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Supplemental Methods

Identification of back-spliced reads

The back-spliced reads (see Supplemental Fig. S1) are pivotal in detecting circRNAs. TERRACE
identifies back-spliced reads from two sources: chimerically aligned reads in the input alignment,
and by a new, light-weight, junction-targeted mapping algorithm. A chimerically aligned read is a
special class of reads where different portions of it are aligned to different locations of the reference
genome. These reads are indicative of structural variation, including BSJs. In the BAM format,
one of its alignments is recorded as primary and others as supplementary alignments. TERRACE
looks for chimerically aligned reads with only one supplementary alignment. Let R1 and R2 be the
two ends of a paired-end read, where we assume R1 is chimerically aligned, with its primary and
supplementary alignment being denoted as R1.primary and R1.supple respectively. A pattern often
exists in the CIGAR strings if R; contains a BSJ. An example is given in Supplemental Fig. S1,
where the CIGAR strings of R1.primary and RI1.supple are 30H70M and 30M70S, respectively. The
30 matched base pairs in the supplementary alignment complement the 30 unaligned portion (hard
clipped, denoted by an ‘H‘) in the primary alignment while the 70 matched base pairs in the
primary alignment complement the 70 soft clipped portion in the supplementary alignment. Such
a complementary relationship strongly indicates a BSJ. TERRACE collects chimerically aligned

reads satisfying this relationship as back-spliced reads.

TERRACE also implements a new method to identify more back-spliced reads whose chimeric
property are not captured by the aligner. First, splicing positions are extracted from read junctions
(represented by an 'N’ in the CIGAR; a junction specifies two splicing positions). Additional
splicing positions are also identified from the annotated transcripts given a reference transcriptome
is provided. The collected splicing positions will be used as supporting evidence for BSJs. Next,
the reads that have soft clips at either end greater than a threshold (a parameter of TERRACE
with a default value of 15) are considered candidates for back-spliced reads. The sequence of the
soft clipped region, denoted as S, will be remapped to the reference genome at a splicing position
to identify a significant match. More specifically, for each candidate splicing position that may

form a BSJ with the soft clipped region (depending on the relative locations of R1 and R2), we
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extract a sequence of the same length as .S from the reference genome, denoted as 7', and calculate
the Jaccard index of the two sets of kmers in S and T', where by default k = 10. If the Jaccard is
greater than a threshold (0.9 by default) and there does not exist another such 7', TERRACE will
use it and create a supplementary alignment record for S by mapping it to 7. Now we have a new
back-spliced read that can be treated as the same way as those identified from chimerically aligned

reads.

Transforming assembly to bridging

A back-spliced read is presumably expressed from a circRNA; we aim for assembling its original
circRNA for each back-spliced read. Recall that a back-spliced read R with ends R7 and R2 consists
of three segments RI1.primary, R2, and R1.supple, assuming R1 contains the BSJ. We already know
that these three fragments must be part of the original circRNA, and that the circRNA uses the
BSJ to form its circular structure. What we still miss is how the three segments are connected in the
circRNA, as the three segments may be aligned to distant portions of the reference genome. We refer
to the task of closing the two gaps among the three segments in a back-spliced read as “bridging”:

assembling the full-length circRNA now becomes bridging. See Supplemental Fig. S2(b).

To formalize the bridging task, we introduce the underlying data structure: splice graph. See
Supplemental Fig. S2(a). Splice graph has been instrumental in studying alternative splicing and
in assembling (linear) transcripts. It is a weighted directed graph, denoted as G = (V, E,w), that
organizes the splicing and coverage information in the read alignment of a gene locus. To construct
G, junctions from reads and annotated transcripts (if provided) are collected and their splicing
positions will be used to partition the reference genome into (partial) exons and introns, in which
the partial exons will be the vertices V' of G. A directed edge e € E is placed between vertex u and
vertex v if there exists a read that spans u and v; the weight w(e) of edge e will be the number
of such reads. A source vertex s is added and connected to any vertex u with in-degree of 0 using
weight w(s,u) =, »ep w(u,v); a sink vertex ¢ is also added and any vertex v with out-degree

of 0 will be connected to t with weight w(v,t) = 3", »)ep W (U, v).

The three fragments of a back-spliced read can be represented as three paths in the splice graph

G. The bridging task now involves finding two bridging paths in GG that connect the three known



70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

paths. Solving this results in a single path that threads the 3 fragments, which forms the circRNA
together with the BSJ. Due to alternative splicing and sequencing/alignment errors, multiple pos-
sible bridging paths exist. We therefore need a characterization for better bridging paths and an

efficient algorithm to calculate them.

