, UnionTables, and ProjectTable)
	Batching
	Datasets
	WoL-v1 dataset (read classification)
	Profiling on CAMI-I high complexity dataset
	Profiling on CAMI-II marine and strain-madness datasets
	Evaluation metrics
	Read classification
	Taxonomic profiling
	DATA ACCESS
	COMPETING INTEREST STATEMENT
	ACKNOWLEDGEMENTS
	AUTHOR CONTRIBUTIONS
	Supplementary Methods
	Evaluation metrics and tools used
	Parameter configurations of tools
	Software versions and commands used
	Genomic distance estimation using Mash Ondov2016
	Short read simulation with reference using ART Huang2012
	Extraction of k-mer sets using Jellyfish jellyfish
	Downsampling reads with seqtk seqtkgit
	Building a KRANK library and querying sequences
	Taxonomic identification with black Kraken 2 Kraken-II and Bracken 10.7717/peerj-cs.104
	Taxonomic identification with CLARK Ounit2015
	Taxonomic identification with CONSULT-II sapciconsult-ii2024

	Supplementary Figures

