
Supplemental Methods for CoRAL accurately resolves extrachro-
mosomal DNA genome structures with long-read sequencing

S1. Preliminaries

We begin by offering a set of definitions that are used throughout this paper.

Reference Genome. A reference genome is a set of R strings RG = {s1, · · · , sR} representing
the chromosomes in a genome. For example, the human genome RG is comprised of R = 24 strings
typically labeled as Chr1, · · · , Chr22, ChrX, and ChrY . We denote the length of string si with
|si|. At times we call strings in RG chromosomes and enforce a total order ≺ on the chromosomes
(e.g., the human genome string Chr2 is smaller than Chr3 and thus appears before it). A genomic
interval si[l, r] is a sequence of nucleotides in string si starting at position l and ending at position
r (both inclusive) where 1 ≤ l ≤ r ≤ |si|. At times, we use si[l, . . .] to denote an interval starting at
position l and si[. . . , r] as a interval ending at position r.

Breakpoint. A breakpoint describes a junction between two genomic intervals in the reference
genome set. We describe a breakpoint bp by a pair of triplets (s1, p1, o1, s2, p2, o2) indicating the
two ends of the breakpoint:

• chromosomes in the reference genome (s1, s2) (both s1, s2 ∈ RG);

• starting or ending positions of each interval (p1, p2); and

• and orientations (o1, o2) (both o1, o2 ∈ {+,−})

The positions p1 and p2 denote starting or ending positions, depending on the orientation. Specifi-
cally:

• if o1 = + and o2 = +, b describes a junction between genomic intervals s1[. . . , p1] and
s2[. . . , p2].

• if o1 = + and o2 = −, b describes a junction between genomic intervals s1[. . . , p1] and
s2[p2, . . .].

• if o1 = − and o2 = +, b describes a junction between genomic intervals s1[p1, . . .] and
s2[. . . , p2].

• if o1 = − and o2 = −, b describes a junction between genomic intervals s1[p1, . . .] and s2[p2, . . .].

We note that (s1, p1, o1, s2, p2, o2) and (s2, p2, o2, s1, p1, o1) describe the same breakpoint. To facilitate
comparisons over breakpoints, we therefore require either s1 ≺ s2 or s1 = s2, p1 < p2. It is also
possible, though rare, that a breakpoint connects (s1, p1,+) to (s1, p1,−), representing a single
nucleotide duplication. As such we ignore these cases.

Breakpoint Graph. A Breakpoint Graph is a weighted, undirected graph G = (V,E =
Es ∪ Ec ∪ Ed,CN) that contains information pertaining to breakpoints in a sample. We define the
entities in this graph as follows:

V (V ⊆ RG ×N× {+,−}) represents either the starting or ending position of a genomic interval
(except the two special source nodes s and t, as described below);

1

Es represents sequence edges, or connections between the starting and ending positions in a
genomic interval;

Ec represents the concordant edges that connect two consecutive genomic intervals si[. . . , p]
and si[p+ 1, . . .].

Ed represents the discordant edges connecting two nodes v1 = (s1, p1, o1) and v2 = (s2, p2, o2)
where s1 ≠ s2, or |p1 − p2| > 1, or o1 = o2. A discordant edge could also connect a node
v = (s1, p1, o1) to itself - we call such discordant edges foldbacks. Foldback edges will
introduce self-loops in a breakpoint graph. We sometimes refer to a breakpoint edge as
either a concordant or discordant edge in the breakpoint graph, indicating a discontinuity on
the reference genome.

CN CN maps each edge to a fractional copy number: CN : E → Q+.

Note that in a breakpoint graph, each node is connected to a single sequence edge, and a single
concordant edge as well; but it may connect to multiple discordant edges. Similar to (Deshpande
et al. 2019; Hadi et al. 2020; Aganezov and Raphael 2020), we require that the CN assignment is
“balanced” for each sequence edge (u, v) ∈ Es, i.e., the sum of CN values from the breakpoint edges
connected to (u, v) equals to the CN of thos sequence edge. A node connected to a foldback edge
receives two times the CN from the foldback edge it connects to when summing up CN values from
discordant edges. ∑

(w,u)∈Ec∪Ed

CN(w, u) = CN(u, v) =
∑

(v,w)∈Ec∪Ed

CN(v, w), ∀(u, v) ∈ Es (S1.1)

As per Amplicon Architect (AA) (Deshpande et al. 2019), amplified intervals (or amplicon
intervals) describes a set I = {(si, li, ri)} as the union of genome intervals represented by all
sequence edges in a breakpoint graph - where li gives the smallest coordinate among a few sequence
edges connected by concordant edges; and ri gives the largest coordinate among a few sequence
edges connected by concordant edges. Each string si in RG can include multiple, non-adjacent
amplified intervals: for (si, li, ri), (si, l

′
i, r

′
i) ∈ I, li > r′i + 1 or l′i > ri + 1. The simplest non-empty

breakpoint graph gives a single amplified interval, a single sequence edge, and no breakpoint
(concordant/discordant) edges. We refer to an amplicon as the union of all amplified intervals and
their (discordant) connections. In other words, an amplicon corresponds to a breakpoint graph. In
a tumor sample there could be multiple amplicons whose intervals are non-intersecting.

In addition to the nodes representing the starting or ending position of a genomic interval
(sequence edge), we introduce two artificial nodes, s ∈ V and t ∈ V in each breakpoint graph G.
They both connect to the end of each amplified interval, as well as a sequence edge which is only
connected to another sequence edge with smaller CN by concordant edges, and therefore is deemed
to violate the balanced CN constraint S1.1 without the source connections. Edges connected to
source nodes are treated as discordant edges.

