File Structure (Table of Contents)
variant_stats.py	2
R	28
cell_cycle.R	28
ptm_count.R	31
seurat_RNA.R	35
seurat_mutations.R	42
examples	46
wgs_v_rna_sccaller_data.json	46
wgs_v_sc_exonic_vaf_filters.json	47
wgs_v_sc_non_exonic_filters.json	48
scripts	49
count_vartrix.py	49
split_script.py	52
sh	55
post_process.sh	55
run_sccaller.sh	56
run_snpeff.sh	57
run_strelka.sh	58
run_vartrix.sh	59
split_bam_cells.sh	60
src	61
cell_list.py	61
count_ase_reader.py	66
count_vartrix.py	67
filtering.py	70
mutation_signature.py	72
overlap_mutation_list.py	74
parsed_mutation_list.py	77
parsed_vcf.py	82
plot.py	88
ptm.py	89
stats.py	90
utils.py	92

[bookmark: _Toc173090568]variant_stats.py
import os
import sys
import pandas as pd
import json
import argparse
import copy

pd.set_option('display.max_columns', None)
from src.count_vartrix import count_vartrix
from src.count_ase_reader import count_ase_reader
#pd.options.mode.chained_assignment = None # default='warn'

from src.parsed_vcf import ParsedVCF
from src.cell_list import CellList, get_cell_lists
from src.parsed_mutation_list import ParsedMutationList, get_mutations, save_mutation_array, load_mutation_array, generate_vcf
from src.filtering import filter_mutations
from src.overlap_mutation_list import OverlapMutationList, common_variants, redo_common, rank_overlap

TEST SCRIPTS

def filter_single(infile, outfile, outvcf = None, save_intermediary = None, min_qual = -1.0, exonic=False, splice=False):
 print("Parsing vcf...")
 vcf_parsed = ParsedVCF(infile)
 vcf_parsed_as_list = [vcf_parsed]
 # TODO change cell list so that it may process single vcf without list hassle
 print("Compiling variants...")
 vcf_as_cell_list = CellList(vcf_parsed_as_list, "single_vcf")
 vcf_as_mutation_list = ParsedMutationList(vcf_as_cell_list)
 if save_intermediary:
 save_mutation_array(vcf_as_mutation_list, save_intermediary)
 # May wish to add additional options here such as Pass or scVAF
 print("Filtering variants...")
 filtered = filter_mutations(vcf_as_mutation_list, 0.0, 0, 0.0, 0, min_qual, exonic=exonic, splice=splice)[0]
 print("Saving variants...")
 filtered.parsed_mutations.to_csv(outfile, sep='\t', index=False)
 if outvcf:
 generate_vcf(filtered.parsed_mutations, filtered[0], outvcf)

def filter_and_overlap_multiple(sample_list, outfile, outvcf = None, save_intermediary = None, min_qual = -1.0):
 mutation_lists = []
 for sample in sample_list:
 vcf_parsed = ParsedVCF(sample['file'])
 vcf_as_cell_list = CellList([vcf_parsed], sample['name'])
 vcf_as_mutation_list = ParsedMutationList(vcf_as_cell_list)
 mutation_lists.append(vcf_as_mutation_list)
 if save_intermediary:
 save_mutation_array(mutation_lists, save_intermediary)
 filtered = filter_mutations(mutation_lists, 0.0, 0, 0.0, 0, min_qual, exonic=True, splice=False)
 overlap_list = OverlapMutationList(filtered)
 common = common_variants(overlap_list, filtered)
 common.to_csv(outfile, sep='\t', index=False)
 if outvcf:
 generate_vcf(common, filtered[0], outvcf)

def extract_scu_variants(lists_WGS, names_WGS, lists_CTRL, names_CTRL, lists_sc, names_sc, out_path, resume=False, min_cells_w_alt_count=0.0, min_alt_read_count=0, min_cell_vaf_factor=0.0, min_sc_qual=0.0, max_alt_read_count=None, max_cells_w_alt_count=None, min_vaf_for_sc_FN_class=0.01):
 if not resume:
 cells_WGS = get_cell_lists(lists_WGS, names_WGS)
 cell_CTRL = get_cell_lists(lists_CTRL, names_CTRL)
 cells_sc = get_cell_lists(lists_sc, names_sc)
 mutations_WGS = get_mutations(cells_WGS)
 mutations_CTRL = get_mutations(cell_CTRL)
 mutations_sc = get_mutations(cells_sc)
 if not os.path.exists(out_path):
 os.mkdir(out_path)
 save_mutation_array(mutations_WGS, out_path + "/WGS_intermediaries")
 save_mutation_array(mutations_CTRL, out_path + "/CTRL_intermediaries")
 save_mutation_array(mutations_sc, out_path + "/sc_intermediaries")
 else:
 mutations_WGS = load_mutation_array(out_path + "/WGS_intermediaries", names_WGS)
 mutations_CTRL = load_mutation_array(out_path + "/CTRL_intermediaries", names_CTRL)
 mutations_sc = load_mutation_array(out_path + "sc_intermediaries", names_sc)
 filtered_WGS = filter_mutations(mutations_WGS, 0.0, 0, 0.0, 0, 0.0, exonic=False, limexonic=True)
 filtered_CTRL = filter_mutations(mutations_CTRL, 0.0, 0, 0.0, 0, 10.0, exonic=False, limexonic=True)
 filtered_sc = filter_mutations(mutations_sc, min_cells_w_alt_count, min_alt_read_count, min_cell_vaf_factor, 0, min_sc_qual, max_cell_filter_=max_cells_w_alt_count, max_alt_read_filter_=max_alt_read_count, exonic=False, limexonic=True)
 filtered = filtered_sc + filtered_WGS + filtered_CTRL
 overlap_list = OverlapMutationList(filtered)
 common = common_variants(overlap_list, filtered)
 in_WGS = common[names_WGS[0]]
 for name in names_WGS[1:]:
 in_WGS = in_WGS | common[name]
 not_in_WGS = common[~(in_WGS)]
 in_CTRL = not_in_WGS[names_CTRL[0]]
 for name in names_CTRL[1:]:
 in_CTRL = in_CTRL | not_in_WGS[name]
 scu_variants = not_in_WGS[~(in_CTRL)]
 CTRL_variants = not_in_WGS[in_CTRL]
 generate_vcf(scu_variants, filtered[0], out_path + "/variants_scu.vcf")
 generate_vcf(CTRL_variants, filtered[0], out_path + "/variants_CTRL.vcf")
 scu_variants.to_csv(out_path + "/variants_scu.tsv", sep='\t', index=False)
 CTRL_variants.to_csv(out_path + "/variants_CTRL.tsv", sep='\t', index=False)
 stats = {}
 stats['scu_count'] = scu_variants.shape[0]
 return stats

def compare_CTRL_variants(names_WGS, names_CTRL_rna, names_CTRL_atac, path_rna, path_atac, out_path, min_alt_read_count=0, min_sc_qual=10.0):
 # note: requires process_scu to be run first to generate temp files
 if not os.path.exists(out_path):
 os.mkdir(out_path)
 mutations_WGS = load_mutation_array(path_rna + "/WGS_intermediaries", names_WGS)
 mutations_CTRL_rna = load_mutation_array(path_rna + "/CTRL_intermediaries", names_CTRL_rna)
 mutations_CTRL_atac = load_mutation_array(path_atac + "/CTRL_intermediaries", names_CTRL_atac)
 filtered_WGS = filter_mutations(mutations_WGS, 0.0, 0, 0.0, 0, 0.0, exonic=False)
 filtered_CTRL_rna = filter_mutations(mutations_CTRL_rna, 0.0, min_alt_read_count, 0.0, 0, min_sc_qual, exonic=False)
 filtered_CTRL_atac = filter_mutations(mutations_CTRL_atac, 0.0, min_alt_read_count, 0.0, 0, min_sc_qual, exonic=False)
 filtered = filtered_WGS + filtered_CTRL_rna + filtered_CTRL_atac
 overlap_list = OverlapMutationList(filtered)
 common = common_variants(overlap_list, filtered)
 in_WGS = common[names_WGS[0]]
 for name in names_WGS[1:]:
 in_WGS = in_WGS | common[name]
 yes_in_WGS = common[in_WGS]
 in_rna = yes_in_WGS[names_CTRL_rna[0]]
 for name in names_CTRL_rna[1:]:
 in_rna = in_rna | yes_in_WGS[name]
 in_atac = yes_in_WGS[names_CTRL_atac[0]]
 for name in names_CTRL_atac[1:]:
 in_atac = in_atac | yes_in_WGS[name]
 in_rna_and_atac_and_WGS = yes_in_WGS[in_rna & in_atac]
 in_rna_only_and_WGS = yes_in_WGS[in_rna & ~(in_atac)]
 in_atac_only_and_WGS = yes_in_WGS[~(in_rna) & in_atac]
 not_in_WGS = common[~(in_WGS)]
 in_rna = not_in_WGS[names_CTRL_rna[0]]
 for name in names_CTRL_rna[1:]:
 in_rna = in_rna | not_in_WGS[name]
 in_atac = not_in_WGS[names_CTRL_atac[0]]
 for name in names_CTRL_atac[1:]:
 in_atac = in_atac | not_in_WGS[name]
 in_rna_and_atac = not_in_WGS[in_rna & in_atac]
 in_rna_only = not_in_WGS[in_rna & ~(in_atac)]
 in_atac_only = not_in_WGS[~(in_rna) & in_atac]
 generate_vcf(in_rna_and_atac, filtered[0], out_path + "/variants_CTRL_both.vcf")
 generate_vcf(in_rna_only, filtered[0], out_path + "/variants_CTRL_rna.vcf")
 generate_vcf(in_atac_only, filtered[0], out_path + "/variants_CTRL_atac.vcf")
 generate_vcf(in_rna_and_atac_and_WGS, filtered[0], out_path + "/variants_WGS_both.vcf")
 generate_vcf(in_rna_only_and_WGS, filtered[0], out_path + "/variants_WGS_rna.vcf")
 generate_vcf(in_atac_only_and_WGS, filtered[0], out_path + "/variants_WGS_atac.vcf")
 in_rna_and_atac.to_csv(out_path + "/variants_CTRL_both.tsv", sep='\t', index=False)
 in_rna_only.to_csv(out_path + "/variants_CTRL_rna.tsv", sep='\t', index=False)
 in_atac_only.to_csv(out_path + "/variants_CTRL_atac.tsv", sep='\t', index=False)
 stats = {}
 stats['atac_rna_overlap'] = in_rna_and_atac.shape[0]
 stats['rna_only'] = in_rna_only.shape[0]
 stats['atac_only'] = in_atac_only.shape[0]
 stats['atac_rna_overlap_WGS'] = in_rna_and_atac_and_WGS.shape[0]
 stats['rna_only_WGS'] = in_rna_only_and_WGS.shape[0]
 stats['atac_only_WGS'] = in_atac_only_and_WGS.shape[0]
 return stats

