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Supplemental Methods

Assessment of Impacts of Environment Number on Accuracy of CERIS

Recent work systematically evaluated the number of environments needed to accurately
estimate and predict slope and intercept with empirical data from two crops (Guo et al. 2024). These
results showed that it is not only the number of environments observed but also the range of the
environmental mean that they cover that contributes to the accuracy of reaction norm parameter estimates
(Guo et al. 2024). From sampling subsets of a total of 9 environments, a plateau in accuracy was
consistently observed in both intercept and slope estimates in both crops when the subset included at least
4 environments and/or covered an environmental mean range at least 25-50% of the minimum
environmental mean observed (Guo et al. 2024). As few as two environments could provide good
estimates, as long as they covered a wide environmental gradient.

To check for impacts of number of observed environments on prediction accuracies, we
examined the correlation between these and found a significant positive correlation (Fig. STA: »=0.47, P
< 0.001). However, those traits regarded as important and requiring less additional work beyond the field
observations were measured in more environments (e.g., n=11 environments for flowering traits DTA and
DTS, considered less complex to predict) than were yield traits that require harvesting and processing for
measurements (e.g., n=5 environments for yield traits T20KW and KN, considered more complex to
predict) (Table S1) (Onogi 2022; Li et al. 2021). To differentiate the relative importance of trait type and
environment number to the overall trend, we checked the correlation within trait type, and found that
correlations decreased notably (Fig. S7B, r = 0.26-0.30, P<0.001), indicating that much of the overall
trend came from the connection of trait type (and prediction complexity) with observation number.

The range of measured environment number was 5-11 for all traits and an environmental mean
range of at least 25% of the minimum environmental mean was observed for all but 4 traits (ERN, CD,
LL, and T20KW), indicating that our data likely reached the plateau found by (Guo et al. 2024) based on

the number of environments and therefore should provide accurate estimates of slope and intercept,
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though of course there may be room for further improvement, particularly for the traits for which a lower

environmental range was covered.

Construction of Candidate Gene List

The full candidate gene list (Table S4) was constructed by building on previous work in the
NAM panel that defined candidate genes as those within a 20kb window centered on each significant
marker from GWAS (Kusmec et al. 2017). Each significant marker has segregating (bi-allelic) variants in
the NAM and was found to be associated with trait variation using GWAS. In general, choosing an
appropriate window for candidate gene identification is always a challenging topic and a subject of future
research. Therefore, we checked 13 different window sizes (4kb, 10kb, 20kb, 30kb, 40kb, 60kb, 80kb,
100kb, 150kb, 200kb, and 250kb) to confirm consistency of general patterns (Fig. S10). The chosen 20kb
window corresponds to an average LD (+°) of 0.16 in our data, which is within the typical ’ range of 0.1 —
0.2 for delineating candidate regions (Vos et al. 2017). To enable readers to investigate other windows,
we also made all significant SNPs available in Table S3 as well as at MaizeGDB.

The candidate gene list was based on the current B73 genome assembly (Zm-B73-
REFERENCE-NAM-5.0) for several reasons. First, in the maize NAM population, approximately 50% of
the genetic material of a given RIL originates from B73 and the other 50% from another NAM parent. In
the population as a whole, therefore, 50% of the genetic material originates from B73, while only ~1.9%
originates from each of the other parents (Yu et al. 2008), providing substantially less confidence in any
inferences about non-core candidate genes sourced from other (non-B73) NAM parents vs. those found in
B73. In addition, the recent re-sequencing of the NAM founders, which generated the high-density SNP
and SV marker data utilized here, mapped all markers to the B73 genome (Hufford et al. 2021). It was
cleaner to keep the annotations consistent with the genomic coordinates used to identify these SNPs and
SVs. Finally, because by definition core genes are present in all annotations, our method did not exclude

any core genes. Therefore, we focused on B73 genes in our investigation. In doing so, we also follow
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established precedent for GWAS in this population (Hufford et al. 2021) and for other cases with pan-
genomes available (Della Coletta et al. 2021).

Based on the >20 million SNP and SV markers used for GWAS, 94% of the candidate genes
identified had at least one SNP or SV marker within the gene itself, increasing to >99% when the search
was broadened to include Skb upstream. Among the remaining genes, manual examination revealed non-
marker polymorphisms; for example, Zm00001eb036690 had no markers within it, but BRIDGEcereal
identified large indels within this gene among the NAM founders. Because of the presence of non-marker
polymorphisms as well as our goal to provide a community resource with all significant results available

for ongoing investigation, we chose to retain the remaining <1% of genes from our candidate gene list.