A walk in a breakpoint graph G is a sequence of nodes v1, v2, . . . , vw, where for all 1 ≤ i < w,
(vi, vi+1) ∈ E, and the edges alternate between sequence and breakpoint edges (i.e. if (vi, vi+1) ∈ Es

then (vi−1, vi) ∈ Ec ∪ Ed and (vi+1, vi+2) ∈ Ec ∪ Ed). A path is a walk with no node repeated
(vi = vj ⇔ i = j). An s, t-walk/path in a walk or path starts at s and ends at t. A cycle or
cyclic walk is a walk where the first edge starts with and the last edge ends with the same node,
i.e., v1 = vw ̸= s, t. The cycle is simple if no node except the first/last one is repeated.

With these definitions, we say that a properly reconstructed breakpoint graph G represents a
superimposition of all ecDNAs and rearranged genomes. These rearranged genomes are represented

2

by walks of alternating sequence edges and breakpoint edges. For example, an s, t-path of alternating
sequence and breakpoint edges may represent a linear focal amplification; ecDNA form cycles of
alternating sequence and breakpoint edges.

S2. Breakpoint Graph Reconstruction from Long Reads

Seed Interval Detection. CoRAL detects seed amplified intervals from whole genome CNV calls
of mapped long reads (e.g., with third party tools like CNVkit (Talevich et al. 2016)). In fact, CNV
calls give a partition of the reference genome RG into non-overlapping genomic intervals, each with
a distinct copy number. We first remove centromeric intervals and select candidate seed intervals as
the intervals ai whose copy number is at least max(4.0+ CN chr arm(ai), 6.0), where CN chr arm(ai)
is the average (length-weighted) copy number of all intervals on the same chromosome arm as ai.
We merge adjacent candidate intervals and candidate intervals on the same chromosome and within
2 ∗ 105bp (= 2δ, see below) distance. Among the merged intervals we finally select the ones with
aggregated size at least 105bp (= δ) as seed intervals. If there are no seed amplified intervals,
CoRAL stops by reporting no focal amplifications in the input sample. Otherwise CoRAL proceeds
with amplified interval search, breakpoint graph construction and cycle decomposition.

Amplified Interval Search. Let ∆ be the maximum length of (amplified) genomic segment
in an amplicon without breakpoints in the middle. According to TCGA and PCAWG data from
(Kim et al. 2020), we set ∆ to 106bp. Let δ be the size of flanking region surrounding an amplified
interval. Following from (Deshpande et al. 2019) we set δ to 105bp. We present the pseudocode of
amplified interval search, given a seed interval list Is, as follows.

Breakpoint Clustering. Define a “match” between two breakpoints bp1 = (s1, p1, o1, s2, p2, o2)
and bp2 = (s′1, p

′
1, o

′
1, s

′
2, p

′
2, o

′
2) when they have the same chromosome, orientation, and close

positions, i.e., s1 = s′1, o1 = o′1, s2 = s′2, o2 = o′2, |p1 − p′1| ≤ bp distance cutoff and |p2 − p′2| ≤
bp distance cutoff, for some bp distance cutoff. We cluster a collection of breakpoints B
through two steps. First we compute crude clusters with the following greedy strategy and a large
bp distance cutoff = 2000bp (the largest possible distance given by the chimeric alignments
between two reads which support a single breakpoint - see (Sedlazeck et al. 2018)): start with
an empty set of clusters; for each breakpoint bp, if there exists a cluster C containing another
breakpoint bp’ which matches bp, then add the breakpoint bp to cluster C; otherwise start a new
cluster C′ and add bp to C′.

We then refine each crude cluster and compute the exact breakpoint. For each cluster C
resulting from the above step, we compute the average µ1 and standard deviation σ1 of the
first (“smaller”) position p1, as well as µ2 and σ2 of the second (“larger”) position p2. Then
we remove the ‘outlier’ breakpoints in C with a smaller bp distance cutoff = 100bp, when
p1 < µ1 − max(3 ∗ σ1, bp distance cutoff), or p1 > µ1 + max(3 ∗ σ1, bp distance cutoff), or
p2 < µ2−max(3 ∗ σ2, bp distance cutoff), or p2 > µ2 +max(3 ∗ σ2, bp distance cutoff). If the
remaining cluster size is still at least bp clustersize cutoff, we keep the breakpoint corresponding
to cluster C, otherwise we split C into four subclusters: (i) breakpoints with p1 < µ1 and p2 < µ2;
(ii) p1 < µ1 and p2 > µ2; (iii) p1 > µ1 and p2 < µ2; and (iv) p1 > µ1 and p2 > µ2. The subclusters
with size at least bp clustersize cutoff are repeated with the above procedure and otherwise
are discarded. The final breakpoint positions for a cluster C is determined by the mode of p1 and p2
in C. If there are multiple modes then we use the average positions. The bp clustersize cutoff

is determined by the maximum of 3 and haploid coverage to avoid false positive chimerisms in long
read alignments. See below how CoRAL estimates the haploid coverage in a tumor sample.