def process_WGS_and_sc_pair(name_WGS, name_sc, out_path, _mutations_sc, _mutations_WGS, _sc_counts, bulk_sc=False, exonic=False, save_variants=False, min_cells_w_alt_count=0.0, min_alt_read_count=0, min_cell_vaf_factor=0.0, min_sc_qual=0.0, min_vaf=0.01, min_coverage=1):
 names_WGS = [name_WGS]
 names_sc = [name_sc]
 stats = {}
 mutations_sc = copy.deepcopy(_mutations_sc)
 mutations_WGS = copy.deepcopy(_mutations_WGS)
 sc_counts = copy.deepcopy(_sc_counts)
 if bulk_sc:
 filtered_sc = filter_mutations(mutations_sc, 0.0, min_alt_read_count, min_cell_vaf_factor, 0, min_sc_qual, exonic=exonic)
 else:
 filtered_sc = filter_mutations(mutations_sc, min_cells_w_alt_count, min_alt_read_count, min_cell_vaf_factor, 0, min_sc_qual, exonic=exonic)
 filtered_WGS = filter_mutations(mutations_WGS, 0.0, 0, 0.0, 0, 0.0, exonic=exonic)
 # NOTE: realized it did not make sense to keep variants that did not pass filters on sc but were found in WGS and classify these as TP, with commented out sections below, now the FN candidates include these variants
 #mutations = mutations_sc + mutations_WGS
 filtered = filtered_sc + filtered_WGS
 #overlap_list = OverlapMutationList(filtered, unfiltered=mutations).array
 overlap_obj = OverlapMutationList(filtered)
 overlap_list = overlap_obj.array
 stats['WGS_final_count'] = overlap_obj.get_overlap(name_WGS, name_WGS)
 stats['sc_final_count'] = overlap_obj.get_overlap(name_sc, name_sc)
 stats['mutual_overlap'] = overlap_obj.get_overlap(name_WGS, name_sc)
 common = common_variants(overlap_list, filtered)
 #rank_overlap(common, out_path + "/common_variants_all.png")
 if save_variants:
 common.to_csv(out_path + "/common_variants.tsv", sep='\t', index=False)
 in_WGS = common[names_WGS[0]]
 single_cell = common[~(in_WGS)]
 in_sc = common[names_sc[0]]
 whole_genome = common[~(in_sc)]
 if save_variants:
 single_cell.to_csv(out_path + "/single_cell_variants.tsv", sep='\t', index=False)
 whole_genome.to_csv(out_path + "/whole_genome_variants.tsv", sep='\t', index=False)
 generate_vcf(common, filtered[0], out_path + "/variants_common.vcf")
 generate_vcf(single_cell, filtered[0], out_path + "/variants_single_cell.vcf")
 generate_vcf(whole_genome, filtered[0], out_path + "/variants_whole_genome.vcf")
 WGS_only_sc_counts = sc_counts.loc[sc_counts['map'].isin(whole_genome['map'])].copy()
 exonic_sc = filter_mutations(mutations_sc, 0.0, 0, 0.0, 0, 0.0, exonic=exonic)
 sc_WGS_overlap_sc_counts = sc_counts.loc[sc_counts['map'].isin(exonic_sc[0].parsed_mutations['map'])].copy()
 WGS_sc_counts = sc_counts.loc[sc_counts['map'].isin(filtered_WGS[0].parsed_mutations['map'])].copy()
 print(f"n_cells: {mutations_sc[0].n_cells}, min_cells: {min_cells_w_alt_count}")
 missed_wgs_variants, _, _, _, missing_stats = count_alleles_from_coverage(WGS_only_sc_counts, min_coverage, min_alt_read_count, min_cells_w_alt_count, min_vaf)
 mutual_variants, _, _, _, mutual_stats = count_alleles_from_coverage(sc_WGS_overlap_sc_counts, min_coverage, min_alt_read_count, min_cells_w_alt_count, min_vaf)
 wgs_variants, _, _, _, wgs_stats = count_alleles_from_coverage(WGS_sc_counts, min_coverage, min_alt_read_count, min_cells_w_alt_count, min_vaf)
 missing_stats = {'miss_' + str(key):val for key,val in missing_stats.items()}
 mutual_stats = {'tp_' + str(key):val for key,val in mutual_stats.items()}
 wgs_stats = {'ap_' + str(key):val for key,val in wgs_stats.items()}
 stats.update(mutual_stats)
 stats.update(missing_stats)
 stats.update(wgs_stats)
 if save_variants:
 WGS_only_sc_counts.to_csv(out_path + "/WGS_only_sc_counts.tsv", sep='\t', index=False)
 missed_wgs_variants.to_csv(out_path + "/WGS_missed_by_sc.tsv", sep='\t', index=False)
 #whole_genome_missed_by_sc = whole_genome[whole_genome['map'].isin(missed_wgs_variants['map'])]
 #generate_vcf(whole_genome_missed_by_sc, filtered[0], out_path + "/variants_whole_genome_missed_by_sc.vcf")
 # TODO make a new category counting the number of variants which were rejected by min alt read count filter (or VAF filter)
 #variant_stats(missed_wgs_variants, out_path + "variants_whole_genome_missed_by_sc_stats.png")
 return stats

def process_scu_stats(vartrix_scu_dir, vartrix_CTRL_dir, vartrix_WGS_dir, full_vcf_scu, full_vcf_CTRL, full_vcf_WGS, shortlist_vcf, name, out_path, resume=False, min_coverage=1, min_alt_read_count=0, min_cells_w_alt_count=0, min_vaf=0.0):
 stats = {}
 if not resume:
 sc_counts = count_vartrix(vartrix_scu_dir, full_vcf_scu)
 CTRL_counts = count_vartrix(vartrix_CTRL_dir, full_vcf_CTRL)
 if vartrix_WGS_dir:
 WGS_counts = count_vartrix(vartrix_WGS_dir, full_vcf_WGS)
 if not os.path.exists(out_path):
 os.mkdir(out_path)
 sc_counts.to_csv(out_path + "/vartrix_scu_" + name + "_counted.csv")
 CTRL_counts.to_csv(out_path + "/vartrix_CTRL_" + name + "_counted.csv")
 if vartrix_WGS_dir:
 WGS_counts.to_csv(out_path + "/vartrix_WGS_" + name + "_counted.csv")
 else:
 sc_counts = pd.read_csv(out_path + "/vartrix_scu_" + name + "_counted.csv")
 CTRL_counts = pd.read_csv(out_path + "/vartrix_CTRL_" + name + "_counted.csv")
 if vartrix_WGS_dir:
 WGS_counts = pd.read_csv(out_path + "/vartrix_WGS_" + name + "_counted.csv")
 if shortlist_vcf:
 shortlist = pd.read_csv(shortlist_vcf, sep="\t", comment="#", names=["chrom", "pos", "id", "ref", "alt", "qual", "filter", "info"])
 shortlist['map'] = shortlist['chrom'].astype(str) + ':' + shortlist['pos'].astype(int).astype(str) + ':' + shortlist['ref'] + '->' + shortlist['alt']
 stats['scu_total'] = sc_counts.shape[0]
 stats['CTRL_total'] = CTRL_counts.shape[0]
 if vartrix_WGS_dir:
 stats['WGS_total'] = WGS_counts.shape[0]
 if shortlist_vcf:
 scu_shortlisted = sc_counts[sc_counts['map'].isin(shortlist['map'])]
 else:
 scu_shortlisted = sc_counts
 _, _, _, _, scu_stats = count_alleles_from_coverage(scu_shortlisted, min_coverage, min_alt_read_count, min_cells_w_alt_count, min_vaf)
 _, _, _, _, CTRL_stats = count_alleles_from_coverage(CTRL_counts, min_coverage, min_alt_read_count, min_cells_w_alt_count, min_vaf)
 if vartrix_WGS_dir:
 _, _, _, _, WGS_stats = count_alleles_from_coverage(WGS_counts, min_coverage, min_alt_read_count, min_cells_w_alt_count, min_vaf)
 scu_stats = {'scu_' + str(key):val for key,val in scu_stats.items()}
 CTRL_stats = {'CTRL_' + str(key):val for key,val in CTRL_stats.items()}
 if vartrix_WGS_dir:
 WGS_stats = {'WGS_' + str(key):val for key,val in WGS_stats.items()}
 stats.update(scu_stats)
 stats.update(CTRL_stats)
 if vartrix_WGS_dir:
 stats.update(WGS_stats)
 return stats

def count_alleles_from_coverage(allele_counts, min_coverage, min_alt_coverage, min_cells_w_alt_count, min_vaf):
 stats = {}

 # obtain stats
 allele_counts['vaf'] = allele_counts['alt_count'] / (allele_counts['alt_count'] + allele_counts['ref_count'])
 allele_counts['coverage'] = allele_counts['alt_count'] + allele_counts['ref_count']
 allele_counts['depth'] = allele_counts['coverage'] / allele_counts['cell_count']

 # filter by min coverage
 total_variants = len(allele_counts)
 with_coverage = allele_counts[allele_counts['coverage'] >= min_coverage]
 total_no_coverage = total_variants - len(with_coverage)

 # filter by vaf
 above_vaf_cutoff = with_coverage[with_coverage['vaf'] >= min_vaf]
 total_above_vaf = len(above_vaf_cutoff)
 total_below_vaf = len(with_coverage) - len(above_vaf_cutoff)

 # filter by min alt coverage
 with_min_alt_coverage = above_vaf_cutoff[above_vaf_cutoff['alt_count'] >= min_alt_coverage]
 total_below_min_alt_coverage = len(above_vaf_cutoff) - len(with_min_alt_coverage)
 total_above_min_alt_coverage = len(with_min_alt_coverage)

 # filter by cell count
 with_min_cell_count = above_vaf_cutoff[above_vaf_cutoff['cells_w_alt_count'] >= min_cells_w_alt_count]
 total_below_min_cell_count = len(above_vaf_cutoff) - len(with_min_cell_count)
 total_above_min_cell_count = len(with_min_cell_count)