Formulation and algorithm for bridging

Let A = (a1,a2, -+ ,a;), B = (b1,b2,--- ,b;), and C = (c1,¢2,- -+ ,¢x) be the 3 paths in G corre-
sponding to the 3 fragments of a back-spliced read. We aim to find the “best” paths in G from a;
to by and from b; to c;. We adopt a definition we proposed in reconstructing the entire fragment
of paired-end RNA-seq reads Zhang et al. (2022); Li and Shao (2023). The idea was to seek a path
whose “bottleneck weight” is maximized, which is effective for selecting the path with the strongest
support and for excluding false paths due to errors which often contain edges with a small weight.
Formally, we define the score of a path p as the smallest weight over all edges in p. The formulation
is to find a path p; from a; to by and a path ps from b; to ¢; such that the score of p; and that
of po are maximized. The optimal p; and ps can be calculated independently (we assume paths
A, B, and C' are vertex-disjoint; otherwise, they can be either bridged trivially or bridging is not
possible in which case this read will be discarded). An efficient dynamic programming algorithm
can be designed to find optimal p; and py. Please refer to Zhang et al. (2022) for details. The
programming algorithm can be extended to produce suboptimal paths as candidates (by default
TERRACE calculates top 10 optimal paths for each back-spliced read), which will be combined

with additional information for selection.

Selection of candidate paths

Let P be the set of candidate full-length circular paths for a back-spliced read. We apply some
heuristic procedures to filter false-positive paths. If a path p € P contains a vertex (partial exon)
in which a region of length larger than a threshold (by default 10 base pairs) is not covered by any
read then p will be removed from P. For every pair of paths p,q € P, if an intron of p is fully
covered by an exon of ¢, then ¢ will be removed. This procedure helps to filter out paths with
anticipated intron retentions. If there exists a path p € P with bottleneck weight higher than a

chosen threshold ¢ (by default ¢ = 1), all paths in P with bottleneck weight smaller than or equal
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to c are discarded. This procedure aims to remove less reliable paths when more reliable ones exist.

We use P; to denote the set of survived paths.

If a reference transcriptome is provided, TERRACE will then identify more candidate full-length
circular paths from it. See Supplemental Fig. S3. We define an annotated (linear) transcript ¢
is compatible with a back-spliced read R if both the BSJ and the splicing positions in the three
fragments of R match the splicing positions of g. Unique compatible paths bounded by the BSJ
will be collected as another set P, of candidate full-length circular paths for R. If Py N Py # (), the
path in P; N P, with maximized bottleneck weight will be picked; if Py N P, = () and Py # (), we
pick the path in P; with maximized bottleneck weight regardless of P, (i.e., we give higher priority
to paths inferred from the read alignment rather than from reference annotation). If P; = () and P,
contains a single path, we pick that path from P». If P, contains multiple paths, ambiguity exists,
and hence we discard the read. A read is also discarded if P; U P, = (). The selected full-length
circular path is then transformed to a fully annotated circRNA by borrowing genomic coordinates

from the reference genome.

The assembled circRNA then goes through a series of quality check. For example, if the circRNA
has a single exon greater than 2000bp or a multi exon greater than 1000bp, it is discarded because of
possible intron retention. A circRNA is also discarded if the number of exons in the path is greater
than 15 since it is most likely to be a false positive arising from spurious small junctions. Note that
multiple back-spliced reads can produce identical circRNA. We merge identical circRNAs to a single
instance and the number of back-spliced reads generating this circRNA is recorded as its abundance.
We observe that circRNAs may differ by a few base pairs (50bp by default) at their BSJs but share
the same intron chain. In such case, the circRNA with higher abundance is retained. To further
investigate the effect of this merging parameter on the results, we conduct additional experiments
by varying the threshold from 0 to 100 and generate precision-recall curves. Supplemental Figure
S6 shows that the change in precision or recall due to the variation is insignificant. Therefore, we
conclude that a very low percentage of the circRNAs have such few base pairs difference at their

BSJs.
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Scoring assembled circular RN As

Assigning a confidence score to assembled circRNAs is desirable to ensure that those with higher
scores are more likely to be true. Traditionally, abundance has served this purpose in transcript
assembly as it shows a high correlation to the correctness of the assembled transcripts. We inves-
tigate whether a machine-learning approach could yield a more accurate scoring function. To this
end, we extract 13 features to characterize each assembled circRNA, ranging from its abundance
to the (average) length of the soft clips of back-spliced reads. Please refer to Supplemental Note

for a detailed description of all features.

