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Supplemental Methods14

Identification of back-spliced reads15

The back-spliced reads (see Supplemental Fig. S1) are pivotal in detecting circRNAs. TERRACE16

identifies back-spliced reads from two sources: chimerically aligned reads in the input alignment,17

and by a new, light-weight, junction-targeted mapping algorithm. A chimerically aligned read is a18

special class of reads where different portions of it are aligned to different locations of the reference19

genome. These reads are indicative of structural variation, including BSJs. In the BAM format,20

one of its alignments is recorded as primary and others as supplementary alignments. TERRACE21

looks for chimerically aligned reads with only one supplementary alignment. Let R1 and R2 be the22

two ends of a paired-end read, where we assume R1 is chimerically aligned, with its primary and23

supplementary alignment being denoted as R1.primary and R1.supple respectively. A pattern often24

exists in the CIGAR strings if R1 contains a BSJ. An example is given in Supplemental Fig. S1,25

where the CIGAR strings of R1.primary and R1.supple are 30H70M and 30M70S, respectively. The26

30 matched base pairs in the supplementary alignment complement the 30 unaligned portion (hard27

clipped, denoted by an ‘H‘) in the primary alignment while the 70 matched base pairs in the28

primary alignment complement the 70 soft clipped portion in the supplementary alignment. Such29

a complementary relationship strongly indicates a BSJ. TERRACE collects chimerically aligned30

reads satisfying this relationship as back-spliced reads.31

TERRACE also implements a new method to identify more back-spliced reads whose chimeric32

property are not captured by the aligner. First, splicing positions are extracted from read junctions33

(represented by an ’N’ in the CIGAR; a junction specifies two splicing positions). Additional34

splicing positions are also identified from the annotated transcripts given a reference transcriptome35

is provided. The collected splicing positions will be used as supporting evidence for BSJs. Next,36

the reads that have soft clips at either end greater than a threshold (a parameter of TERRACE37

with a default value of 15) are considered candidates for back-spliced reads. The sequence of the38

soft clipped region, denoted as S, will be remapped to the reference genome at a splicing position39

to identify a significant match. More specifically, for each candidate splicing position that may40

form a BSJ with the soft clipped region (depending on the relative locations of R1 and R2 ), we41
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extract a sequence of the same length as S from the reference genome, denoted as T , and calculate42

the Jaccard index of the two sets of kmers in S and T , where by default k = 10. If the Jaccard is43

greater than a threshold (0.9 by default) and there does not exist another such T , TERRACE will44

use it and create a supplementary alignment record for S by mapping it to T . Now we have a new45

back-spliced read that can be treated as the same way as those identified from chimerically aligned46

reads.47

Transforming assembly to bridging48

A back-spliced read is presumably expressed from a circRNA; we aim for assembling its original49

circRNA for each back-spliced read. Recall that a back-spliced read R with ends R1 and R2 consists50

of three segments R1.primary, R2, and R1.supple, assuming R1 contains the BSJ. We already know51

that these three fragments must be part of the original circRNA, and that the circRNA uses the52

BSJ to form its circular structure. What we still miss is how the three segments are connected in the53

circRNA, as the three segments may be aligned to distant portions of the reference genome. We refer54

to the task of closing the two gaps among the three segments in a back-spliced read as “bridging”:55

assembling the full-length circRNA now becomes bridging. See Supplemental Fig. S2(b).56

To formalize the bridging task, we introduce the underlying data structure: splice graph. See57

Supplemental Fig. S2(a). Splice graph has been instrumental in studying alternative splicing and58

in assembling (linear) transcripts. It is a weighted directed graph, denoted as G = (V,E,w), that59

organizes the splicing and coverage information in the read alignment of a gene locus. To construct60