 # filter by systematic dropout
 systematic_dropout = with_coverage[with_coverage['alt_count'] == 0]
 total_systematic_above_min_coverage = len(systematic_dropout)
 print(f"Total variants: {total_variants}")
 print(f"Variants with no coverage: {total_no_coverage} ({total_no_coverage/total_variants*100}%)")
 print(f"Variants not passing vaf cutoff: {total_below_vaf} ({total_below_vaf/total_variants*100}%)")
 print(f"Variants with allele support: {total_above_vaf} ({total_above_vaf/total_variants*100}%)")
 print(f"Variants without allele support (according to min_alt_coverage): {total_below_min_alt_coverage} ({total_below_min_alt_coverage/(len(above_vaf_cutoff)+sys.float_info.epsilon)*100}%)")
 print(f"Variants with allele support (according to min_alt_coverage): {total_above_min_alt_coverage} ({total_above_min_alt_coverage/(len(above_vaf_cutoff)+sys.float_info.epsilon)*100}%)")
 print(f"Variants without allele support (according to min_cell_count): {total_below_min_cell_count} ({total_below_min_cell_count/(len(above_vaf_cutoff)+sys.float_info.epsilon)*100}%)")
 print(f"Variants with allele support (according to min_cell_count): {total_above_min_cell_count} ({total_above_min_cell_count/(len(above_vaf_cutoff)+sys.float_info.epsilon)*100}%)")
 print(f"Variants with Systematic Dropout (according to min_coverage): {total_systematic_above_min_coverage}")

 stats['below_coverage'] = total_no_coverage
 stats['above_coverage'] = total_variants
 stats['below_vaf'] = total_below_vaf
 stats['above_vaf'] = total_above_vaf
 stats['below_min_alt_cov'] = total_below_min_alt_coverage
 stats['above_min_alt_cov'] = total_above_min_alt_coverage
 stats['below_min_cell_count'] = total_below_min_cell_count
 stats['above_min_cell_count'] = total_above_min_cell_count
 return above_vaf_cutoff, with_min_alt_coverage, with_min_cell_count, systematic_dropout, stats

def count_overlap_vartrix_pair(vardir_rna, vcfdir_rna, vardir_atac, vcfdir_atac, vardir_unique_rna, vcfdir_unique_rna, vardir_unique_atac, vcfdir_unique_atac, asedir_WGS, out_path, min_vaf_filter = 0.0, max_vaf_filter = 1.0, alt_filter = 0, min_alt_count_WGS = 0, min_vaf_WGS = 0.0, resume=False):
 stats = {}
 if not resume:
 rna_count = count_vartrix(vardir_rna, vcfdir_rna)
 atac_count = count_vartrix(vardir_atac, vcfdir_atac)
 rna_unique_count = count_vartrix(vardir_unique_rna, vcfdir_unique_rna)
 atac_unique_count = count_vartrix(vardir_unique_atac, vcfdir_unique_atac)
 WGS_count = count_ase_reader(asedir_WGS)
 if not os.path.exists(out_path):
 os.mkdir(out_path)
 rna_count.to_csv(out_path + "/vartrix_rna_counted.csv")
 atac_count.to_csv(out_path + "/vartrix_atac_counted.csv")
 WGS_count.to_csv(out_path + "/asereader_WGS_counted.csv")
 rna_unique_count.to_csv(out_path + "/vartrix_unique_rna_counted.csv")
 atac_unique_count.to_csv(out_path + "/vartrix_unique_atac_counted.csv")
 else:
 rna_count = pd.read_csv(out_path + "/vartrix_rna_counted.csv")
 atac_count = pd.read_csv(out_path + "/vartrix_atac_counted.csv")
 rna_unique_count = pd.read_csv(out_path + "/vartrix_unique_rna_counted.csv")
 atac_unique_count = pd.read_csv(out_path + "/vartrix_unique_atac_counted.csv")
 WGS_count = pd.read_csv(out_path + "/asereader_WGS_counted.csv")
 rna_count['vaf'] = rna_count['alt_count'] / (rna_count['alt_count'] + rna_count['ref_count'])
 atac_count['vaf'] = atac_count['alt_count'] / (atac_count['alt_count'] + atac_count['ref_count'])
 rna_unique_count['vaf'] = rna_unique_count['alt_count'] / (rna_unique_count['alt_count'] + rna_unique_count['ref_count'])
 atac_unique_count['vaf'] = atac_unique_count['alt_count'] / (atac_unique_count['alt_count'] + atac_unique_count['ref_count'])
 WGS_count['vaf'] = WGS_count['alt_count'] / (WGS_count['alt_count'] + WGS_count['ref_count'])
 rna_count = rna_count[rna_count['vaf'] > min_vaf_filter]
 atac_count = atac_count[atac_count['vaf'] > min_vaf_filter]
 rna_unique_count = rna_unique_count[rna_unique_count['vaf'] > min_vaf_filter]
 atac_unique_count = atac_unique_count[atac_unique_count['vaf'] > min_vaf_filter]
 rna_count = rna_count[rna_count['vaf'] <= max_vaf_filter]
 atac_count = atac_count[atac_count['vaf'] <= max_vaf_filter]
 rna_unique_count = rna_unique_count[rna_unique_count['vaf'] <= max_vaf_filter]
 atac_unique_count = atac_unique_count[atac_unique_count['vaf'] <= max_vaf_filter]
 rna_count = rna_count[rna_count['alt_count'] > alt_filter]
 atac_count = atac_count[atac_count['alt_count'] > alt_filter]
 rna_unique_count = rna_unique_count[rna_unique_count['alt_count'] > alt_filter]
 atac_unique_count = atac_unique_count[atac_unique_count['alt_count'] > alt_filter]
 WGS_count = WGS_count[WGS_count['alt_count'] >= min_alt_count_WGS]
 WGS_count = WGS_count[WGS_count['vaf'] >= min_vaf_WGS]
 rna_count_NWGS = rna_count[~(rna_count['map'].isin(WGS_count['map']))]
 atac_count_NWGS = atac_count[~(atac_count['map'].isin(WGS_count['map']))]
 rna_unique_count_NWGS = rna_unique_count[~(rna_unique_count['map'].isin(WGS_count['map']))]
 atac_unique_count_NWGS = atac_unique_count[~(atac_unique_count['map'].isin(WGS_count['map']))]
 #rna_count_NWGS = rna_count
 #atac_count_NWGS = atac_count
 #rna_unique_count_NWGS = rna_unique_count
 #atac_unique_count_NWGS = atac_unique_count
 rna_overlap = rna_count_NWGS[rna_count_NWGS['map'].isin(atac_count_NWGS['map'])]
 atac_overlap = atac_count_NWGS[atac_count_NWGS['map'].isin(rna_count_NWGS['map'])]
 stats['rna_count'] = len(rna_count_NWGS)
 stats['atac_count'] = len(atac_count_NWGS)
 stats['overlap_count'] = len(rna_overlap)
 stats['rna_unique_count'] = len(rna_unique_count_NWGS)
 stats['atac_unique_count'] = len(atac_unique_count_NWGS)
 generate_vcf(rna_overlap, "/<path to>/header.txt", out_path + "/variants_overlap.vcf")
 return rna_overlap, atac_overlap, stats

def iterate_extract_scu_over_filter(scu_sample_dict_list, filter_dict, outfolder, filter_study_name, resume=False):
 stats_lists = {scu_sample_dict['name']:[] for scu_sample_dict in scu_sample_dict_list}
 stats = {}
 for filters in filter_dict:
 for scu_sample_dict in scu_sample_dict_list:
 stats_lists[scu_sample_dict['name']].append(extract_scu_variants(
 scu_sample_dict['lists_WGS'],
 scu_sample_dict['names_WGS'],
 scu_sample_dict['lists_CTRL'],
 scu_sample_dict['names_CTRL'],
 scu_sample_dict['lists_sc'],
 scu_sample_dict['names_sc'],
 outfolder + "/" + scu_sample_dict['name'] + "/",
 resume=resume,
 min_cells_w_alt_count=filters['min_cell_count'],
 min_alt_read_count=filters['min_alt_reads'],
 min_cell_vaf_factor=filters['min_cell_vaf_factor'],
 min_sc_qual=filters['min_sc_qual'],
 max_alt_read_count=filters['max_alt_reads'],
 max_cells_w_alt_count=filters['max_cell_count']))
 resume = True
 for scu_sample_dict in scu_sample_dict_list:
 stats[scu_sample_dict['name']] = pd.DataFrame(stats_lists[scu_sample_dict['name']])
 stats[scu_sample_dict['name']]['min_cell_count'] = [filters['min_cell_count'] for filters in filter_dict]
 stats[scu_sample_dict['name']]['min_alt_reads'] = [filters['min_alt_reads'] for filters in filter_dict]
 stats[scu_sample_dict['name']]['min_cell_vaf_factor'] = [filters['min_cell_vaf_factor'] for filters in filter_dict]
 stats[scu_sample_dict['name']]['min_sc_qual'] = [filters['min_sc_qual'] for filters in filter_dict]
 stats[scu_sample_dict['name']]['max_alt_reads'] = [filters['max_alt_reads'] for filters in filter_dict]
 stats[scu_sample_dict['name']]['max_cell_count'] = [filters['max_cell_count'] for filters in filter_dict]
 stats[scu_sample_dict['name']].to_csv(outfolder + "/" + scu_sample_dict['name'] + "_" + filter_study_name + ".csv")

def iterate_compare_CTRL_variants_over_filter(sample_dict_list, filter_dict, outfolder, filter_study_name, resume=False):
 stats_lists = {sample_dict['name']:[] for sample_dict in sample_dict_list}
 stats = {}
 for filters in filter_dict:
 for sample_dict in sample_dict_list:
 stats_lists[sample_dict['name']].append(compare_CTRL_variants(
 sample_dict['names_WGS'],
 sample_dict['names_CTRL_rna'],
 sample_dict['names_CTRL_atac'],
 sample_dict['path_rna'] + "/" + sample_dict['name'] + "/",
 sample_dict['path_atac'] + "/" + sample_dict['name'] + "/",
 outfolder + "/" + sample_dict['name'] + "/",
 min_alt_read_count=filters['min_alt_reads'],
 min_sc_qual=filters['min_sc_qual']))
 for sample_dict in sample_dict_list:
 stats[sample_dict['name']] = pd.DataFrame(stats_lists[sample_dict['name']])
 stats[sample_dict['name']]['min_alt_reads'] = [filters['min_alt_reads'] for filters in filter_dict]
 stats[sample_dict['name']]['min_sc_qual'] = [filters['min_sc_qual'] for filters in filter_dict]
 stats[sample_dict['name']].to_csv(outfolder + "/" + sample_dict['name'] + "_" + filter_study_name + ".csv")