BRIDGEcereal Haplotype Visualization

BRIDGECcereal (https://bridgecereal.scinet.usda.gov/) (Zhang et al. 2023) was used to manually

identify indel-based haplotypes among the NAM parents for a subset of the candidate genes (“selected”
candidate genes) in the example trait DTA (Fig. S11, Fig. S12, Fig. S13). For each gene, the 26 parents
were grouped into two or three “genotype groups,” representing different BRIDGEcereal-detected
haplotypes based on large indels, which were then named after a representative parent in that group. The
phenotype estimates for each NAM parent within a given genotype group were also plotted (Fig. S11,

Fig. S12, Fig. S13).
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Fig. S1: Principal Components Analysis (PCA) of environmental means reflect environmental
indices identified by CERIS. Principal Components (PCs) were calculated based on the scaled
and centered environmental mean for each trait; percent of variance explained by each PC is
shown on axes. Traits are colored by the environmental variable(s) chosen for them by CERIS.

Abbreviations: temperature (temp) and day length (DL).
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183  Fig. S6: Prediction accuracy for all traits, shown both within and across environments. Prediction
184  accuracy for 1 to 2, 1 to 3, and 1 to 4 prediction scenarios for all traits across environments

185  (“All”) as well as within each measured environment. Error bars show standard error of

186  prediction accuracy from 30 replicates. Trait order corresponds to Fig. S5.
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Fig. S9: P values of markers from intercept and slope GWAS. For each trait, the —logio(P) values from slope and intercept GWAS are

shown on the y and x axis, respectively. In all cases, these —logio(P) values were significantly (P<0.00001) positively correlated. Red

lines show the SimpleM significance threshold, and the black line indicates the line where x =y. Traits ordered by the correlation
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Fig. S10: Number of candidate genes by trait for all examined window sizes. Number of genes (y axis) located within a given window

(x axis) of significant markers detected in intercept (orange circles) or slope (blue triangles) GWAS as well as those detected in both
(“overlap”, green squares). Traits ordered by the correlation between —logio(P) values from slope and intercept GWAS to show the

continuum of genetic architectures of plasticity.
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Fig. S11: BRIDGEcereal visualization of major haplotypes for DTA intercept candidate genes
and associated phenotype estimates among the NAM founders. (A) CML247 has both the highest
DTA intercept estimate among the NAM founders and a unique haplotype at cct103,
distinguished by an insertion in the intron. The CML247 genotype group contains only CML247;
the B73 group contains the other 25 founders: B73, B97, CML103, CML228, CML277,
CML322, CML333, CML52, CML69, HP301, I114H, Kill, Ki3, Ky21, M162W, M37W,
Mol18W, MS71, NC350, NC358, Oh43, Oh7B, P39, Tx303, and Tzi8. (B) Polymorphisms
upstream of pebp8 correspond to a significant difference in DTA intercept (B97 group contains
B97, 1114H, MS71, Oh7B, P39, and Tx303; B73 group contains B73, CML103, CML228,
CML247, CML277, CML322, CML333, CML52, CML69, HP301, Kill, Ki3, Ky21, M162W,

M37W, Mo18W, NC350, NC358, Oh43, and Tzi8).
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Fig. S12: BRIDGECcereal visualization of major haplotypes for DTA slope candidate genes and
associated phenotype estimates among the NAM founders. (A) A small insertion is present
upstream of conzl but is not significantly associated with a change in slope (B97 group contains
B97, CML322, CML333, Kil 1, and MS71; B73 group contains B73, CML103, CML228,
CML247, CML277, CML52, CML69, HP301, 1114H, Ki3, Ky21, M162W, M37W, Mo18W,
NC350, NC358, Oh43, Oh7B, P39, Tx303, and Tzi8). (B) An insertion within the second exon

of cry3 is significantly associated with a steeper DTA slope (B73 group contains B73, HP301,
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and Kil1l (Kill group) is a known allele that reduces cct/ expression and thereby reduces
flowering time (DTA intercept). Here, this allele was also significantly associated with a steeper
DTA slope. In addition, a potential weak allele was identified in Ky21 (single member of Ky21
group). B73 group contains B73, B97, CML103, CML247, CML322, CML333, CML52,
CML69, HP301, 1114H, Ki3, M162W, M37W, Mo18W, MS71, NC350, NC358, Oh43, Oh7B,

P39, Tx303, and Tzi8.
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Fig. S14: Study environments map. Data was collected at 6 locations (blue asterisks) over two

years. Environment names consist of the two-letter state abbreviation and the last two digits of

the year (e.g., MOO6 is Missouri 2006).
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Fig. S15: Heritability (h3) and degree of plasticity (calculated per Tonsor et al. 2013) are not

significantly correlated in the maize NAM.
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Fig. S16: Prediction accuracy for Anthesis-Silking Interval (ASI) with and without moisture
variables. When including variables involving moisture (precip, PET, and water balance) in the
CERIS search space (purple), prediction accuracy improved significantly for ASI. Error bars
show standard error of prediction accuracy based on 30 replicates with and 5 replicates without

moisture variables.
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Supplemental Tables

Table S1: List of traits. Abbreviations, full names, types, number of environments measured in (#
Envs), measurement time, and search windows for all nineteen traits examined in this study.
Measurement time indicates the time during the growing season at which this trait was measured,
and search window indicates the range of days after planting that were searched by CERIS for
this trait to ensure that no prediction was based on a window after the trait had been measured.