G, junctions from reads and annotated transcripts (if provided) are collected and their splicing61

positions will be used to partition the reference genome into (partial) exons and introns, in which62

the partial exons will be the vertices V of G. A directed edge e ∈ E is placed between vertex u and63

vertex v if there exists a read that spans u and v; the weight w(e) of edge e will be the number64

of such reads. A source vertex s is added and connected to any vertex u with in-degree of 0 using65

weight w(s, u) =
∑

v:(u,v)∈E w(u, v); a sink vertex t is also added and any vertex v with out-degree66

of 0 will be connected to t with weight w(v, t) =
∑

u:(u,v)∈E w(u, v).67

The three fragments of a back-spliced read can be represented as three paths in the splice graph68

G. The bridging task now involves finding two bridging paths in G that connect the three known69
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paths. Solving this results in a single path that threads the 3 fragments, which forms the circRNA70

together with the BSJ. Due to alternative splicing and sequencing/alignment errors, multiple pos-71

sible bridging paths exist. We therefore need a characterization for better bridging paths and an72

efficient algorithm to calculate them.73

Formulation and algorithm for bridging74

Let A = (a1, a2, · · · , ai), B = (b1, b2, · · · , bj), and C = (c1, c2, · · · , ck) be the 3 paths in G corre-75

sponding to the 3 fragments of a back-spliced read. We aim to find the “best” paths in G from ai76

to b1 and from bj to c1. We adopt a definition we proposed in reconstructing the entire fragment77

of paired-end RNA-seq reads Zhang et al. (2022); Li and Shao (2023). The idea was to seek a path78

whose “bottleneck weight” is maximized, which is effective for selecting the path with the strongest79

support and for excluding false paths due to errors which often contain edges with a small weight.80

Formally, we define the score of a path p as the smallest weight over all edges in p. The formulation81

is to find a path p1 from ai to b1 and a path p2 from bj to c1 such that the score of p1 and that82

of p2 are maximized. The optimal p1 and p2 can be calculated independently (we assume paths83

A, B, and C are vertex-disjoint; otherwise, they can be either bridged trivially or bridging is not84

possible in which case this read will be discarded). An efficient dynamic programming algorithm85

can be designed to find optimal p1 and p2. Please refer to Zhang et al. (2022) for details. The86

programming algorithm can be extended to produce suboptimal paths as candidates (by default87

TERRACE calculates top 10 optimal paths for each back-spliced read), which will be combined88

with additional information for selection.89

Selection of candidate paths90

Let P be the set of candidate full-length circular paths for a back-spliced read. We apply some91

heuristic procedures to filter false-positive paths. If a path p ∈ P contains a vertex (partial exon)92

in which a region of length larger than a threshold (by default 10 base pairs) is not covered by any93

read then p will be removed from P . For every pair of paths p, q ∈ P , if an intron of p is fully94

covered by an exon of q, then q will be removed. This procedure helps to filter out paths with95

anticipated intron retentions. If there exists a path p ∈ P with bottleneck weight higher than a96

chosen threshold c (by default c = 1), all paths in P with bottleneck weight smaller than or equal97
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to c are discarded. This procedure aims to remove less reliable paths when more reliable ones exist.98

We use P1 to denote the set of survived paths.99

If a reference transcriptome is provided, TERRACE will then identify more candidate full-length100

circular paths from it. See Supplemental Fig. S3. We define an annotated (linear) transcript q101

is compatible with a back-spliced read R if both the BSJ and the splicing positions in the three102

fragments of R match the splicing positions of q. Unique compatible paths bounded by the BSJ103

will be collected as another set P2 of candidate full-length circular paths for R. If P1 ∩ P2 ̸= ∅, the104

path in P1 ∩ P2 with maximized bottleneck weight will be picked; if P1 ∩ P2 = ∅ and P1 ̸= ∅, we105

pick the path in P1 with maximized bottleneck weight regardless of P2 (i.e., we give higher priority106

to paths inferred from the read alignment rather than from reference annotation). If P1 = ∅ and P2107

contains a single path, we pick that path from P2. If P2 contains multiple paths, ambiguity exists,108

and hence we discard the read. A read is also discarded if P1 ∪ P2 = ∅. The selected full-length109

circular path is then transformed to a fully annotated circRNA by borrowing genomic coordinates110

from the reference genome.111

The assembled circRNA then goes through a series of quality check. For example, if the circRNA112

has a single exon greater than 2000bp or a multi exon greater than 1000bp, it is discarded because of113

possible intron retention. A circRNA is also discarded if the number of exons in the path is greater114

than 15 since it is most likely to be a false positive arising from spurious small junctions. Note that115

multiple back-spliced reads can produce identical circRNA. We merge identical circRNAs to a single116

instance and the number of back-spliced reads generating this circRNA is recorded as its abundance.117