We use a random forest model trained on a single tissue sample (brain) and tested it on other
samples. The default loss function from the python scikit-learn package was used during the training
process. We run TERRACE (both with and without annotation) to generate a combined feature file
from the brain sample. Each entry within the feature file corresponds to distinct features extracted
from the output circRNA list produced by TERRACE. Using the ground truth, we assigned labels
to each entry within the feature file indicating whether the circRNA is a true one. The labeled
feature file is then fed to the random forest model for training. For testing a sample, we used
the feature file of the sample without any label and fed it to the pre-trained model. The model

generates a list of score or probabilities that represent the reliability of the assembled circRNAs.

We aim to train a model that is capable of generalizing across different tissues. This is challenging
due to the variability between samples and the limited number of instances available. To fortify its
stability, we incorporate the number of reference transcripts present in each instance (gene locus) as
features, and use the assembled circRNAs by TERRACE with and without reference annotations
to train the model. This approach is proven beneficial in generalizing, especially when the test set
is markedly different from the training set or when the dataset is small (such as skeletal muscle).
Additionally, this enables a single model to be applicable on circRNAs assembled both with and

without annotations (instead of training two models).
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Supplemental Note

Description of random forest features

We elaborate the features used to train the scoring function described in Methods and provide our

insights on why they can be informative. The features are characterizing an assembled circRNA .

1. Coverage. This is the number of back-spliced reads that produce x. Intuitively, a circRNA

supported by a higher number of back-spliced reads is more likely to be correct.

2. Count of additional back-spliced reads that produce x. By additional, we mean those back-
spliced reads identified by TERRACE but missed by the aligner. The argument for including
this as a feature is similar to the intuition in 1, i.e., a higher abundance of reads is an evidence

for real circRNAs.

3. Sum of soft clip lengths of the back-spliced reads that produce x. Back-spliced read with a
longer soft clip is more likely to be correctly aligned to the correct junction. Hence, circular

RNAs characterized by longer soft clips are more likely to be genuine.

4. Sum of bridging path scores of reads that produce x. Recall that the score of a path represents
its bottleneck weight. Paths with higher scores receive support from more reads, and may be

an important factor in distinguishing between true and false instances.

5. Sum of the count of full-length candidate paths from back-spliced reads that produce z. By
default, TERRACE considers the top 10 bridging paths and selects a set of them using some
filtering criteria (Supplemental Methods: Selection of candidate paths) to be further analyzed.
The greater the number of paths in this selected set, the more likely it is to deviate from

choosing the correct path.

6. Count of bridging path type of back-spliced reads producing x. The path type refers to
whether the selected path is inferred from read alignments or reference transcripts and if the
path length is within the range of insert size. When selecting a bridging path, we normally
would want to assign a higher priority to paths inferred from read alignment than from
the reference annotation, aiming to construct novel circRNAs. However, if the set of paths

inferred from reads is empty, sometimes a path from the annotation (if provided) may help
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recover a correct circRNA specially when the coverage within a region is low. These features

may provide guidance to the machine learning model to make accurate decisions.

7. Number of exons in x. In certain high-coverage areas of specific samples, numerous false
circRNAs with a large number of exons are detected due to the presence of many small

splicing sites. Hence, this information can be an important factor.

8. Total length of exons in x. We observe that some circRNAs have extended exon lengths,
which are misleading and primarily caused by intron retentions. Therefore, considering the

total exon length as a feature could prove valuable in making decisions.
9. Maximum length of exons in z. Intuition similar to 8.
10. Minimum length of exons in x. Intuition similar to 8.

11. Total number of reads in the region where x is identified. We observe a few instances where a
false circRNA is supported by many reads, primarily in some high coverage regions of certain
samples. Involving the number of reads (both ordinary and back-spliced) as a feature may

help to normalize this bias.

12. Total number of reference transcripts in the region where x is identified. The splicing posi-
tions from reference transcripts (when annotation provided) influences the identification of
additional chimeric reads and adds to the set of paths to be considered for bridging. There-
fore, the number of annotated transcripts in a region may serve as a useful feature for learning

a better score.

Comparison of runtime and memory usage

Table S1 shows the CPU time (user time plus kernel time) of various tools on the real dataset.
CIRCexplorer2 has the fastest execution time which is expected given it utilizes a more compact
annotation file than the raw version. TERRACE is the second fastest, surpassing both CircAST
and CIRI-full by a large margin. Overall, TERRACE delivers vastly superior accuracy within a

reasonable processing time.