def iterate_process_scu_stats(sample_dict_list, filter_dict, outfolder, filter_study_name, resume=False):
 stats_lists = {sample_dict['name']:[] for sample_dict in sample_dict_list}
 stats = {}
 for filters in filter_dict:
 for sample_dict in sample_dict_list:
 stats_lists[sample_dict['name']].append(process_scu_stats(
 sample_dict['vartrix_scu'],
 sample_dict['vartrix_CTRL'],
 sample_dict['vartrix_WGS'],
 sample_dict['full_vcf_scu'],
 sample_dict['full_vcf_CTRL'],
 sample_dict['full_vcf_WGS'],
 sample_dict['shortlist_vcf'],
 sample_dict['name'],
 outfolder + "/" + sample_dict['name'] + "/",
 resume=resume,
 min_coverage=filters['min_coverage'],
 min_alt_read_count=filters['min_alt_reads'],
 min_cells_w_alt_count=filters['min_cell_count'],
 min_vaf=filters['min_cell_vaf_factor']))
 resume = True
 for sample_dict in sample_dict_list:
 stats[sample_dict['name']] = pd.DataFrame(stats_lists[sample_dict['name']])
 stats[sample_dict['name']]['min_cell_count'] = [filters['min_cell_count'] for filters in filter_dict]
 stats[sample_dict['name']]['min_alt_reads'] = [filters['min_alt_reads'] for filters in filter_dict]
 stats[sample_dict['name']]['min_cell_vaf_factor'] = [filters['min_cell_vaf_factor'] for filters in filter_dict]
 stats[sample_dict['name']]['min_coverage'] = [filters['min_coverage'] for filters in filter_dict]
 stats[sample_dict['name']].to_csv(outfolder + "/" + sample_dict['name'] + "_" + filter_study_name + ".csv")

def iterate_process_pair_over_filter(sample_pair_dict_list, filter_dict, outfolder, filter_study_name, resume=False, bulk_sc=False, exonic=False, save_variants=False):
 stats_lists = {sample_pair_dict['name']:[] for sample_pair_dict in sample_pair_dict_list}
 stats = {}
 for sample_pair_dict in sample_pair_dict_list:
 out_path = outfolder + "/" + sample_pair_dict['name'] + "/"
 lists_WGS = [sample_pair_dict['list_WGS']]
 names_WGS = [sample_pair_dict['name_WGS']]
 lists_sc = [sample_pair_dict['list_sc']]
 names_sc = [sample_pair_dict['name_sc']]
 stats = {}
 if not resume:
 cells_WGS = get_cell_lists(lists_WGS, names_WGS)
 cells_sc = get_cell_lists(lists_sc, names_sc)
 mutations_WGS = get_mutations(cells_WGS)
 mutations_sc = get_mutations(cells_sc)
 sc_counts = count_vartrix(sample_pair_dict['vartrix'], sample_pair_dict['full_vcf'])
 if not os.path.exists(out_path):
 os.mkdir(out_path)
 save_mutation_array(mutations_WGS, out_path + "/WGS_intermediaries")
 save_mutation_array(mutations_sc, out_path + "/sc_intermediaries")
 sc_counts.to_csv(out_path + "/vartrix_WGS_" + sample_pair_dict['name_sc'] + "_counted.csv")
 else:
 mutations_WGS = load_mutation_array(out_path + "/WGS_intermediaries", names_WGS)
 mutations_sc = load_mutation_array(out_path + "sc_intermediaries", names_sc)
 sc_counts = pd.read_csv(out_path + "/vartrix_WGS_" + sample_pair_dict['name_sc'] + "_counted.csv")
 for filters in filter_dict:
 stats_lists[sample_pair_dict['name']].append(process_WGS_and_sc_pair(
 sample_pair_dict['name_WGS'],
 sample_pair_dict['name_sc'],
 out_path,
 mutations_sc,
 mutations_WGS,
 sc_counts,
 bulk_sc=bulk_sc,
 exonic=exonic,
 save_variants=save_variants,
 min_cells_w_alt_count=filters['min_cell_count'],
 min_alt_read_count=filters['min_alt_reads'],
 min_cell_vaf_factor=filters['min_cell_vaf_factor'],
 min_sc_qual=filters['min_sc_qual'],
 min_vaf=filters['min_vaf'],
 min_coverage=filters['min_coverage']))
 resume = True
 for sample_pair_dict in sample_pair_dict_list:
 stats[sample_pair_dict['name']] = pd.DataFrame(stats_lists[sample_pair_dict['name']])
 stats[sample_pair_dict['name']]['min_cell_count'] = [filters['min_cell_count'] for filters in filter_dict]
 stats[sample_pair_dict['name']]['min_alt_reads'] = [filters['min_alt_reads'] for filters in filter_dict]
 stats[sample_pair_dict['name']]['min_cell_vaf_factor'] = [filters['min_cell_vaf_factor'] for filters in filter_dict]
 stats[sample_pair_dict['name']]['min_sc_qual'] = [filters['min_sc_qual'] for filters in filter_dict]
 stats[sample_pair_dict['name']]['min_vaf'] = [filters['min_vaf'] for filters in filter_dict]
 stats[sample_pair_dict['name']].to_csv(outfolder + "/" + sample_pair_dict['name'] + "_" + filter_study_name + ".csv")

def iterate_count_overlap_vartrix(sample_pair_dict_list, filter_dict, outfolder, filter_study_name, resume=False):
 stats_lists = {sample_pair_dict['name']:[] for sample_pair_dict in sample_pair_dict_list}
 stats = {}
 for filters in filter_dict:
 for sample_pair_dict in sample_pair_dict_list:
 _, _, stats = count_overlap_vartrix_pair(
 sample_pair_dict['vardir_rna'],
 sample_pair_dict['vcfdir_rna'],
 sample_pair_dict['vardir_atac'],
 sample_pair_dict['vcfdir_atac'],
 sample_pair_dict['vardir_unique_rna'],
 sample_pair_dict['vcfdir_unique_rna'],
 sample_pair_dict['vardir_unique_atac'],
 sample_pair_dict['vcfdir_unique_atac'],
 sample_pair_dict['asedir_WGS'],
 outfolder + "/" + sample_pair_dict['name'] + "/",
 min_vaf_filter = filters['min_vaf'],
 max_vaf_filter = filters['max_vaf'],
 alt_filter = filters['min_alt_count'],
 min_alt_count_WGS = filters['min_alt_count_WGS'],
 min_vaf_WGS = filters['min_vaf_WGS'],
 resume=resume)
 stats_lists[sample_pair_dict['name']].append(stats)
 resume = True
 for sample_pair_dict in sample_pair_dict_list:
 stats[sample_pair_dict['name']] = pd.DataFrame(stats_lists[sample_pair_dict['name']])
 stats[sample_pair_dict['name']]['min_vaf'] = [filters['min_vaf'] for filters in filter_dict]
 stats[sample_pair_dict['name']]['max_vaf'] = [filters['max_vaf'] for filters in filter_dict]
 stats[sample_pair_dict['name']]['min_alt_count'] = [filters['min_alt_count'] for filters in filter_dict]
 stats[sample_pair_dict['name']].to_csv(outfolder + "/" + sample_pair_dict['name'] + "_" + filter_study_name + ".csv")

def intersect_scu(tsv1, tsv2, outfile, vcfheader=None):
 list1 = pd.read_csv(tsv1, sep='\t')
 list2 = pd.read_csv(tsv2, sep='\t')
 isec = list1[list1['map'].isin(list2['map'])]
 isec.to_csv(outfile, sep='\t', index=False)
 if vcfheader:
 generate_vcf(isec, vcfheader, outfile.split('.tsv')[0] + '.vcf')

def process_scu():
 resume = True
 outfolder = "/<path to>/hapcaller_sc_rna_max_all_exonic/"
 min_cell_count_base = 0.0
 min_cell_vaf_factor_base = 0.0
 min_sc_qual_base = 0.0
 min_alt_reads_base = 0
 max_cell_count_base = None
 max_alt_reads_base = None
 min_cell_counts = [0.0, 1.0, 5.0, 10.0, 50.0, 100.0, 200.0]
 min_sc_quals = [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 20.0, 50.0, 100.0, 200.0]
 #min_cell_vaf_factors = [0.0, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0.5, 0.9]
 if not os.path.exists(outfolder):
 os.mkdir(outfolder)

 list_WGS_EPSRC1 = "/<path to>/WGS/EPSRC1dna/cell_list_consensus.txt"
 list_WGS_EPSRC2 = "/<path to>/WGS/EPSRC2dna/cell_list_consensus.txt"
 list_WGS_EPSRC4 = "/<path to>/WGS/EPSRC4dna/cell_list_consensus.txt"
 list_WGS_CTRL = [list_WGS_EPSRC1, list_WGS_EPSRC2, list_WGS_EPSRC4]
 name_WGS_EPSRC1 = 'EPSRC1dna'
 name_WGS_EPSRC2 = 'EPSRC2dna'
 name_WGS_EPSRC4 = 'EPSRC4dna'
 name_WGS_CTRL = [name_WGS_EPSRC1, name_WGS_EPSRC2, name_WGS_EPSRC4]

 list_str_EPSRC1 = "/<path to>/EPSRC_splits/EpSRCrna1/cell_list_bulk_strelka.txt"
 list_str_EPSRC2 = "/<path to>/EPSRC_splits/EpSRCrna2/cell_list_bulk_strelka.txt"
 list_str_EPSRC4 = "/<path to>/EPSRC_splits/EpSRCrnac4/cell_list_bulk_strelka.txt"
 list_str_CTRL = "/<path to>/EPSRC_splits/EpSRCrnaCTRL/cell_list_bulk_strelka.txt"
 name_str_EPSRC1 = 'EPSRC1rna_strelka'
 name_str_EPSRC2 = 'EPSRC2rna_strelka'
 name_str_EPSRC4 = 'EPSRC4rna_strelka'
 name_str_CTRL = 'CTRLrna_strelka'