We observe that circRNAs may differ by a few base pairs (50bp by default) at their BSJs but share118

the same intron chain. In such case, the circRNA with higher abundance is retained. To further119

investigate the effect of this merging parameter on the results, we conduct additional experiments120

by varying the threshold from 0 to 100 and generate precision-recall curves. Supplemental Figure121

S6 shows that the change in precision or recall due to the variation is insignificant. Therefore, we122

conclude that a very low percentage of the circRNAs have such few base pairs difference at their123

BSJs.124
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Scoring assembled circular RNAs125

Assigning a confidence score to assembled circRNAs is desirable to ensure that those with higher126

scores are more likely to be true. Traditionally, abundance has served this purpose in transcript127

assembly as it shows a high correlation to the correctness of the assembled transcripts. We inves-128

tigate whether a machine-learning approach could yield a more accurate scoring function. To this129

end, we extract 13 features to characterize each assembled circRNA, ranging from its abundance130

to the (average) length of the soft clips of back-spliced reads. Please refer to Supplemental Note131

for a detailed description of all features.132

We use a random forest model trained on a single tissue sample (brain) and tested it on other133

samples. The default loss function from the python scikit-learn package was used during the training134

process. We run TERRACE (both with and without annotation) to generate a combined feature file135

from the brain sample. Each entry within the feature file corresponds to distinct features extracted136

from the output circRNA list produced by TERRACE. Using the ground truth, we assigned labels137

to each entry within the feature file indicating whether the circRNA is a true one. The labeled138

feature file is then fed to the random forest model for training. For testing a sample, we used139

the feature file of the sample without any label and fed it to the pre-trained model. The model140

generates a list of score or probabilities that represent the reliability of the assembled circRNAs.141

We aim to train a model that is capable of generalizing across different tissues. This is challenging142

due to the variability between samples and the limited number of instances available. To fortify its143

stability, we incorporate the number of reference transcripts present in each instance (gene locus) as144

features, and use the assembled circRNAs by TERRACE with and without reference annotations145

to train the model. This approach is proven beneficial in generalizing, especially when the test set146

is markedly different from the training set or when the dataset is small (such as skeletal muscle).147

Additionally, this enables a single model to be applicable on circRNAs assembled both with and148

without annotations (instead of training two models).149
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Supplemental Note150

Description of random forest features151

We elaborate the features used to train the scoring function described in Methods and provide our152

insights on why they can be informative. The features are characterizing an assembled circRNA x.153

1. Coverage. This is the number of back-spliced reads that produce x. Intuitively, a circRNA154

supported by a higher number of back-spliced reads is more likely to be correct.155

2. Count of additional back-spliced reads that produce x. By additional, we mean those back-156

spliced reads identified by TERRACE but missed by the aligner. The argument for including157

this as a feature is similar to the intuition in 1, i.e., a higher abundance of reads is an evidence158

for real circRNAs.159

3. Sum of soft clip lengths of the back-spliced reads that produce x. Back-spliced read with a160

longer soft clip is more likely to be correctly aligned to the correct junction. Hence, circular161

RNAs characterized by longer soft clips are more likely to be genuine.162

4. Sum of bridging path scores of reads that produce x. Recall that the score of a path represents163

its bottleneck weight. Paths with higher scores receive support from more reads, and may be164

an important factor in distinguishing between true and false instances.165

5. Sum of the count of full-length candidate paths from back-spliced reads that produce x. By166

default, TERRACE considers the top 10 bridging paths and selects a set of them using some167

filtering criteria (Supplemental Methods: Selection of candidate paths) to be further analyzed.168