Table S2 shows the peak memory usage of various tools on the real dataset. While TERRACE
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may not excel in peak memory usage, it still operates within an acceptable range and outperforms
CIRI-full significantly. It is important to highlight that the both running time and peak memory
usage values of TERRACE are very similar regardless of whether an annotation is provided (i.e.,

the use of annotation does not significantly impact its computational efficiency).
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Supplemental Figures

A an example of back-spliced read

reference
: : BS)
e S— e —
R1.primary: R2: R1.supple:
30H70M 40M1080N60M 30M70S

reference /\

B identifying new back-spliced read

junctions

C — —
R1: R2: 30bp 30bp  30bp
30570M 40M1080N60M

Supplemental Figure S1: A, the CIGAR strings of the 3 segments in a back-spliced read. B,
the soft clipped sequence (dashed box in red) will be compared with the reference sequence next

to a splicing position of the same length.
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Supplemental Figure S2: A, constructing splice graph from reads alignment. B, the 3 fragments
namely RI.primary, R2, and R1.supple of a back-spliced read are represented as paths in the splice
graph, which are (1), (3,4), and (6), respectively. The two optimal bridging paths, which maximize
the “bottleneck” weight, are marked in red. The resulting full-length circular path for this back-

spliced readis1 -2 —+3 —4 —6 — 1.
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read from annotated transcripts.
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Supplemental Figure S4: Comparison of precision-recall curves of methods without annotation.
Fscores (%) are indicated on top of data points.
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Supplemental Figure S7: Number of overlapping circRNAs detected by CIRI-long and TER-
RACE on mouse brain samples with annotation.
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Supplemental Figure S8: Number of overlapping circRNAs detected by CIRI-long and TER-
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x: Supplemental Tables

Supplemental Table S1: CPU time (in minutes) for different tools on various datasets.

methods w/o annotation

methods with annotation

sample T fall  TERRACE CIRCexplorer2  CircAST  CIRI-full TERRACE
Tung 265 29 0.14 249 266 26
brain a7l 42 0.21 1234 489 15
skeletal 334 10 0.10 260 337 50
heart 380 32 0.10 488 389 35
festis 127 39 0.14 922 472 10
liver 330 31 0.08 423 345 31
kidney 352 31 0.10 554 370 32
prostate 253 52 0.24 229 307 57
average 352 37 0.14 545 372 40

18



Supplemental Table S2: Peak memory usage (in GB) for different tools on various datasets.

sample methods w/o annotation methods with annotation
CIRI-full TERRACE CIRCexplorer2 CircAST CIRI-full TERRACE

lung 10.1 16.9 0.14 0.07 11.0 16.7
brain 80.4 11.2 0.16 0.11 81.1 11.4
skeletal 22.2 19.8 0.14 0.10 22.8 20.2
heart 30.8 10.9 0.14 0.61 31.4 11.1
testis 74.8 5.5 0.15 0.09 76.2 5.6
liver 271.9 17.7 0.14 0.08 31.7 17.9
kidney 32.0 10.3 0.14 0.08 33.1 10.1
prostate 21.7 23.4 0.15 0.08 22.4 23.6
average 68.0 14.5 0.15 0.15 38.7 14.6
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Supplemental Table S3: Comparison of pAUC (%, w/o annotation). A% represents the per-
centage improvement of TERRACE over other methods.

TERRACE vs. CIRI-full TERRACE vs. CIRI-full

sample constrained by recall constrained by precision

TERRACE CIRI-full A% TERRACE CIRI-full A%

lung 65.2 52.3 24.6 66.8 14.3 365.9
brain 1380.1 1047.8 31.7 969.7 339.0 185.9
skeletal 75.7 62.5 21.0 59.9 17.3 246.0
heart 347.6 294 .4 18.0 334.2 113.0 195.5
testis 851.9 645.4 31.9 618.4 196.4 214.9
liver 527.1 450.4 17.0 255.9 136.8 87.0
kidney 553.9 483.3 14.6 267.9 133.8 100.1
prostate 495.7 364.1 36.1 598.0 161.4 270.3
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Supplemental Table S4: Comparison of pAUC (%, constrained by recall, with annotation). A%
represents the percentage improvement of TERRACE over other methods.