3

Algorithm 1 AmplifiedIntervalSearch(Is, δ,∆, bp clustersize cutoff) ▷ Is: seed intervals

1: for seed interval ai = (si, li, ri) ∈ Is do
2: I[ai]← −1 ▷ I: maps each amplified interval to an amplicon id

3: end for
4: E ← empty map ▷ E : maps a pair of amplified intervals to a set of breakpoints
5: amplicon id ← 1
6: for ai ∈ I do
7: if I[ai] == −1 then
8: L← [ai] ▷ L: priority queue used in current amplicon search
9: while L ̸= ∅ do

10: anext = (snext, lnext, rnext)← L.pop()
11: if I[anext] == −1 then
12: I[anext]← amplicon id

13: end if
14: B ← {bp = (s1, p1, o1, s2, p2, o2) | either p1 or p2 overlaps with anext}
15: Cluster breakpoints in B with bp clustersize cutoff

16: for breakpoint cluster bpC from B do
17: p← the breakpoint position p1 or p2 from the cluster bpC which does not overlap

with anext
18: if p exists then
19: if p overlaps with some aj ∈ I then
20: if I[aj] == −1 then
21: L.append(aj)
22: end if
23: E [(amin(next,j), amax(next,j))]← E [(amin(next,j), amax(next,j))] ∪ {bpC}
24: else
25: if p is amplified then
26: sp ← start position of the CNV segment including p
27: ep ← end position of the CNV segment including p
28: anew ← (chrp,max(sp − δ, p−∆),min(ep + δ, p+∆))
29: else
30: anew ← (chrp, p− δ, p+ δ)
31: end if
32: L.append(anew)
33: I[anew]← −1
34: E [(anext, anew)]← {bpC}
35: end if
36: end if
37: end for
38: end while
39: amplicon id← amplicon id+ 1
40: end if
41: end for

4

S3. Copy Number Assignment

Estimating diploid coverage. The CN assignment of CoRAL requires an estimation of diploid
coverage θLR. The estimation can be derived from CNV calls used for detecting seed amplified
intervals, with the assumption that majority of the donor genome is not amplified. Recall that
CNV calls give a partition of the reference genome RG into non-overlapping genomic intervals, each
with a distinct copy number. To estimate θLR CoRAL first sorts these intervals according to their
predicted copy numbers, and locate the interval ai = (si, li, ri) at the 40-th percentile in the sorted
list. If the length of ai is less than 107bp, CoRAL iteratively includes the interval ai−1 and ai+1 in
the sorted list, until the aggregate size of the included intervals is at least 107bp. CoRAL computes
θLR as the (length-weighted) average long read coverage of all selected intervals centered at ai.

Maximum likelihood CN assignment. Given θLR, we model the total number of nucleotides Ne

on each sequence edge e ∈ Es as a normal distribution with mean and variance both θLR ·CN(e) · l(e),
where l(e) denotes the length (in bp) of the sequence edge

P (Ne | CN(e)) = N (µ = θLR · CN(e) · l(e), σ2 = θLR · CN(e) · l(e)) , e ∈ Es; (S3.1)

and the number of reads nLR
e supporting each concordant and discordant edge e ∈ Ec ∪ Ed as a

Poisson (similar to (Medvedev et al. 2010; Deshpande et al. 2019)) with mean θLR · CN(e)

P (nLR
e | CN(e)) = e−θLR·CN(e)(θLR · CN(e))n

LR
e

nLR
e !

, e ∈ Ec ∪ Ed. (S3.2)

To estimate CN, CoRAL computes the maximum likelihood L of CN using the joint distribution
of observed number of nucleotides on each sequence edge and the observed read counts on each
concordant/discordant edge

L(CN) =
∏
e∈Es

P (Ne | CN(e)) ·
∏

e∈Ec∪Ed

P (nLR
e | CN(e)), (S3.3)

with the constraint that CN is balanced for each node v (by rewriting equation S1.1), i.e.,∑
e∈Es(v)

CN(e) =
∑

e∈Ec∪Ed(v)

CN(e), ∀v ̸= s, t ∈ V, (S3.4)

where Es(v), Ec(v), and Ed(v) stand for the sequence edge, concordant edge, and discordant edges
connected to node v, respectively. Edges connected to the source nodes s and t do not contribute to
the likelihood (objective) function, nor to the constraints. The (convex) optimization problem was
solved using CVXOPT package (https://github.com/cvxopt/cvxopt).

S4. Cycle Decomposition

In cycle decomposition we decompose an amplicon G into a collection of cycles and s, t-walks, with
high copy numbers. For all sequence edges (u, v) ∈ Es, define the length-weighted-copy-number using
Cl(u, v) = CN(u, v) · l(u, v), where l(u, v) denotes the length (in bp) of the corresponding segment.
Similarly, for graph G.

Cl(G) =
∑

(u,v)∈Es

Cl(u, v) (S4.1)

5

https://github.com/cvxopt/cvxopt

The MIQCP for cycle extraction works with 3 parameters: k as the maximum number of walks; α
as the minimum fraction of length-weighted copy number explained, and β as the minimum fraction
of path constraints satisfied. Of these, k is learned starting with k = 1, according to two modes.
In the FullQP mode, the MIQCP attempts a solution with at most k walks that satisfy other
constraints, or returns ‘infeasible.’ The value of k is doubled until feasibility is reached or k > |E|.
The greedy mode is described below. We implement both quadratic programs with through the
python3 interface of Gurobi 10.0.1.

We use the following key variables.

• wi ∈ Q ≥ 0: denotes the copy number for walk Wi (1 ≤ i ≤ k); an auxiliary variable zi ∈ {0, 1}
indicates if wi > 0;

• xuvi ∈ Z ≥ 0 represents the number of times walk Wi traverses (u, v) for each edge (u, v) ∈ E
and 1 ≤ i ≤ k;

• Pj ∈ {0, 1} indicates if subwalk constraint pj is satisfied for 1 ≤ j ≤ m ;

The MIQIP(k, α, β) objective is given by:

min
k∑

i=1

zi −
1

Cl(G)

k∑
i=1

∑
(u,v)∈Wi∩Es

wi · xuvi · l(u, v)−
1

m

m∑
j=1

Pj (S4.2)

subject to the constraints:
wi ≤ zi ·max(u,v)∈ECN(u, v) (S4.3)

k∑
i=1

∑
(u,v)∈Wi∩Es

wi · xuvi · l(u, v) ≥ α · Cl(G) (S4.4)

m∑
j=1

Pj ≥ β ·m (S4.5)