 list_sam_EPSRC1 = "/<path to>/EPSRC_splits/EpSRCrna1/cell_list_bulk_samtools.txt"
 list_sam_EPSRC2 = "/<path to>/EPSRC_splits/EpSRCrna2/cell_list_bulk_samtools.txt"
 list_sam_EPSRC4 = "/<path to>/EPSRC_splits/EpSRCrna4/cell_list_bulk_samtools.txt"
 list_sam_CTRL = "/<path to>/EPSRC_splits/EpSRCrnaCTRL/cell_list_bulk_samtools.txt"
 name_sam_EPSRC1 = 'EPSRC1rna_samtools'
 name_sam_EPSRC2 = 'EPSRC2rna_samtools'
 name_sam_EPSRC4 = 'EPSRC4rna_samtools'
 name_sam_CTRL = 'CTRLrna_samtools'

 list_hap_EPSRC1 = "/<path to>/EPSRC_splits/EpSRCrna1/cell_list_bulk_hapcaller.txt"
 list_hap_EPSRC2 = "/<path to>/EPSRC_splits/EpSRCrna2/cell_list_bulk_hapcaller.txt"
 list_hap_EPSRC4 = "/<path to>/EPSRC_splits/EpSRCrna4/cell_list_bulk_hapcaller.txt"
 list_hap_CTRL = "/<path to>/EPSRC_splits/EpSRCrnaCTRL/cell_list_bulk_hapcaller.txt"
 name_hap_EPSRC1 = 'EPSRC1rna_hapcaller'
 name_hap_EPSRC2 = 'EPSRC2rna_hapcaller'
 name_hap_EPSRC4 = 'EPSRC4rna_hapcaller'
 name_hap_CTRL = 'CTRLrna_hapcaller'

 list_sc_EPSRC1 = "/<path to>/EPSRC_splits/EpSRCrna1/cell_list_hapcaller.txt"
 list_sc_EPSRC2 = "/<path to>/EPSRC_splits/EpSRCrna2/cell_list_hapcaller.txt"
 list_sc_EPSRC4 = "/<path to>/EPSRC_splits/EpSRCrna4/cell_list_hapcaller.txt"
 list_sc_CTRL = "/<path to>/EPSRC_splits/EpSRCrnaCTRL/cell_list_hapcaller.txt"
 name_sc_EPSRC1 = 'EPSRC1rna'
 name_sc_EPSRC2 = 'EPSRC2rna'
 name_sc_EPSRC4 = 'EPSRC4rna'
 name_sc_CTRL = 'CTRLrna'

 EPSRC1_scu_sample_dict = {'name':'EPSRC1','lists_WGS':[list_WGS_EPSRC1],'names_WGS':[name_WGS_EPSRC1],'lists_CTRL':[list_str_EPSRC1,list_sam_EPSRC1,list_hap_EPSRC1],'names_CTRL':[name_str_EPSRC1,name_sam_EPSRC1,name_hap_EPSRC1],'lists_sc':[list_sc_EPSRC1],'names_sc':[name_sc_EPSRC1]}
 EPSRC2_scu_sample_dict = {'name':'EPSRC2','lists_WGS':[list_WGS_EPSRC2],'names_WGS':[name_WGS_EPSRC2],'lists_CTRL':[list_str_EPSRC2,list_sam_EPSRC2,list_hap_EPSRC2],'names_CTRL':[name_str_EPSRC2,name_sam_EPSRC2,name_hap_EPSRC2],'lists_sc':[list_sc_EPSRC2],'names_sc':[name_sc_EPSRC2]}
 EPSRC4_scu_sample_dict = {'name':'EPSRC4','lists_WGS':[list_WGS_EPSRC4],'names_WGS':[name_WGS_EPSRC4],'lists_CTRL':[list_str_EPSRC4,list_sam_EPSRC4,list_hap_EPSRC4],'names_CTRL':[name_str_EPSRC4,name_sam_EPSRC4,name_hap_EPSRC4],'lists_sc':[list_sc_EPSRC4],'names_sc':[name_sc_EPSRC4]}
 CTRL_scu_sample_dict = {'name':'CTRL','lists_WGS':list_WGS_CTRL,'names_WGS':name_WGS_CTRL,'lists_CTRL':[list_str_CTRL,list_sam_CTRL,list_hap_CTRL],'names_CTRL':[name_str_CTRL,name_sam_CTRL,name_hap_CTRL],'lists_sc':[list_sc_CTRL],'names_sc':[name_sc_CTRL]}
 scu_sample_dict_list = [EPSRC1_scu_sample_dict, EPSRC2_scu_sample_dict, EPSRC4_scu_sample_dict, CTRL_scu_sample_dict]

 min_cell_count_filter_dict = [{'min_cell_count':i,'min_alt_reads':min_alt_reads_base,'min_cell_vaf_factor':min_cell_vaf_factor_base,'min_sc_qual':min_sc_qual_base,'max_alt_reads':max_alt_reads_base,'max_cell_count':max_cell_count_base} for i in min_cell_counts]
 standard_output_dict = [{'min_cell_count':0.0,'min_alt_reads':0,'min_cell_vaf_factor':0.0,'min_sc_qual':100.0,'max_alt_reads':None,'max_cell_count':None}]
 min_sc_qual_filter_dict = [{'min_cell_count':min_cell_count_base,'min_alt_reads':min_alt_reads_base,'min_cell_vaf_factor':min_cell_vaf_factor_base,'min_sc_qual':i,'max_alt_reads':max_alt_reads_base,'max_cell_count':max_cell_count_base} for i in min_sc_quals]
 #min_cell_vaf_factor_dict = [{'min_cell_count':min_cell_count_base,'min_alt_reads':min_alt_reads_base,'min_cell_vaf_factor':i,'min_sc_qual':100.0,'max_alt_reads':max_alt_reads_base,'max_cell_count':max_cell_count_base} for i in min_cell_vaf_factors]

 #iterate_extract_scu_over_filter(scu_sample_dict_list, min_cell_count_filter_dict, outfolder, 'cell_count_filter_stats', resume=resume)
 #iterate_extract_scu_over_filter(scu_sample_dict_list, min_sc_qual_filter_dict, outfolder, 'min_sc_qual_filter_stats', resume=True)
 #iterate_extract_scu_over_filter(scu_sample_dict_list, min_cell_vaf_factor_dict, outfolder, 'min_cell_vaf_factors_stats_100', resume=True)
 iterate_extract_scu_over_filter(scu_sample_dict_list, standard_output_dict, outfolder, 'standard_stats', resume=True)

def scu_stats():
 resume = False
 outfolder = "/<path to>/scu_results/scu_atac_40_100_stats"
 min_cell_count_base = 0.0
 min_cell_vaf_factor_base = 0.0 # changed this, probably should be 0
 min_alt_reads_base = 0
 min_coverage_base = 1
 min_coverages = [1,2,4,10,20,40,100,200,400,1000,2000,4000,10000]
 min_cell_vaf_factors = [0.0, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0.5, 0.9]
 if not os.path.exists(outfolder):
 os.mkdir(outfolder)

 vartrix_WGS_EPSRC1 = "/<path to>/vartrix_WGS_sc_counts_consensus/EPSRC1atac_all_WGS_in_sc_counts/"
 full_vcf_WGS_EPSRC1 = "/<path to>/WGS/EPSRC1_variants/EPSRC1_consensus/consensus3_atac.vcf.gz"
 vartrix_WGS_EPSRC2 = "/<path to>/vartrix_WGS_sc_counts_consensus/EPSRC2atac_all_WGS_in_sc_counts/"
 full_vcf_WGS_EPSRC2 = "/<path to>/EPSRC2_variants/EPSRC2_consensus/consensus3_atac.vcf.gz"
 vartrix_WGS_EPSRC4 = "/<path to>/vartrix_WGS_sc_counts_consensus/EPSRC4atac_all_WGS_in_sc_counts/"
 full_vcf_WGS_EPSRC4 = "/<path to>/WGS/EPSRC4_variants/EPSRC4_consensus/consensus3_atac.vcf.gz"
 vartrix_WGS_CTRL = None
 full_vcf_WGS_CTRL = None

 vartrix_CTRL_EPSRC1 = "/<path to>/scu_results/vartrix_counts_CTRL/EPSRC1atac/"
 full_vcf_CTRL_EPSRC1 = "/<path to>/scu_results/CTRL_variants/EPSRC1atac_CTRL.vcf"
 vartrix_CTRL_EPSRC2 = "/<path to>/scu_results/vartrix_counts_CTRL/EPSRC2atac/"
 full_vcf_CTRL_EPSRC2 = "/<path to>/scu_results/CTRL_variants/EPSRC2atac_CTRL.vcf"
 vartrix_CTRL_EPSRC4 = "/<path to>/scu_results/vartrix_counts_CTRL/EPSRC4atac/"
 full_vcf_CTRL_EPSRC4 = "/<path to>/scu_results/CTRL_variants/EPSRC4atac_CTRL.vcf"
 vartrix_CTRL_CTRL = "/<path to>/scu_results/vartrix_counts_CTRL/CTRLatac/"
 full_vcf_CTRL_CTRL = "/<path to>/scu_results/CTRL_variants/CTRLatac_CTRL.vcf"

 vartrix_scu_EPSRC1 = "/<path to>/scu_results/vartrix_counts_scu_40_100/EPSRC1atac/"
 full_vcf_scu_EPSRC1 = "/<path to>/scu_results/EPSRC1atac_scu_isec_40_100.vcf"
 vartrix_scu_EPSRC2 = "/<path to>/scu_results/vartrix_counts_scu_40_100/EPSRC2atac/"
 full_vcf_scu_EPSRC2 = "/<path to>/scu_results/EPSRC2atac_scu_isec_40_100.vcf"
 vartrix_scu_EPSRC4 = "/<path to>/scu_results/vartrix_counts_scu_40_100/EPSRC4atac/"
 full_vcf_scu_EPSRC4 = "/<path to>/scu_results/EPSRC4atac_scu_isec_40_100.vcf"
 vartrix_scu_CTRL = "/<path to>/scu_results/vartrix_counts_scu_40_100/CTRLatac/"
 full_vcf_scu_CTRL = "/<path to>/scu_results/CTRLatac_scu_isec_40_100.vcf"

 shortlist_vcf_EPSRC1 = None
 shortlist_vcf_EPSRC2 = None
 shortlist_vcf_EPSRC4 = None
 shortlist_vcf_CTRL = None