TERRACE vs. CIRI-full TERRACE vs. CIRCexplorer2 TERRACE vs. CircAST

sample

" TERRACE CIRI-full A% TERRACE CIRCexplorer2 A% TERRACE CircAST A%
lung 70.9 56.5 25.3 332.2 297.7 11.5 62.1 65.5 -5.1
brain 1363.2 1098.3 24.1 2418.8 1884.8 28.3 721.1 513.5 404
skeletal 72.7 61.6 18.1 257.7 225.3 14.3 52.1 52.0 0.2
heart 359.9 303.3 18.6 995.2 886.9 12.2 313.5 259.1 209
testis 843.1 685.8  22.9 1598.2 1378.1 15.9 345.3 282.7 22.1
liver 524.3 466.8 12.3 962.1 804.6 19.5 252.0 196.7  28.1
kidney 564.8 498.6 13.2 1113.0 988.9 12.5 284.0 239.8 184
prostate 517.3 404.5 27.8 1305.8 1093.3 19.4 272.1 203.1 339
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Supplemental Table S5: Comparison of pAUC (%, constrained by precision, with annotation).
A% represents the percentage improvement of TERRACE over other methods.

TERRACE vs. CIRI-full TERRACE vs. CIRCexplorer2 TERRACE vs. CircAST

sample
’ TERRACE CIRI-full A% TERRACE CIRCexplorer2 A% TERRACE CircAST A%

lung 84.9 15.0 464.5 63.6 38.9 63.5 11.1 7.7 42.4
brain 996.4 400.5  148.7 1427.5 766.4 86.2 703.7 119.6  488.0
skeletal 78.2 17.5 345.3 78.2 44.4 76.1 57.7 14.2 305.4
heart 395.7 128.4  208.2 395.7 265.4 49.0 260.6 77.9 234.2
testis 631.5 242.3  160.5 742.0 418.1 774 275.0 44.8 513.3
liver 257.0 147.8 73.9 476.1 288.7 64.9 212.6 43.3 390.7
kidney 289.4 152.3 89.9 485.4 333.1 45.7 205.0 53.2 284.9
prostate 663.4 219.5  202.1 666.7 409.4 62.8 179.9 28.1 540.2
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Supplemental Table S6: Results for varying the parameters of CIRI-simulator, w/o annotation.

read circular linear TERRACE CIRI-full

length coverage coverage %recall %precision %recall %precision
100 10 10 80.17 97.18 58.45 91.74
75 10 10 78.33 97.03 41.41 86.73
100 ) 10 64.09 96.95 34.06 83.48
100 15 10 82.97 96.67 67.7 94.19
100 10 ) 79.75 97.28 56.78 91.69
100 10 15 80.07 97.2 58.78 91.83
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Supplemental Table S7: Results for varying the parameters of CIRI-simulator, with annotation.

. . TERRACE CIRI-full CIRCexplorer2 CircAST

read circular linear

length coverage coverage %recall %precision %recall %precision %recall %precision %recall %precision
100 10 10 83.79 95.89 58.44 91.73 76.91 87.99 1.29 95.45
75 10 10 82.74 95.62 41.41 86.74 75.35 87.8 0.89 93.58
100 5 10 67.95 95.84 34.05 83.47 61.86 88.15 0.02 100
100 15 10 87.47 95.21 67.71 94.21 81.07 87.54 8.08 96.36
100 10 ) 83.6 95.86 56.74 91.66 76.85 87.76 1.13 96.84
100 10 15 83.83 95.83 58.8 91.89 76.88 87.85 1.42 95.39
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Supplemental Table S8: Number of paired-end reads in the human tisue samples, number
of circRNAs produced from long-reads in the isoCirc paper (which we use as ground truth for
evaluation), number of circRNAs assembled and correctly identified by TERRACE, CIRI-full, and
CIRCexplorer2.

w /o annotation with annotation
sample #reads #circRNAs TERRACE CIRI-full TERRACE CIRCexplorer2
#detected #correct #detected #correct #detected #correct #detected #correct

lung 8™ 18136 1388 810 606 158 1798 1033 1608 872

brain 82M 35801 33785 12428 12024 5553 35365 12835 30611 10754
skeletal 93M 10908 805 387 390 112 1053 494 983 434

heart 7OM 11223 3692 1670 1032 456 4113 1815 3770 1591
testis 90M 42633 26509 11333 9070 4195 27329 11603 21740 9188
liver 87TM 11978 5314 1951 1533 774 5588 2010 4989 1744
kidney  93M 22521 9176 3915 2791 1494 9869 4115 8747 3554
prostate 83M 8114 6342 1942 2029 496 6973 2081 6469 1794
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