In addition, the MIQIP satisfies a number of auxiliary constraints that constrain the cycles and
walks to satisfy normal definitions, and those require the following auxiliary variables:

• cvi ∈ {0, 1} for node v ∈ V −{s, t} and 1 ≤ i ≤ k. cv,i = 1 iff the walk Wi forms a cycle starts
(and ends) with node v, if Wi exists;

• pij ∈ {0, 1}, for 1 ≤ i ≤ k, 1 ≤ j ≤ m indicates if subwalk constraint pj is satisfied by walk Wi;

• 0 ≤ dvi ≤ |V | for each node v ∈ V, 1 ≤ i ≤ k, starting with a number 1 for the initial node
and incrementing for the next node in the cycle/walk. It is used to ensure connectivity;

• y+uvi ∈ {0, 1}, y−uvi ∈ {0, 1} for each edge (u, v) ∈ E and 1 ≤ i ≤ k, is also used to ensure
connectivity.

Additional Constraints.

1. Each Wi should form a valid walk of alternating sequence and breakpoint edges. In other
words, for each node v ∈ V −{s, t}, the sum of xuvi from sequence edges (u, v) ∈ Es it connects
to should equal to the sum of xuvi from breakpoint edges (v, w) ∈ Ec ∪ Ed it connects to.∑

(u,v)∈Es

xuvi −
∑

(v,w)∈Ec∪Ed

xvwi = 0, ∀v ∈ V − {s, t}, ∀i = 1, · · · , k (S4.6)

6

2. The total CN of all cycles/walks passing through an edge (u, v) ∈ E is at most CN(u, v).∑
i

wi · xuvi ≤ CN(u, v), ∀(u, v) ∈ E (S4.7)

3. We require that each cycle/walk traverses through a discordant edge (u, v) ∈ Ed at most
R(u, v) times, otherwise cycles were not possible.

xuvi ≤ R(u, v), ∀(u, v) ∈ Ed (S4.8)

R(u, v) can be a small, fixed number for all (u, v) ∈ Ed, e.g., 2 to allow a discordant edge
to be traversed in each direction as the graph is undirected. However, by default CoRAL
computes an empirical R(u, v) for each (u, v) ∈ Ed by clustering the number of reads nLR

(u,v)

supporting the discordant edge with the constraint that two observations nLR
e1 , nLR

e2 must belong
to different clusters if one of them is at leats 5 times larger than the other, i.e., nLR

e1 ≥ 5 · nLR
e2

or nLR
e2 ≥ 5 · nLR

e1 . In case there exists some edges with R(u, v) > 1, the constraint S4.11 below
prevents every edge in a cycle being repeated multiple times.

4. Each walk Wi either forms a cycle starting at node v, or starts at s and ends at t if it exists.
If Wi forms a cycle we require that there exists one concordant or discordant edge connected
to cvi which occurs only once in the cycle.∑

(s,v)∈E

xsvi +
∑
v

cvi ≤ 1 ∀i = 1, · · · , k (S4.9)

∑
(s,u)∈E

xsui =
∑

(v,t)∈E

xvti ∀i = 1, · · · , k (S4.10)

∑
(u,v)∈Ec∪Ed

xuvi · cvi ≤ 1 ∀v ∈ V and i = 1, · · · , k (S4.11)

5. xuvi and zi are consistent. In other words zi = 1 if and only if there exists some xuvi > 0.
Since xuvi are not binary, the consistency between xuvi and zi can be guaranteed through y+uvi
or y−uvi.

zi ≥ y+uvi ∀(u, v) ∈ E and i = 1, · · · , k (S4.12)

zi ≥ y−uvi ∀(u, v) ∈ E and i = 1, · · · , k (S4.13)

y+uvi + y−uvi ≤ xuvi ∀(u, v) ∈ E and i = 1, · · · , k (S4.14)

6. Connectivity. The idea is to use dvi to encode the “discovery order” of the nodes in walk
Wi. If Wi is a cycle then we start with the node v where cvi = 1; otherwise we start with
the source node s. dvi for the starting node v is set to 1. Each node v (except the starting
node) in Wi is assumed to be “discovered” uniquely by another already “discovered” node u
through edge (u, v), satisfying dvi ≥ dui + 1. As breakpoint graph is undirected, we assume
an order < of nodes and for each edge (u, v) we introduce two binary variables y+uvi or y

−
uvi

indicating respectively the larger node in u, v is discovered from the smaller node through edge
(u, v); or the smaller node is discovered from the larger node through edge (u, v). Specifically,
if v is discovered from u and v > u or u is discovered from v and v < u then y+uvi = 1; if v is
discovered from u and v < u or u is discovered from v and v > u then y−uvi = 1; in all other
cases y+uvi = y−uvi = 0. The nodes do not belong to Wi also have dvi = 0 and y+uvi = y−uvi = 0.
We first set up the constraint for the starting node.

dvi ≥ cvi, ∀v ∈ V, and i = 1, · · · , k (S4.15)

7

dsi +
∑
v∈V

cvi ≤ 1, ∀i = 1, · · · , k (S4.16)

We require that dvi = 0 if node v is not a part of Wi.

dvi ≤ |V | ·
∑

(u,v)∈E

xuvi, ∀v ∈ V, and i = 1, · · · , k (S4.17)

Fold-back edges (self-loops) can not have positive y+uvi or y
−
uvi.

y+uui = 0, ∀(u, u) ∈ Ed and i = 1, · · · , k (S4.18)

y−uui = 0, ∀(u, u) ∈ Ed and i = 1, · · · , k (S4.19)