Trait Trait Trait T 4 En Measurement Search
Abbreviation Name 1tiype VS Time Windows
Anthesis- Flowerin
ASI Silking yerng 11 Flowering Time 1-46
Time
Interval
Cob .
CD . Yield 6 Harvest 1-106
Diameter
CL Cob Yield 6 Harvest 1-106
Length
CM Cob Mass Yield 6 Harvest 1-106
Days to Flowering . .
DTA Anthesis Time 11 Flowering Time 1-46
Days to Flowering . . 3
DTS Silking Time 11 Flowering Time 1-46
. Plant . .
EH Ear Height Architecture 11 Flowering Time 1-46
EM Ear Mass Yield 6 Harvest 1-106
ERN Ear Row Yield 6 Harvest 1-106
Number
KN Kemnel Yield 5 Harvest 1-106
Number
KPR Kemels Yield 6 Harvest 1-106
per Row
Leaf Plant . .
LL Length Architecture 9 Flowering Time 1-46
LW Leaf Width ~, Flant 9 Flowering Time 1-46
© Architecture g
Plant Plant . .
PH Height Architecture 11 Flowering Time 1-46
T20kW | veiEhtol Ty 5 Harvest 1-106
20 Kernels
Total
TKW Kernel Yield 6 Harvest 1-106
Weight
Tassel Plant . .
TL Length Architecture 8 Flowering Time 1-46
Tassel Plant
TPBN Branch . 8 Flowering Time 1-46
Architecture
Number
Upper Leaf Plant . . 3
ULA Angle Architecture 9 Flowering Time 1-46
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Table S2: CERIS-chosen environmental indices. Environmental indices identified by CERIS for

each trait using all available data. For each trait, the environmental index consists of a window
and environmental variable (env.variable). The window’s start and end are presented as days

after planting (DAP). The correlation between the chosen environmental index (EI) and the

environmental mean (EM) is shown as 7g1,em.

Trait Start End Env.
Abbreviation | (DAP) | (DAP) | Variable | "M
ASI 7 18| PRECIP |-0.8773
CD 6 38| PET | -0.9981
CL 72 81| PTDI | 0.9930
CM 78 85| PTDI | 0.9998
DTA 31 39| PTR | -0.9964
DTS 31 39| PTR | -0.9964
EH 26 41| PET 0.9201
EM 98 105| PTDI | 0.9988
ERN 90 96| DTR 0.9822
KN 97 103| PTDI | 0.9987
KPR 92 103| PTS 0.9879
LL 16 40 | PRECIP | 0.9645
LW 23 38| PRECIP | 0.8233
PH 34 40|  PET 0.8889
T20KW 40 73| GDD 0.9989
TKW 93 102| PET 0.9991
TL 32 41| PTD2 | -0.8851
TPBN 30 43| PET 0.8772
ULA 7 38| PRECIP | 0.7363
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Table S3: Significant markers. Contains markers detected as significant by GWAS for each trait
(slope and intercept) using a SimpleM threshold (o = 0.05). The first three columns contain

chromosome, base pair location, and name for each significant marker. Subsequent columns are
traits. A blank (NA) cell indicates that the marker was not detected for that trait, while numbers

indicate P values for significant markers.

Note: Table S3 is attached as “Supplemental Table S3.csv”

Table S4: Candidate genes. Contains candidate genes detected by GWAS for each trait (slope
and intercept) using a 20kb window around each significant marker. The first column contains
all gene names from Zm-B73-REFERENCE-NAM-5.0 which were significant for at least one
trait and the first row contains trait names. A “1” in a cell means that that gene was detected as a

candidate gene for that trait, and a “0” means that it was not.