 EPSRC1_dict = {'name':'EPSRC1','vartrix_WGS':vartrix_WGS_EPSRC1,'full_vcf_WGS':full_vcf_WGS_EPSRC1,'vartrix_CTRL':vartrix_CTRL_EPSRC1,'full_vcf_CTRL':full_vcf_CTRL_EPSRC1,'vartrix_scu':vartrix_scu_EPSRC1,'full_vcf_scu':full_vcf_scu_EPSRC1,'shortlist_vcf':shortlist_vcf_EPSRC1}
 EPSRC2_dict = {'name':'EPSRC2','vartrix_WGS':vartrix_WGS_EPSRC2,'full_vcf_WGS':full_vcf_WGS_EPSRC2,'vartrix_CTRL':vartrix_CTRL_EPSRC2,'full_vcf_CTRL':full_vcf_CTRL_EPSRC2,'vartrix_scu':vartrix_scu_EPSRC2,'full_vcf_scu':full_vcf_scu_EPSRC2,'shortlist_vcf':shortlist_vcf_EPSRC2}
 EPSRC4_dict = {'name':'EPSRC4','vartrix_WGS':vartrix_WGS_EPSRC4,'full_vcf_WGS':full_vcf_WGS_EPSRC4,'vartrix_CTRL':vartrix_CTRL_EPSRC4,'full_vcf_CTRL':full_vcf_CTRL_EPSRC4,'vartrix_scu':vartrix_scu_EPSRC4,'full_vcf_scu':full_vcf_scu_EPSRC4,'shortlist_vcf':shortlist_vcf_EPSRC4}
 CTRL_dict = {'name':'CTRL','vartrix_WGS':vartrix_WGS_CTRL,'full_vcf_WGS':full_vcf_WGS_CTRL,'vartrix_CTRL':vartrix_CTRL_CTRL,'full_vcf_CTRL':full_vcf_CTRL_CTRL,'vartrix_scu':vartrix_scu_CTRL,'full_vcf_scu':full_vcf_scu_CTRL,'shortlist_vcf':shortlist_vcf_CTRL}
 sample_dict_list = [EPSRC1_dict, EPSRC2_dict, EPSRC4_dict, CTRL_dict]

 min_coverage_filter_dict = [{'min_cell_count':min_cell_count_base,'min_alt_reads':min_alt_reads_base,'min_cell_vaf_factor':min_cell_vaf_factor_base,'min_coverage':i} for i in min_coverages]
 min_cell_vaf_factor_filter_dict = [{'min_cell_count':min_cell_count_base,'min_alt_reads':min_alt_reads_base,'min_cell_vaf_factor':i,'min_coverage':min_coverage_base} for i in min_cell_vaf_factors]

 iterate_process_scu_stats(sample_dict_list, min_coverage_filter_dict, outfolder, 'min_coverage_stats', resume=resume)
 iterate_process_scu_stats(sample_dict_list, min_cell_vaf_factor_filter_dict, outfolder, 'min_vaf_stats', resume=True)

"""
sample_dict: a list of samples containing according WGS and single-cell variant calling information, which include:
 "name": overall sample name i.e. "EPSRC1"
 "list_WGS": cell list for WGS variants
 "name_WGS": name for WGS dataset, i.e. "EPSRC1dna"
 "list_sc": cell list for single-cell variants
 "name_sc": name for single-cell dataset, i.e. "EPSRC1rna"
 "vartrix":"/<path to>/vartrix_WGS_sc_counts_consensus/EPSRC4rna_all_WGS_in_sc_counts/",
 "full_vcf":"/<path to>/WGS/EPSRC4dna/variants_consensus/pseudo_cell/consensus3.vcf.gz"
"""
def process_WGS_v_sc(sample_dict_path: str, filter_dict_path: str, test_name: str, resume: bool):
 print(f"process_WGS_v_sc: {locals()}")

 with open(sample_dict_path) as f:
 sample_json = json.load(f)

 if not os.path.exists(sample_json["working"]):
 os.mkdir(sample_json["working"])

 with open(filter_dict_path) as f:
 filter_json = json.load(f)

 iterables = filter_json["iterables"]

 for it_name, it_list in iterables.items():
 valid_filters = ["min_cell_count", "min_alt_reads", "min_cell_vaf_factor", "min_sc_qual", "min_vaf", "min_coverage"]
 if not it_name in valid_filters:
 raise ValueError(f"Invalid filter iterable: {it_name}")

 if not set(filter_json["base"].keys()) == set(valid_filters):
 raise ValueError(f"Invalid base filters: {filter_json['base'].keys()}; should be {valid_filters}")

 filter_dict_list = []
 for it in it_list:
 filter_dict = filter_json["base"].copy()
 filter_dict[it_name] = it
 filter_dict_list.append(filter_dict)
 print(f"running filter: {filter_dict}")

 iterate_process_pair_over_filter(sample_json["samples"], filter_dict_list, sample_json["working"], test_name + "_varying_" + it_name, resume=resume, bulk_sc=filter_json["is_bulk"], exonic=filter_json["exonic"], save_variants=filter_json["save_variants"])

def process_compare_CTRL_variants():
 outfolder = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/"
 min_sc_qual_base = 0.0
 min_alt_reads_base = 0
 min_alt_reads = [1,5,10,20,30,50]

 if not os.path.exists(outfolder):
 os.mkdir(outfolder)

 name_WGS_EPSRC1 = ['EPSRC1dna']
 name_WGS_EPSRC2 = ['EPSRC2dna']
 name_WGS_EPSRC4 = ['EPSRC4dna']
 names_CTRL_EPSRC1_rna = ['EPSRC1rna_hapcaller','EPSRC1rna_samtools','EPSRC1rna_strelka']
 names_CTRL_EPSRC2_rna = ['EPSRC2rna_hapcaller','EPSRC2rna_samtools','EPSRC2rna_strelka']
 names_CTRL_EPSRC4_rna = ['EPSRC4rna_hapcaller','EPSRC4rna_samtools','EPSRC4rna_strelka']
 path_rna = "/<path to>/scu_results/strelka_sc_max_all/"
 names_CTRL_EPSRC1_atac = ['EPSRC1atac_hapcaller','EPSRC1atac_samtools','EPSRC1atac_strelka']
 names_CTRL_EPSRC2_atac = ['EPSRC2atac_hapcaller','EPSRC2atac_samtools','EPSRC2atac_strelka']
 names_CTRL_EPSRC4_atac = ['EPSRC4atac_hapcaller','EPSRC4atac_samtools','EPSRC4atac_strelka']
 path_atac = "/<path to>/scu_results/strelka_sc_atac_max_all/"

 EPSRC1_dict = {'name':'EPSRC1',
 'names_WGS':name_WGS_EPSRC1,
 'names_CTRL_rna':names_CTRL_EPSRC1_rna,
 'names_CTRL_atac':names_CTRL_EPSRC1_atac,
 'path_rna':path_rna,
 'path_atac':path_atac}
 EPSRC2_dict = {'name':'EPSRC2',
 'names_WGS':name_WGS_EPSRC2,
 'names_CTRL_rna':names_CTRL_EPSRC2_rna,
 'names_CTRL_atac':names_CTRL_EPSRC2_atac,
 'path_rna':path_rna,
 'path_atac':path_atac}
 EPSRC4_dict = {'name':'EPSRC4',
 'names_WGS':name_WGS_EPSRC4,
 'names_CTRL_rna':names_CTRL_EPSRC4_rna,
 'names_CTRL_atac':names_CTRL_EPSRC4_atac,
 'path_rna':path_rna,
 'path_atac':path_atac}
 sample_dict_list = [EPSRC1_dict, EPSRC2_dict, EPSRC4_dict]

 min_alt_read_count_filter_dict = [{'min_alt_reads':i,'min_sc_qual':min_sc_qual_base} for i in min_alt_reads]
 standard_filter_dict = [{'min_alt_reads':min_alt_reads_base,'min_sc_qual':min_sc_qual_base}]

 iterate_compare_CTRL_variants_over_filter(sample_dict_list, min_alt_read_count_filter_dict, outfolder, 'min_alt_reads_filter_stats')
 iterate_compare_CTRL_variants_over_filter(sample_dict_list, standard_filter_dict, outfolder, 'standard_filter_stats')

def count_overlap_CTRL():
 outfolder = "/<path to>/compare_rna_atac_results/test"
 min_vaf_base = 0.005
 max_vaf_base = 1.0
 min_vaf_WGS_base = 0.0
 min_alt_count_WGS_base = 1
 min_vafs = [0.0, 0.0005, 0.001, 0.005, 0.01, 0.05]
 max_vafs = [1.0, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05]
 min_alt_count_base = 5

 if not os.path.exists(outfolder):
 os.mkdir(outfolder)

 vardir_rna_EPSRC1 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_rna/EPSRC1/"
 vardir_rna_EPSRC2 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_rna/EPSRC2/"
 vardir_rna_EPSRC4 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_rna/EPSRC4/"
 vcfdir_rna_EPSRC1 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_rna/EPSRC1/variants_CTRL_both.vcf"
 vcfdir_rna_EPSRC2 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_rna/EPSRC2/variants_CTRL_both.vcf"
 vcfdir_rna_EPSRC4 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_rna/EPSRC4/variants_CTRL_both.vcf"

 vardir_atac_EPSRC1 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_atac/EPSRC1/"
 vardir_atac_EPSRC2 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_atac/EPSRC2/"
 vardir_atac_EPSRC4 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_atac/EPSRC4/"
 vcfdir_atac_EPSRC1 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_atac/EPSRC1/variants_CTRL_both.vcf"
 vcfdir_atac_EPSRC2 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_atac/EPSRC2/variants_CTRL_both.vcf"
 vcfdir_atac_EPSRC4 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_atac/EPSRC4/variants_CTRL_both.vcf"

 vardir_unique_rna_EPSRC1 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_rna/EPSRC1/"
 vardir_unique_rna_EPSRC2 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_rna/EPSRC2/"
 vardir_unique_rna_EPSRC4 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_rna/EPSRC4/"
 vcfdir_unique_rna_EPSRC1 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_rna/EPSRC1/variants_CTRL_rna.vcf"
 vcfdir_unique_rna_EPSRC2 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_rna/EPSRC2/variants_CTRL_rna.vcf"
 vcfdir_unique_rna_EPSRC4 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_rna/EPSRC4/variants_CTRL_rna.vcf"

 vardir_unique_atac_EPSRC1 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_atac/EPSRC1/"
 vardir_unique_atac_EPSRC2 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_atac/EPSRC2/"
 vardir_unique_atac_EPSRC4 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_atac/EPSRC4/"
 vcfdir_unique_atac_EPSRC1 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_atac/EPSRC1/variants_CTRL_atac.vcf"
 vcfdir_unique_atac_EPSRC2 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_atac/EPSRC2/variants_CTRL_atac.vcf"
 vcfdir_unique_atac_EPSRC4 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_unique_atac/EPSRC4/variants_CTRL_atac.vcf"

 asedir_WGS_EPSRC1 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_WGS/EPSRC1/counts.table"
 asedir_WGS_EPSRC2 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_WGS/EPSRC2/counts.table"
 asedir_WGS_EPSRC4 = "/<path to>/compare_rna_atac_results/CTRL_overlap_all/vartrix_WGS/EPSRC4/counts.table"