Each node can be discovered from at most one neighboring node.∑
(u,v)∈E,u<v

y+uvi +
∑

(u,v)∈E,u>v

y−uvi ≤ 1, ∀v ∈ V and i = 1, · · · , k (S4.20)

If a node v is included in walk Wi and it is not the starting node of a cycle, then it must be
discovered through some y+uvi or y

−
vui.∑

(u,v)∈E

xuvi ≥ 1 ∧ cvi = 0→
∑

(u,v)∈E,u<v

y+uvi +
∑

(u,v)∈E,u>v

y−uvi ≥ 1, ∀v ∈ V and i = 1, · · · , k

(S4.21)
Equation (S4.21) can be rewritten as a quadratic constraint, as follows. For all v ∈ V and i =
1, · · · , k,(∑

(u,v)∈E,u<v

y+uvi +
∑

(u,v)∈E,u>v

y−uvi

)
· C|E|+

∑
(u,v)∈E

xuvi · cvi ≥
∑

(u,v)∈E

xuvi, (S4.22)

where C is a large constant representing the maximum number of times that any edge (u, v) ∈ E
can be traversed by a cycle or walk (e.g., C can be set to max degree of G ·max(u,v)∈Ed

R(u, v)).

Finally, we connect y+uvi and y−uvi with dvi. If a node v is included in walk Wi and it is not
the starting node of a cycle, then dvi ≥ dui + 1 for the node u it was discovered from. For all
v ∈ V and i = 1, · · · , k(∑

(u,v)∈E,u<v

y+uvi · (dvi − dui) +
∑

(u,v)∈E,u>v

y−uvi · (dvi − dui)

)
· C|E|+

∑
(u,v)∈E

xuvi · cvi ≥
∑

(u,v)∈E

xuvi.
(S4.23)

7. Subwalk constraints. We enforce a weak constraint by requiring each walk pj ∈ P as a
subgraph of the graph induced by some walk Wi.

Pj ≥ pij , ∀i = 1, · · · , k and j = 1, · · · ,m (S4.24)

xuvi ≥ pij · pj(u, v), ∀(u, v) ∈ E ∩ pj and i = 1, · · · , k and j = 1, · · · ,m (S4.25)

where pj(u, v) the number of times walk pj passes through an edge (u, v).

8

Subwalk constraints from long reads. To compute subwalk constraints we extract all long
reads mapped within the amplified intervals defined by the breakpoint graph G, and map each of
them to G. We filter out reads which could not be fully mapped to the breakpoint graph, due to
additional breakpoints or partially non-overlap with any sequence edge. Each of the remaining reads
mapped to G should give a walk in G starting and ending with sequence edges. We further filter out
walks where the first or last sequence edge overlaps with the corresponding read by less than 500bp;
and then walks with at most 3 edges (which only cover one breakpoint). Finally, we filter out walks
that form a subwalk of any other walk and return the remaining walks as the subwalk constraints P
to be used in cycle extraction, either full QP or greedy QP.

MIQIP-greedy. Let P̄ = {j | path pj is not satisfied by any previously selected walk}. The full
greedy MIQCP to identify the next walk Wi is given by:

max
∑

(u,v)∈Wi∩Es

w · xuv · l(u, v) + γ
∑
j∈P̄

Pj (S4.26)

subject to
w ≤ max

e∈E
{Cl(e)} · z (S4.27)∑

(u,v)∈Es

xuv −
∑

(v,w)∈Ec∪Ed

xvw = 0, ∀v ∈ V − {s, t} (S4.28)

xuv · w ≤ remaining CN(u, v), ∀(u, v) ∈ E (S4.29)

xuv ≤ R(u, v), ∀(u, v) ∈ Ed (S4.30)∑
(s,v)∈E

xsv +
∑
v

cv ≤ 1 (S4.31)

∑
(s,u)∈E

xsu =
∑

(v,t)∈E

xvt (S4.32)

∑
(u,v)∈Es

xuv · cv ≤ 1, ∀v ∈ V (S4.33)

z ≥ y+uv, ∀(u, v) ∈ E (S4.34)

z ≥ y−uv, ∀(u, v) ∈ E (S4.35)

y+uv + y−uv ≤ xuv, ∀(u, v) ∈ E (S4.36)

dv ≥ cv, ∀v ∈ V (S4.37)

ds +
∑
v∈V

cv ≤ 1 (S4.38)

dv ≤ |V | ·
∑

(u,v)∈E

xuv, ∀v ∈ V (S4.39)

y+uu = 0, ∀(u, u) ∈ Ed (S4.40)

y−uu = 0, ∀(u, u) ∈ Ed (S4.41)∑
(u,v)∈E,u<v

y+uv +
∑

(u,v)∈E,u>v

y−uv ≤ 1, ∀v ∈ V (S4.42)

9

(∑
(u,v)∈E,u<v

y+uv +
∑

(u,v)∈E,u>v

y−uv

)
· C|E|+

∑
(u,v)∈E

xuv · cv ≥
∑

(u,v)∈E

xuv, ∀v ∈ V (S4.43)

(∑
(u,v)∈E,u<v

y+uv · (dv−du)+
∑

(u,v)∈E,u>v

y−uv · (dv−du)

)
·C|E|+

∑
(u,v)∈E

xuv · cv ≥
∑

(u,v)∈E

xuv, ∀v ∈ V

(S4.44)
xuv ≥ Pj · pj(u, v), ∀(u, v) ∈ E ∩ pj and j = 1, · · · ,m (S4.45)

z, cv, y
+
uv, y

−
uv, Pj ∈ {0, 1};xuv, dv ∈ Z; 0 ≤ xuv ≤ C; 0 ≤ dv ≤ |V |;w ≥ 0 (S4.46)

S5. Simulating amplicon structures with ecSimulator

We utilized an updated version of ecSimulator (Luebeck et al. 2020) (version 0.6.0, https://
github.com/AmpliconSuite/ecSimulator) to simulate ecDNA genome structures derived from
three different contexts and simulated both long and short reads from those structures at varying
copy number levels.