The greater the number of paths in this selected set, the more likely it is to deviate from169

choosing the correct path.170

6. Count of bridging path type of back-spliced reads producing x. The path type refers to171

whether the selected path is inferred from read alignments or reference transcripts and if the172

path length is within the range of insert size. When selecting a bridging path, we normally173

would want to assign a higher priority to paths inferred from read alignment than from174

the reference annotation, aiming to construct novel circRNAs. However, if the set of paths175

inferred from reads is empty, sometimes a path from the annotation (if provided) may help176
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recover a correct circRNA specially when the coverage within a region is low. These features177

may provide guidance to the machine learning model to make accurate decisions.178

7. Number of exons in x. In certain high-coverage areas of specific samples, numerous false179

circRNAs with a large number of exons are detected due to the presence of many small180

splicing sites. Hence, this information can be an important factor.181

8. Total length of exons in x. We observe that some circRNAs have extended exon lengths,182

which are misleading and primarily caused by intron retentions. Therefore, considering the183

total exon length as a feature could prove valuable in making decisions.184

9. Maximum length of exons in x. Intuition similar to 8.185

10. Minimum length of exons in x. Intuition similar to 8.186

11. Total number of reads in the region where x is identified. We observe a few instances where a187

false circRNA is supported by many reads, primarily in some high coverage regions of certain188

samples. Involving the number of reads (both ordinary and back-spliced) as a feature may189

help to normalize this bias.190

12. Total number of reference transcripts in the region where x is identified. The splicing posi-191

tions from reference transcripts (when annotation provided) influences the identification of192

additional chimeric reads and adds to the set of paths to be considered for bridging. There-193

fore, the number of annotated transcripts in a region may serve as a useful feature for learning194

a better score.195

Comparison of runtime and memory usage196

Table S1 shows the CPU time (user time plus kernel time) of various tools on the real dataset.197

CIRCexplorer2 has the fastest execution time which is expected given it utilizes a more compact198

annotation file than the raw version. TERRACE is the second fastest, surpassing both CircAST199

and CIRI-full by a large margin. Overall, TERRACE delivers vastly superior accuracy within a200

reasonable processing time.201

Table S2 shows the peak memory usage of various tools on the real dataset. While TERRACE202
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may not excel in peak memory usage, it still operates within an acceptable range and outperforms203

CIRI-full significantly. It is important to highlight that the both running time and peak memory204

usage values of TERRACE are very similar regardless of whether an annotation is provided (i.e.,205

the use of annotation does not significantly impact its computational efficiency).206
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Supplemental Figures207

A an example of back-spliced read

R1.primary: 
30H70M

R2: 
40M1080N60M

R1.supple: 
30M70S

BSJ

reference

B identifying new back-spliced read

R1:
30S70M

R2: 
40M1080N60M

???

30bp 30bp 30bp

reference
junctions

Supplemental Figure S1: A, the CIGAR strings of the 3 segments in a back-spliced read. B,
the soft clipped sequence (dashed box in red) will be compared with the reference sequence next
to a splicing position of the same length.
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A constructing splice graph
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Supplemental Figure S2: A, constructing splice graph from reads alignment. B, the 3 fragments
namely R1.primary, R2, and R1.supple of a back-spliced read are represented as paths in the splice
graph, which are (1), (3,4), and (6), respectively. The two optimal bridging paths, which maximize
the “bottleneck” weight, are marked in red. The resulting full-length circular path for this back-
spliced read is 1 → 2 → 3 → 4 → 6 → 1.
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BSJ
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4 5 6 724 6 72 95

annotated linear transcripts compatible full-length circular paths

Supplemental Figure S3: Identifying compatible full-length circular paths for a back-spliced
read from annotated transcripts.
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A Illumina RNaseR rep1 vs Long SMARTer H- Atail
rep1

31028077 19687

CIRI-long TERRACE

B Illumina RNaseR rep2 vs Long SMARTer H- Atail
rep2

25724945 22349

CIRI-long TERRACE

C Illumina Total rep1 vs Long SMARTer H- Atail
rep1

18149365 5931

CIRI-long TERRACE

D Illumina Total rep2 vs Long SMARTer H- Atail
rep2

20725445 12032

CIRI-long TERRACE

Supplemental Figure S7: Number of overlapping circRNAs detected by CIRI-long and TER-
RACE on mouse brain samples with annotation.
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A Illumina RNaseR rep1 vs Long SMARTer H- Atail
rep1