Note: Table S4 is attached as “Supplemental Table S4.csv”

Table S5: Enriched GO terms. Cells contain g:SCS multiple testing correction adjusted p values;
cells with significant values are shaded gray and marked with an asterisk. Candidate genes
within 20kb of significant markers from slope and intercept GWAS were analyzed for GO term
enrichment. This analysis was conducted for the combined gene lists from all traits as well as

within trait groups (Flowering Time, Yield, and Plant Architecture).
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All Traits Flowering Time Plant Architecture Yield

GO Term Name GO Term ID

Intercept | Slope | Intercept | Slope | Intercept | Slope | Intercept | Slope
Ubiquinoloxygen | 550102721 | *0.00004 | 1.00000 | 1.00000 | 1.00000 | *0.00016 | 1.00000 | 1.00000 | 1.00000
oxidoreductase activity
fclttfvrﬁ;“ve oxidase G0:0009916 | *0.00004 | 1.00000 | 1.00000 | 1.00000 | *0.00016 | 1.00000 | 1.00000 | 1.00000
Oxidoreductase
activity, acting on
diphenols and related | GO:0016682 | *0.00203 | 1.00000 | 1.00000 | 1.00000 | *0.00069 | 1.00000 | 1.00000 | 1.00000
substances as donors,
oxygen as acceptor
Oxidoreductase
activity, acting on GO:0016679 | *0.02732 | 1.00000 | 1.00000 | 1.00000 | *0.00665 | 1.00000 | 1.00000 | 1.00000
diphenols and related
substances as donors
RNA-directed 5'-3'
RNA polymerase GO:0003968 | 1.00000 | 0.09460 | 1.00000 | *0.03676 | 1.00000 | 1.00000 | 1.00000 | 1.00000
activity
ATPase-coupled
intramembrane lipid GO:0140326 | 1.00000 | *0.04653 | 1.00000 | 0.23530 | 1.00000 | 1.00000 | 1.00000 | 1.00000
transporter activity
Alternative respiration | GO:0010230 | *0.00089 | 1.00000 | 1.00000 | 1.00000 | *0.00214 | 1.00000 | 1.00000 | 1.00000
Detoxification G0:0098754 | 1.00000 | 0.47270 | 1.00000 | *0.03830 | 1.00000 | 1.00000 | 1.00000 | 1.00000
f;g‘;ﬁzz to toxie GO:0009636 | 1.00000 | 0.56234 | 1.00000 | *0.04288 | 1.00000 | 1.00000 | 1.00000 | 1.00000
Cellular oxidant GO:0098869 | 1.00000 | 0.45173 | 1.00000 | *0.04711 | 1.00000 | 1.00000 | 1.00000 | 1.00000
detoxification
Plant hormone signal | p 5504075 | %0.02339 | 1.00000 | 1.00000 | 1.00000 | *0.02313 | 1.00000 | 1.00000 | 1.00000
transduction
Biosynthesis of KEGG:01110 | 1.00000 | *0.02882 | 1.00000 | 0.23211 | 1.00000 | 1.00000 | 1.00000 | 1.00000
secondary metabolites
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Table S6: Within-environment heritability. Heritability on an individual plot basis (h3) for each

trait in each environment. Blank cells indicate environments in which the specified trait was not

measured.
IL06 | FLL0O6 | MOO06 | NC06 | NY06 | PRO6 | IL07 | FLO7 | MOO07 | NC07 | NYO07
ASI 024 | 044 0.20 0.55 042 | 043 | 025| 0.63 0.67 0.59 0.34
CDh 039 | 0.53 0.64 0.60 | 0.59 0.77
CL 045 040 0.62 0.56 | 0.53 0.73
CM 0.66 | 046 0.64 0.69 | 0.58 0.77
DTA 0.86 | 0.79 0.81 0.86 0.85 0.71 | 0.87 | 0.88 0.93 0.92 0.70
DTS 087 | 0.74 0.83 0.85 069 | 0.77| 084 | 0.83 0.92 0.91 0.66
EH 0.76 | 0.68 0.60 0.79 0.66 | 0.67| 0.75| 0.73 0.77 0.77 0.77
EM 055 042 0.58 0.61 0.55 0.81
ERN 0.64 | 0.60 0.69 0.57 | 0.58 0.77
KN 0.54 0.58 0.69 | 0.59 0.84
KPR 022 | 0.34 0.53 0.63 0.46 0.72
LL 0.80 | 0.71 0.65 0.71 0.67 | 0.65| 0.73 0.65 0.59
LW 0.65| 0.66 0.59 0.68 054 | 0.69| 0.71 0.75 0.62
PH 083 | 0.71 0.65 0.83 0.58 | 0.70 | 0.76 | 0.69 0.83 0.77 0.68
T20KW 0.39 0.61 0.61 0.65 0.76
TKW 041 0.42 0.56 0.63 0.54 0.81
TL 077 0.72 0.66 0.78 0.70 | 0.71 | 0.76 0.73
TPBN 0.73 | 0.62 0.71 0.72 0.63 0.75] 0.70 0.67
ULA 0.60 | 0.62 0.39 0.68 0.62 | 045 0.63 0.78 0.58
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