In brief, ecSimulator uses a user-specified YAML input to set simulation parameters, allowing
the user to specify properties such as the number of genomic intervals in the simulated ecDNA,
the number of possible locations of breakpoints, and the rates of SV types (deletion, duplication,
inversion, translocation, foldback). We utilized ecSimulator’s default parameters for SV type
frequency. ecSimulator supports the simulation of ecDNA derived from three different modes of
genesis. First, the episome model, whereby the structure is initialized with only head-to-tail closure
of the interval(s). Second, the two-foldback model where the interval is bound on left and right
by a foldback SV (inverted duplication). Third, a chromothriptic model, whereby intervals are
separated by a deletions and then closed head-to-tail, simulating the oscillating CN states observed in
chromothripsis. To simulate the internal rearrangements of the genome structure observed on ecDNA
intervals, ecSimulator first assigns n breakpoints randomly throughout the intervals according to the
number of possible breakpoints desired by the user. By pre-assigning possible breakpoint locations,
it is possible to easily create structures containing multiple copies of a breakpoint or to enable
breakpoint re-use. ecSimulator then performs multiple rounds of SV boundary assignment and
rearrangement, with the default number of rounds being n

2 . A random number of consecutive
sub-segments of the intervals are selected, where sub-segments are defined as pieces of the intervals
separated by the pre-assigned breakpoint locations. The selected sub-segments then undergo random
assignment of the SV type being applied, and the assigned SV type is simulated inside the structure
on those selected segments.

To simulate reads we maintained the following default parameters:

target size: 2,000,000
mean segment size: 150,000
num intervals: “auto”
same chromosome: False (allowing segments to be recombined across chromosomes)
allow interval reuse: True (allowing higher multiplicity in an amplicon)
viral insertion: False
del: 0.6 (probability of deletion)
dup: 0.5 (probability of duplication)
inv: 0.4 (probability of inversion)
trans: 0.4 (probability of translocation)
fback: 0.05 (probability of an inverted duplication)

10

https://github.com/AmpliconSuite/ecSimulator
https://github.com/AmpliconSuite/ecSimulator

In addition to these default parameters, we simulated amplicons from the chromothripsis,
episomal, or two-foldback origins. For each origin, we simulated 5 replicates of an amplicon with 1,
3, 5, 10, or 20 breakpoints resulting in a dataset of 75 simulated amplicons.

S6. Whole Genome Sequencing (WGS)

Public data sources. We obtained sequencing data from the following public repositories.
Illumina data for COLO320-DM (Wu 2019) was obtained from SRX5055021; Illumina data for
COLO320-HSR (Wu 2019) was obtained from SRX5930165. Illumina data for GBM39 (Wu
2019) was obtained from SRX5055022; Illumina data for GBM39-HSR (Wu 2019) was obtained
from SRX5930166; Illumina data for CHP-212 was obtained from SRX8044100; Illumina data
for COLO320-DM (Hung 2021) was obtained from SRX11096731. Long-read Nanopore data for
COLO320-DM (Hung 2021) was obtained from SRX9346575; Long-read Nanopore data for CHP-212
was obtained from SRX8044102.

We additionally sequenced the other 4 Illumina samples (COLO320-DM (mono), GBM39 (mono),
PC3-DM (mono), PC3-HSR (mono)) and 8 Nanopore samples (COLO320-DM (Wu 2019), COLO320-
HSR (Wu 2019), GBM39 (Wu 2019), GBM39-HSR (Wu 2019), COLO320-DM (mono), GBM39
(mono), PC3-DM (mono), PC3-HSR (mono)), as described in the following sections (see “Short-read
WGS” and “Nanopore Long-read WGS”).

Deriving monoclonal cell lines. The following approaches were taken to derive stable monoclonal
cell lines for this study:

1. PC3: PC3 cell line with a mixed pooled of cells containing MYC amplification as either ecDNA
(for PC3-DM) or HSR (for PC3-HSR) were seeded onto a 96-well plate at a density of 0.5
cell/well, in an attempt to have a maximum of one cell seeded per well. Cells were then
expanded and iteratively expanded into a 24-well plate, 6-well plate, then 10 cm dish over
the course of one month. PC3 cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM; Corning, #10-013-CV) supplemented with 10% fetal bovine serum (FBS; Hyclone,
SH30396.03) and 1% pen-strep (PS; Thermo Fisher Scientific, 15140-122).

2. GBM39: GBM39 cell line with a mixed pooled of cells containing EGFRvIII amplification
as ecDNA were sent to Cell Microsystems for monoclonal expansion. In brief, cells were
subjected to TrypLE digestion to yield single cells, and each single cell was seeded onto a
CellRaft Array using the CellRaft AIR® System. The cells were maintained and expanded as
a monoclonal line. Neurosphere culture medium Dulbecco’s modified Eagle’s medium/nutrient
mixture F-12 (DMEM/F12 1:1; Gibco, 11320-082) with 1% PS, GlutaMAX (Gibco, 35050061),
B27 supplement (Gibco, 17504044), 20 ng/ml epidermal growth factor (EGF; Sigma-Aldrich,
E9644), 20 ng/ml fibroblast growth factor (FGF; Peprotech) and 5 µg/ml (Sigma-Aldrich,
H3149-500KU) was used throughout to maintain the culture.