28508066 18698

CIRI-long TERRACE

B Illumina RNaseR rep2 vs Long SMARTer H- Atail
rep2

23685002 21216

CIRI-long TERRACE

C Illumina Total rep1 vs Long SMARTer H- Atail
rep1

17309186 5780

CIRI-long TERRACE

D Illumina Total rep2 vs Long SMARTer H- Atail
rep2

19795391 11704

CIRI-long TERRACE

Supplemental Figure S8: Number of overlapping circRNAs detected by CIRI-long and TER-
RACE on mouse brain samples without annotation.
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Supplemental Tables208

Supplemental Table S1: CPU time (in minutes) for different tools on various datasets.

sample
methods w/o annotation methods with annotation

CIRI-full TERRACE CIRCexplorer2 CircAST CIRI-full TERRACE

lung 265 29 0.14 249 266 26

brain 471 42 0.21 1234 489 45

skeletal 334 40 0.10 260 337 50

heart 380 32 0.10 488 389 35

testis 427 39 0.14 922 472 40

liver 330 31 0.08 423 345 31

kidney 352 31 0.10 554 370 32

prostate 253 52 0.24 229 307 57

average 352 37 0.14 545 372 40
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Supplemental Table S2: Peak memory usage (in GB) for different tools on various datasets.

sample
methods w/o annotation methods with annotation

CIRI-full TERRACE CIRCexplorer2 CircAST CIRI-full TERRACE

lung 10.1 16.9 0.14 0.07 11.0 16.7

brain 80.4 11.2 0.16 0.11 81.1 11.4

skeletal 22.2 19.8 0.14 0.10 22.8 20.2

heart 30.8 10.9 0.14 0.61 31.4 11.1

testis 74.8 5.5 0.15 0.09 76.2 5.6

liver 271.9 17.7 0.14 0.08 31.7 17.9

kidney 32.0 10.3 0.14 0.08 33.1 10.1

prostate 21.7 23.4 0.15 0.08 22.4 23.6

average 68.0 14.5 0.15 0.15 38.7 14.6
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Supplemental Table S3: Comparison of pAUC (%, w/o annotation). ∆% represents the per-
centage improvement of TERRACE over other methods.

sample

TERRACE vs. CIRI-full TERRACE vs. CIRI-full

constrained by recall constrained by precision

TERRACE CIRI-full ∆% TERRACE CIRI-full ∆%

lung 65.2 52.3 24.6 66.8 14.3 365.9

brain 1380.1 1047.8 31.7 969.7 339.0 185.9

skeletal 75.7 62.5 21.0 59.9 17.3 246.0

heart 347.6 294.4 18.0 334.2 113.0 195.5

testis 851.9 645.4 31.9 618.4 196.4 214.9

liver 527.1 450.4 17.0 255.9 136.8 87.0

kidney 553.9 483.3 14.6 267.9 133.8 100.1

prostate 495.7 364.1 36.1 598.0 161.4 270.3
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Supplemental Table S4: Comparison of pAUC (%, constrained by recall, with annotation). ∆%
represents the percentage improvement of TERRACE over other methods.

sample
TERRACE vs. CIRI-full TERRACE vs. CIRCexplorer2 TERRACE vs. CircAST

TERRACE CIRI-full ∆% TERRACE CIRCexplorer2 ∆% TERRACE CircAST ∆%

lung 70.9 56.5 25.3 332.2 297.7 11.5 62.1 65.5 -5.1

brain 1363.2 1098.3 24.1 2418.8 1884.8 28.3 721.1 513.5 40.4

skeletal 72.7 61.6 18.1 257.7 225.3 14.3 52.1 52.0 0.2

heart 359.9 303.3 18.6 995.2 886.9 12.2 313.5 259.1 20.9

testis 843.1 685.8 22.9 1598.2 1378.1 15.9 345.3 282.7 22.1

liver 524.3 466.8 12.3 962.1 804.6 19.5 252.0 196.7 28.1

kidney 564.8 498.6 13.2 1113.0 988.9 12.5 284.0 239.8 18.4

prostate 517.3 404.5 27.8 1305.8 1093.3 19.4 272.1 203.1 33.9
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Supplemental Table S5: Comparison of pAUC (%, constrained by precision, with annotation).
∆% represents the percentage improvement of TERRACE over other methods.