 EPSRC1_dict = {'name':'EPSRC1',
 'vardir_rna':vardir_rna_EPSRC1,
 'vcfdir_rna':vcfdir_rna_EPSRC1,
 'vardir_atac':vardir_atac_EPSRC1,
 'vcfdir_atac':vcfdir_atac_EPSRC1,
 'vardir_unique_rna':vardir_unique_rna_EPSRC1,
 'vcfdir_unique_rna':vcfdir_unique_rna_EPSRC1,
 'vardir_unique_atac':vardir_unique_atac_EPSRC1,
 'vcfdir_unique_atac':vcfdir_unique_atac_EPSRC1,
 'asedir_WGS':asedir_WGS_EPSRC1}
 EPSRC2_dict = {'name':'EPSRC2',
 'vardir_rna':vardir_rna_EPSRC2,
 'vcfdir_rna':vcfdir_rna_EPSRC2,
 'vardir_atac':vardir_atac_EPSRC2,
 'vcfdir_atac':vcfdir_atac_EPSRC2,
 'vardir_unique_rna':vardir_unique_rna_EPSRC2,
 'vcfdir_unique_rna':vcfdir_unique_rna_EPSRC2,
 'vardir_unique_atac':vardir_unique_atac_EPSRC2,
 'vcfdir_unique_atac':vcfdir_unique_atac_EPSRC2,
 'asedir_WGS':asedir_WGS_EPSRC2}
 EPSRC4_dict = {'name':'EPSRC4',
 'vardir_rna':vardir_rna_EPSRC4,
 'vcfdir_rna':vcfdir_rna_EPSRC4,
 'vardir_atac':vardir_atac_EPSRC4,
 'vcfdir_atac':vcfdir_atac_EPSRC4,
 'vardir_unique_rna':vardir_unique_rna_EPSRC4,
 'vcfdir_unique_rna':vcfdir_unique_rna_EPSRC4,
 'vardir_unique_atac':vardir_unique_atac_EPSRC4,
 'vcfdir_unique_atac':vcfdir_unique_atac_EPSRC4,
 'asedir_WGS':asedir_WGS_EPSRC4}
 sample_dict_list = [EPSRC1_dict, EPSRC2_dict, EPSRC4_dict]

 min_vaf_filter_dict = [{'min_alt_count':min_alt_count_base,'min_vaf':i, 'max_vaf':max_vaf_base, 'min_alt_count_WGS':min_alt_count_WGS_base, 'min_vaf_WGS':min_vaf_WGS_base} for i in min_vafs]
 max_vaf_filter_dict = [{'min_alt_count':min_alt_count_base,'min_vaf':min_vaf_base, 'max_vaf':i, 'min_alt_count_WGS':min_alt_count_WGS_base, 'min_vaf_WGS':min_vaf_WGS_base} for i in max_vafs]
 standard_filter_dict = [{'min_alt_count':5,'min_vaf':min_vaf_base,'max_vaf':max_vaf_base, 'min_alt_count_WGS':min_alt_count_WGS_base, 'min_vaf_WGS':min_vaf_WGS_base}]

 #iterate_count_overlap_vartrix(sample_dict_list, min_vaf_filter_dict, outfolder, 'min_vaf_filter', resume=True)
 #iterate_count_overlap_vartrix(sample_dict_list, max_vaf_filter_dict, outfolder, 'max_vaf_filter', resume=True)
 iterate_count_overlap_vartrix(sample_dict_list, standard_filter_dict, outfolder, 'standard_filters', resume=False)

def parse_args():
 parser = argparse.ArgumentParser(description='Variant statistics analysis')
 subparsers = parser.add_subparsers(dest='func')

 pair_parser = subparsers.add_parser('process_pair')
 pair_parser.add_argument('samples', help='path to sample json file')
 pair_parser.add_argument('filters', help='path to filter json file')
 pair_parser.add_argument('test_name', help='name of test (should be unique)')
 pair_parser.add_argument('-r', '--resume', help='if specified, attempt to resume', action="store_true")

 aggvtx_parser = subparsers.add_parser('aggregate_vartrix')
 aggvtx_parser.add_argument('vartrix_dir', help='path to vartrix output folder')
 aggvtx_parser.add_argument('vcf', help='path to variant vcf file used to generate vartrix output')
 aggvtx_parser.add_argument('outcsv', help='path to resulting .csv file')
 args = parser.parse_args()

 return args

def main():
 ### Outdated approaches for processing overlaps

 #process_WGS_v_scRNA()
 #process_WGS_v_scATAC()
 #process_WGS_v_bulk()
 #process_scu()
 #scu_stats()
 #process_compare_CTRL_variants()
 #count_overlap_CTRL()

 #intersect_scu("/<path to>/scu_results/strelka_sc_atac_max_all/EPSRC1/variants_scu_50.tsv", "/<path to>/scu_results/hapcaller_sc_atac_max_all/EPSRC1/variants_scu_80.tsv", "/<path to>/scu_results/EPSRC1atac_scu_isec_50_80.tsv", vcfheader="/<path to>/scu_results/strelka_sc_atac_max_all/EPSRC1/sc_intermediaries/EPSRC1atac/header.txt")
 #intersect_scu("/<path to>/scu_results/strelka_sc_atac_max_all/EPSRC2/variants_scu_50.tsv", "/<path to>/scu_results/hapcaller_sc_atac_max_all/EPSRC2/variants_scu_80.tsv", "/<path to>/scu_results/EPSRC2atac_scu_isec_50_80.tsv", vcfheader="/<path to>/scu_results/strelka_sc_atac_max_all/EPSRC2/sc_intermediaries/EPSRC2atac/header.txt")
 #intersect_scu("/<path to>/scu_results/strelka_sc_atac_max_all/EPSRC4/variants_scu_50.tsv", "/<path to>/scu_results/hapcaller_sc_atac_max_all/EPSRC4/variants_scu_80.tsv", "/<path to>/scu_results/EPSRC4atac_scu_isec_50_80.tsv", vcfheader="/<path to>/scu_results/strelka_sc_atac_max_all/EPSRC4/sc_intermediaries/EPSRC4atac/header.txt")
 #intersect_scu("/<path to>/scu_results/strelka_sc_atac_max_all/CTRL/variants_scu_50.tsv", "/<path to>/scu_results/hapcaller_sc_atac_max_all/CTRL/variants_scu_80.tsv", "/<path to>/scu_results/CTRLatac_scu_isec_50_80.tsv", vcfheader="/<path to>/scu_results/strelka_sc_atac_max_all/CTRL/sc_intermediaries/CTRLatac/header.txt")

 ### Approaches for Statistics on Single VCF ###

 #mylist = [{'name':'EPSRC1','file':"/<path to>/WGS/EPSRC1dna/strelka_somatic/CTR1_somatic/somatic_annotated_pass_no_dbsnp.TUMOR.vcf"},
 # {'name':'EPSRC2','file':"/<path to>/WGS/EPSRC2dna/strelka_somatic/CTR1_somatic/somatic_annotated_pass_no_dbsnp.TUMOR.vcf"},
 # {'name':'EPSRC4','file':"/<path to>/WGS/EPSRC4dna/strelka_somatic/CTR1_somatic/somatic_annotated_pass_no_dbsnp.TUMOR.vcf"}]
 #filter_and_overlap_multiple(mylist, "/<path to>/WGS/somatic_overlap_no_dbsnp.tsv")

 #filter_single("/<path to>/WGS/EPSRC1dna/strelka_variants_somatic_candidates_annotated_no_dbsnp.TUMOR.vcf", "/<path to>/WGS/EPSRC1dna/strelka_variants_somatic_candidates_annotated_no_dbsnp.tsv")

 #table = pd.read_csv("/<path to>/scu_results/scu_atac_40_100_stats/EPSRC1/vartrix_WGS_EPSRC1_counted.csv")
 #table = table[table['alt_count'] >= 1]
 #generate_vcf(table, "/<path to>/scu_results/strelka_sc_atac_max_all/EPSRC1/WGS_intermediaries/EPSRC1dna/header.txt", "/<path to>/scu_results/WGS_atac_sigprofiler/EPSRC1_WGS.vcf", atac=False)

 #sc_counts = count_vartrix("/<path to>/scu_results/vartrix_counts_CTRL/CTRLrna/", "/<path to>/PTM_overlap/CTRL/CTRL.vcf")
 #sc_counts.to_csv("/<path to>/PTM_overlap/CTRL/CTRL_counted.csv")

 args = parse_args()
 if args.func == 'process_pair':
 process_WGS_v_sc(args.samples, args.filters, args.test_name, resume=args.resume)
 elif args.func == 'aggregate_vartrix':
 counts = count_vartrix(args.vartrix_dir, args.vcf)
 total = len(counts)
 counts['depth'] = counts['ref_count'] + counts['alt_count']
 counts['vaf'] = counts['alt_count'] / counts['depth']
 counts_with_depth = counts[counts['depth'] > 0]
 print(f"{total} variants total, {total - len(counts_with_depth)} variants removed due to 0 depth, {len(counts_with_depth)} final")
 counts_with_depth.to_csv(args.outcsv)

if __name__ == "__main__":
 main()