3. COLO320-DM: A recently monoclonalized cell line of COLO320-DM was received as a gift
from the Mischel group.

Short-read WGS. WGS libraries were prepared by DNA tagmentation. We first transposed it
with Tn5 transposase produced as previously described, in a 50-µl reaction with TD buffer, 10ng
DNA and 1 µl transposase. The reaction was performed at 50°C for 5 minutes, and transposed
DNA was purified using Zymo DNA Clean & Concentrate kit (Zymo, 1159U33). Libraries were
generated by 7 rounds of PCR amplification using NEBNext High-Fidelity 2× PCR Master Mix
(NEB, M0541L), purified using SPRIselect reagent kit (Beckman 635 Coulter, B23317) with double

11

size selection (0.8× right, 1.2× left) and sequenced on the Illumina Nextseq 550 platform. Reads
were trimmed of adapter content with Trimmomatic (Bolger et al. 2014) (version 0.39), aligned
to the hg38 genome using BWA MEM (Li and Durbin 2009) (version 0.7.17-r1188), and PCR
duplicates removed using Picard’s MarkDuplicates (version 2.25.3).

Nanopore Long-read WGS. We performed default long-read sequencing on COLO320-HSR,
GBM39 (mono), and PC3-DM (mono). To do so, high molecular weight (HMW) genomic DNA
from approximately 2 million cells was extracted using the Qiagen Puregene DNA Kit (Qiagen
158023) and prepared for long-read sequencing using the Oxford Nanopore Ligation Sequencing Kit
V14 (Oxford Nanopore Technologies SQK-LSK114) according to the manufacturer’s instructions.

We performed Ultralong seqeuncing on COLO320-DM (mono) and PC3-HSR (mono). To do
so, HMW genomic DNA was extracted from approximately 6 million cells using the NEB HMW
DNA Extraction Kit for Cells & Blood (NEB T3050) and prepared for sequencing using the Oxford
Nanopore Ultra-Long DNA Sequencing Kit V14 (Oxford Nanopore Technologies SQK-ULK114)
according to the manufacturer’s instructions. Libararies were sequenced on a PromethION (Oxford
Nanopore Technologies) using a 10.4.1 flow cell (Oxford Nanopore Technologies FLO-PRO114M).
Basecalling from raw POD5 files was performed using Dorado (Oxford Nanopore Technologies,
version 0.2.1) and aligned to GRCh38 using minimap2 (Li 2018).

In addition, we performed long-read sequencing on non-monoclonalized GBM39 and GBM39-
HSR as follows: HMW genomic DNA was extracted using a MagAttract HMW DNA Kit (Qiagen
67563) and prepared for long-read sequencing using a Ligation Sequencing Kit (Oxford Nanopore
Technologies SQK-LSK109) according to the manufacturer’s instructions. Libraries were sequenced
on a PromethION (Oxford Nanopore Technologies) using a 9.4.1 flow cell (Oxford Nanopore
Technologies FLO-PRO002). Bases were called from FAST5 files using Guppy (Oxford Nanopore
Technologies, v.2.3.7) and read were aligned to GRCh38 using minimap2 (Li 2018).

S7. Amplicon comparison statistics

Breakpoint-graph accuracy. We evaluate the proportion of breakpoint edges captured for
a reconstruction as follows: let Er

d be the set of discordant edges in a reconstructed breakpoint
graph Gr and Et

d be the set of discordant edges in a simulated breakpoint graph Gt. For each edge
(st1, p

t
1, o

t
1, s

t
2, p

t
2, o

t
2) ∈ Et

d we evaluate if a similar edge appears in the set of reconstructed edges Er
d.

Specifically, an an edge is deemed similar if the orientations are identical and the positions differ by
at most 100bp - i.e., |pr1 − pt1| ≤ 100 and |pr2 − pt2| ≤ 100, where pt∗ is the true coordinate and pr∗ is
the reconstructed coordinate. The proportion of true edges recovered is reported.

Cycle-interval overlap. Let It = {(sti, lti, rti)} be the set of intervals covered by the simulated

cycle and let Ir,n = {(sr,ki , lr,ki , rr,ki)} be the set of intervals covered by the n-th cycle returned by a
reconstruction algorithm. (Recall that CoRAL and AA return a set of possible cycles). Let δ(Ii, Ij)
be a function that returns the length (in nucleotides) of the overlapping region between two intervals
Ii and Ij (if si ̸= sj then δ(Ii, Ij) = 0); let ℓ(Ij) indicate the length (in nucleotides) of the interval
Ij (i.e., |ri − li|). Then the Cycle-interval overlap is for the n-th cycle is defined as

On =

∑
j∈|It|

∑
k∈|Ir,n| δ(Itj , I

r,n
k)∑

j∈|It| ℓ(Itj) +
∑

k∈|Ir,n| ℓ(I
r,n
k)

For a given simulated amplicon, we report best overlap statistic found across all returned
reconstructions.

12

Cyclic Longest Common Subsequence (LCS). Let Wt be a true, simulated cycle defined
by an ordered sequence of intervals It = {(sti, lti, rti)}, and let Wn

r be the n-th cycle defined by the
ordered sequence of intervals Ir,n = {(sri , lri , rri)} returned by a cycle decomposition algorithm (as
above, recall that CoRAL and AA return a set of possible cycles). Let LCS(It, Ir,n(j)) be defined
as the longest common subsequence between the two ordered interval sets (in nucleotides). Note
that the common subsequence does not need to be contiguous. For example, for the sequence
I1 = (1, 2, 3, 4, 5) and I2 = (1, 3, 4, 5, 6), the LCS would be (1, 3, 4, 5).