sample
TERRACE vs. CIRI-full TERRACE vs. CIRCexplorer2 TERRACE vs. CircAST

TERRACE CIRI-full ∆% TERRACE CIRCexplorer2 ∆% TERRACE CircAST ∆%

lung 84.9 15.0 464.5 63.6 38.9 63.5 11.1 7.7 42.4

brain 996.4 400.5 148.7 1427.5 766.4 86.2 703.7 119.6 488.0

skeletal 78.2 17.5 345.3 78.2 44.4 76.1 57.7 14.2 305.4

heart 395.7 128.4 208.2 395.7 265.4 49.0 260.6 77.9 234.2

testis 631.5 242.3 160.5 742.0 418.1 77.4 275.0 44.8 513.3

liver 257.0 147.8 73.9 476.1 288.7 64.9 212.6 43.3 390.7

kidney 289.4 152.3 89.9 485.4 333.1 45.7 205.0 53.2 284.9

prostate 663.4 219.5 202.1 666.7 409.4 62.8 179.9 28.1 540.2
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Supplemental Table S6: Results for varying the parameters of CIRI-simulator, w/o annotation.

read circular linear
TERRACE CIRI-full

length coverage coverage %recall %precision %recall %precision

100 10 10 80.17 97.18 58.45 91.74

75 10 10 78.33 97.03 41.41 86.73

100 5 10 64.09 96.95 34.06 83.48

100 15 10 82.97 96.67 67.7 94.19

100 10 5 79.75 97.28 56.78 91.69

100 10 15 80.07 97.2 58.78 91.83
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Supplemental Table S7: Results for varying the parameters of CIRI-simulator, with annotation.

read circular linear
TERRACE CIRI-full CIRCexplorer2 CircAST

length coverage coverage %recall %precision %recall %precision %recall %precision %recall %precision

100 10 10 83.79 95.89 58.44 91.73 76.91 87.99 1.29 95.45

75 10 10 82.74 95.62 41.41 86.74 75.35 87.8 0.89 93.58

100 5 10 67.95 95.84 34.05 83.47 61.86 88.15 0.02 100

100 15 10 87.47 95.21 67.71 94.21 81.07 87.54 8.08 96.36

100 10 5 83.6 95.86 56.74 91.66 76.85 87.76 1.13 96.84

100 10 15 83.83 95.83 58.8 91.89 76.88 87.85 1.42 95.39
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Supplemental Table S8: Number of paired-end reads in the human tisue samples, number
of circRNAs produced from long-reads in the isoCirc paper (which we use as ground truth for
evaluation), number of circRNAs assembled and correctly identified by TERRACE, CIRI-full, and
CIRCexplorer2.

sample #reads#circRNAs

w/o annotation with annotation

TERRACE CIRI-full TERRACE CIRCexplorer2

#detected#correct#detected#correct #detected#correct#detected#correct

lung 87M 18136 1388 810 606 158 1798 1033 1608 872

brain 82M 35801 33785 12428 12024 5553 35365 12835 30611 10754

skeletal 93M 10908 805 387 390 112 1053 494 983 434

heart 79M 11223 3692 1670 1032 456 4113 1815 3770 1591

testis 90M 42633 26509 11333 9070 4195 27329 11603 21740 9188

liver 87M 11978 5314 1951 1533 774 5588 2010 4989 1744

kidney 93M 22521 9176 3915 2791 1494 9869 4115 8747 3554

prostate 83M 8114 6342 1942 2029 496 6973 2081 6469 1794
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