To account for cycle rotation, we also consider the rotated cycleW (j) containingm intervals where
the interval set is rotated around the index j: I = {Ij , Ij+1 . . . Im, I1, . . . Ij−1}. In addition, we
consider the reverse cycle whereby W̄ consists of the reverse of all intervals: Ī = {Īm, Īm−1, . . . , Ī1}
and Īi = (si, ri, li).

Then, the cyclic longest common subsequence for a reconstructed cycle consisting of m intervals
is defined as (only considering intervals that overlap between the true and reconstructed cycle):

C-LCS(Wt,W
n
r) =

max
(
maxj∈m LCS(It, Ir,n(j)),maxj∈m LCS(It, Īr,n(j))

)∑
k∈|It| ℓ(Itk)

In words, this measure reports the longest common subsequence that can be found between the
two cycles Wt and Wn

r while considering all possible rotations and reversals, and normalized to the
length of the true cycle (in nucleotides).

Reconstruction Length Error. This statistic measures the differences in reconstructed cycle
length and true cycle length. As before, let Wt be a true, simulated cycle defined by an ordered
sequence of intervals It = {(sti, lti, rti)}, and let Wn

r be the n-th cycle defined by the ordered sequence
of intervals Ir,n = {(sri , lri , rri)}. Furthermore, let L∗ be the length of cycle W∗ (where ∗ indicates t
or some reconstruction Wrn)): L∗ =

∑
k∈|I∗| ℓ(I∗k)

Then, the reconstruction length error for a particuler reconstruction Wn
r is defined as

Rrn =
(Lrn − Lt)

Lt

The final value Rr is defined as the value for the best reconstruction: Rr = minnRrn . For clarity
of presentation, we report log2(1 +Rr).

K−Heaviest Cycle Weight Ratio. This statistic is agnostic to the true cycle and reflects the
“entropy” of a given reconstruction, by measuring the fraction of total copy-number can be accounted
for by the k heaviest cycles. Here, the length-weighted copy-number of the entire breakpoint graph
(denoted as Cl(G)) is calculated from the sequence edges Es reported in a breakpoint graph G and
is defined in Eqn.(2) of the main text. The length-weighted copy-number of a particular cycle
is defined as the sum of the length-weighted copy-number the intervals reported in a particular
reconstructed cycle Wn

r that is defined by m total intervals contained in the set Ir,n. Using similar
notation as above, if Cl(u, v) denotes the length-weighted copy-number of a particular interval
covering (u, v), then we define the copy-number ratio of the n-th reconstructed cycle as:

Cl(W
n
r) =

∑
i∈|Ir,n|Cl(li, ri)

Cl(G)
Then, rank-ordering the N cycles returned by a cycle decomposition algorithm in descending

order, we define the k−heaviest copy-number ratio as the sum of the k largest cycles (where W i
r

represents the i-th largest cycle):

13

C1···k
l =

∑
i∈1···k

Cl(W
i
r)

References

Sergey Aganezov and Benjamin J Raphael. Reconstruction of clone-and haplotype-specific cancer
genome karyotypes from bulk tumor samples. Genome research, 30(9):1274–1290, 2020.

Anthony M Bolger, Marc Lohse, and Bjoern Usadel. Trimmomatic: a flexible trimmer for illumina
sequence data. Bioinformatics, 30(15):2114–2120, 2014.

Viraj Deshpande, Jens Luebeck, Nam-Phuong D Nguyen, Mehrdad Bakhtiari, Kristen M Turner,
Richard Schwab, Hannah Carter, Paul S Mischel, and Vineet Bafna. Exploring the landscape of
focal amplifications in cancer using AmpliconArchitect. Nature communications, 10(1):1–14, 2019.

Kevin Hadi, Xiaotong Yao, Julie M Behr, Aditya Deshpande, Charalampos Xanthopoulakis, Huasong
Tian, Sarah Kudman, Joel Rosiene, Madison Darmofal, Joseph DeRose, et al. Distinct classes of
complex structural variation uncovered across thousands of cancer genome graphs. Cell, 183(1):
197–210, 2020.

Hoon Kim, Nam-Phuong Nguyen, Kristen Turner, Sihan Wu, Amit D Gujar, Jens Luebeck, Jihe
Liu, Viraj Deshpande, Utkrisht Rajkumar, Sandeep Namburi, et al. Extrachromosomal DNA
is associated with oncogene amplification and poor outcome across multiple cancers. Nature
genetics, 52(9):891–897, 2020.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100,
2018.

Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows–Wheeler
transform. bioinformatics, 25(14):1754–1760, 2009.

Jens Luebeck, Ceyda Coruh, Siavash R Dehkordi, Joshua T Lange, Kristen M Turner, Viraj Desh-
pande, Dave A Pai, Chao Zhang, Utkrisht Rajkumar, Julie A Law, et al. AmpliconReconstructor
integrates NGS and optical mapping to resolve the complex structures of focal amplifications.
Nature communications, 11(1):4374, 2020.

Paul Medvedev, Marc Fiume, Misko Dzamba, Tim Smith, and Michael Brudno. Detecting copy
number variation with mated short reads. Genome research, 20(11):1613–1622, 2010.

Fritz J Sedlazeck, Philipp Rescheneder, Moritz Smolka, Han Fang, Maria Nattestad, Arndt Von Hae-
seler, and Michael C Schatz. Accurate detection of complex structural variations using single-
molecule sequencing. Nature methods, 15(6):461–468, 2018.

Eric Talevich, A Hunter Shain, Thomas Botton, and Boris C Bastian. CNVkit: genome-wide copy
number detection and visualization from targeted DNA sequencing. PLoS computational biology,
12(4):e1004873, 2016.

14