[bookmark: _Toc173090569]R
[bookmark: _Toc173090570]cell_cycle.R
taken from https://hbctraining.github.io/scRNA-seq/lessons/cell_cycle_scoring.html
and genes from https://github.com/hbc/tinyatlas/blob/master/cell_cycle/Mus_musculus.csv

suppressPackageStartupMessages({
 library(plyr)
 library(dplyr)
 library(Seurat)
 library(RCurl)
 library(AnnotationHub)
})

script.dir <- dirname(sys.frame(1)$ofile)
source(paste0(script.dir, "/seurat_RNA.R"))

TODO: while the current approach works for RNA-seq, may need to take a differing approach with ATAC-seq to match ENSDB loci to peaks instead of by gene

quickCycleTest
generates a DimPlot for a set of genes linked to cell cycle for quick identification of cell populations undergoing mitosis
suob: seurat object containing the relevant genes as activity features
quickCycleTest <- function(suob) {
 X11()
 p = FeaturePlot(suob, features = c("Pcna", "Top2a", "Mcm6", "Mki67"), ncol=3)
 print(p)
}

cellCycleAnnotate
annotate cells with cell cycle stage information based on genes known to be highly associated with each stage of the cell cycle in Mus Musculus, with cycle stage annotations placed in the $Phase parameter
suob: seurat object with activity levels in each of the relevant genes
cellCycleAnnotate <- function(suob, plot=TRUE) {
 # for Mus Musculus
 cc_file <- getURL("https://raw.githubusercontent.com/hbc/tinyatlas/master/cell_cycle/Mus_musculus.csv")
 cell_cycle_genes <- read.csv(text = cc_file)
 ah <- AnnotationHub()
 ahDb <- query(ah, pattern = c("Mus musculus", "EnsDb"), ignore.case = TRUE)
 id <- ahDb %>% mcols() %>% rownames() %>% tail(n = 1)
 edb <- ah[[id]]
 annotations <- genes(edb, return.type = "data.frame")
 annotations <- annotations %>% dplyr::select(gene_id, gene_name, seq_name, gene_biotype, description)
 cell_cycle_markers <- dplyr::left_join(cell_cycle_genes, annotations, by = c("geneID" = "gene_id"))
 s_genes <- cell_cycle_markers %>% dplyr::filter(phase == "S") %>% pull("gene_name")
 g2m_genes <- cell_cycle_markers %>% dplyr::filter(phase == "G2/M") %>% pull("gene_name")
 suob <- CellCycleScoring(suob, g2m.features = g2m_genes, s.features = s_genes)
 if (plot) {
 X11()
 p = DimPlot(suob, group.by = 'Phase')
 print(p)
 }
 return(suob)
}

regressCellCycle
use cell cycle scores determined in cellCycleAnnotate to regress out factors associated with cell division so that these effects do not contribute to the clustering of expression level heterogeneity
suob: seurat object with S.Score and G2M.Score attributes (as generated by cellCycleAnnotate)
standard_filters: use standard seurat filters for PCA and clustering, or turn this off to enter them manually
verbose: print extra figures
regressCellCycle <- function(suob, standard_filters=TRUE, verbose=FALSE, plot=TRUE) {
 X11()
 p = RidgePlot(suob, features = c("Pcna", "Top2a", "Mcm6", "Mki67"), ncol = 2, group.by = 'Phase')
 print(p)
 variablefeatures <- VariableFeatures(suob)
 suob <- ScaleData(suob, vars.to.regress = c("S.Score", "G2M.Score"), features = variablefeatures)
 num_dims <- 50
 suob <- RunPCA(suob, features = VariableFeatures(object = suob), npcs = strtoi(num_dims, base = 0L))
 print(suob[["pca"]], dims = 1:5, nfeatures = 5)
 if(verbose) {
 X11()
 p = VizDimLoadings(suob, dims = 1:2, reduction = "pca")
 print(p)
 X11()
 p = DimPlot(suob, reduction = "pca", group.by = "Phase")
 print(p)
 X11()
 p = DimHeatmap(suob, dims = 1:15, cells = 500, balanced = TRUE, fast=FALSE)
 print(p)
 }
 X11()
 p = ElbowPlot(suob, ndims = 50)
 print(p)
 if(standard_filters) {
 clu_dims <- 50
 } else {
 clu_dims <- typeline("Clustering: Enter number of PCA dims (consider elbow plot): ")
 print(strtoi(clu_dims))
 }
 res <- 0.8
 suob <- FindNeighbors(suob, dims = 1:strtoi(clu_dims, base = 0L))
 suob <- FindClusters(suob, resolution = as.double(res))
 head(Idents(suob), 5)
 suob <- RunUMAP(suob, dims = 1:strtoi(clu_dims))
 if (plot) {
 X11()
 p = DimPlot(suob, reduction="umap")
 print(p)
 }
 return(suob)
}

[bookmark: _Toc173090571]ptm_count.R
suppressPackageStartupMessages({
 library(plyr)
 library(dplyr)
 library(prob)
 library(stringr)
})

source("./seurat_RNA.R")
source("./seurat_mutations.R")
source("./cell_cycle.R")

START

path.to.levels <- "/<redacted>/SRCdata/EpSRC/EpSRC_RNA_1_outs/filtered_gene_bc_matrices/genome/"
path.to.mut.matrices <- "/<redacted>/working/vartrix_counts_CTRL/EPSRC1rna/"
suob.rna <- ReadRNA(path.to.levels)
suob.mut <- ReadMut(path.to.mut.matrices)
suob.mut.meta <- read.table("/<redacted>/working/PTM_overlap/EPSRC1_counted.csv", header=TRUE, sep=",")
suob.mut.meta <- indexMutMetaUnder(suob.mut.meta)
suob.mut[["ALT"]] <- suob.mut[["ALT"]][which(rownames(suob.mut[["ALT"]]) %in% suob.mut.meta$index),]
suob.mut[["REF"]] <- suob.mut[["REF"]][which(rownames(suob.mut[["REF"]]) %in% suob.mut.meta$index),]
suob <- loadSeuratWithMutations(suob.rna, suob.mut, "EpSRCrna1")

RNA PROCESSING

suob <- runSeuratRNA(suob, standard_filters=TRUE)

suob <- cellCycleAnnotate(suob)
suob <- regressCellCycle(suob)

MUTATION PROCESSING

#suob.mut.matched.matched <- suob.mut.matched[,(colnames(suob.mut.matched) %in% colnames(suob))]

#suob[["MUT"]] <- CreateAssayObject(counts = suob.mut.matched.matched)

suob.mut.out <- as.data.frame(suob[["ALT"]]@counts)
suob.mut.final <- as.data.frame(suob.mut.out > 0)
suob.mut.final$Count <- rowSums(suob.mut.final)
suob.mut.final$Mean <- rowMeans(suob.mut.out)
suob.mut.filtered <- suob.mut.final[suob.mut.final$Count >= 10,]
suob.mut.filtered <- subset(suob.mut.filtered, select = -c(Count, Mean))
suob.mut.filtered.t <- as.data.frame(t(suob.mut.filtered))
suob.mut.filtered.t$Clusters <- Idents(suob)

cluster.counts <- aggregate(. ~ Clusters, suob.mut.filtered.t, sum)
cluster.counts <- as.data.frame(cluster.counts)
cluster.counts$Total <- (suob.mut.filtered.t %>% dplyr::filter(!is.na(Clusters)) %>% count(Clusters))$n
p.values <- list()
for (mut in colnames(cluster.counts[-which(names(cluster.counts) %in% c("Total","Columns", "Clusters"))]))
{

 p.values[mut] <- chisq.test(data.frame(cluster.counts[which(names(cluster.counts) == mut)],cluster.counts$Total-cluster.counts[which(names(cluster.counts) == mut)]))$p.value
}
p.values <- t(as.data.frame(t(p.values)))
#p.values.filtered <- t(as.data.frame(t(p.values[p.values[,1] <= 10^-10,])))
p.values.filtered <- p.values
colnames(x=p.values.filtered) <- c("alt.p")

suob.mut.ref.out <- subset(t(as.data.frame(suob[["REF"]]@counts)), select=rownames(p.values))
suob.mut.ref.filtered.t <- as.data.frame(suob.mut.ref.out > 0)
suob.mut.ref.filtered.t$Clusters <- Idents(suob)

cluster.counts.ref <- aggregate(. ~ Clusters, suob.mut.ref.filtered.t, sum)
cluster.counts.ref <- as.data.frame(cluster.counts.ref)
p.values.ref <- list()
for (mut in colnames(cluster.counts[-which(names(cluster.counts) %in% c("Total","Columns", "Clusters"))]))
{
 #p.values.ref[mut] <- chisq.test(data.frame(cluster.counts[which(names(cluster.counts) == mut)],cluster.counts.ref[which(names(cluster.counts.ref) == mut)]))$p.value
 p.values.ref[mut] <- fisher.test(cbind(cluster.counts[which(names(cluster.counts) == mut)],cluster.counts.ref[which(names(cluster.counts.ref) == mut)]), workspace=1e+7, hybrid=TRUE)$p.value
}
p.values.ref <- t(as.data.frame(t(p.values.ref)))
colnames(x=p.values.ref) <- c("ref.p")
p.values.ref.filtered <- t(as.data.frame(t(p.values.ref[p.values.ref[,1] <= 0.1,])))
colnames(x=p.values.filtered) <- c("alt.p")

rownames(p.values.ref) <- gsub("-", "_", rownames(p.values.ref))
p.values.ref <- data.frame(p.values.ref)
p.values.ref$gene <- suob.mut.meta.copy[rownames(p.values.ref),]$gene

print(p.values.ref)

suob.mut.ref.out <- subset(t(as.data.frame(suob[["REF"]]@counts)), select=rownames(p.values))
suob.mut.ref.reads <- as.data.frame(suob.mut.ref.out)
suob.mut.ref.reads$Clusters <- Idents(suob)
cluster.counts.ref.reads <- aggregate(. ~ Clusters, suob.mut.ref.reads, sum)
cluster.counts.ref.reads <- as.data.frame(cluster.counts.ref.reads)

suob.mut.out <- subset(t(as.data.frame(suob[["ALT"]]@counts)), select=rownames(p.values))
suob.mut.reads <- as.data.frame(suob.mut.out)
suob.mut.reads$Clusters <- Idents(suob)
cluster.counts.reads <- aggregate(. ~ Clusters, suob.mut.reads, sum)
cluster.counts.reads <- as.data.frame(cluster.counts.reads)

cluster.counts.reads/cluster.counts[-which(names(cluster.counts) %in% c("Total"))]
cluster.counts.ref.reads/cluster.counts.ref

rownames(p.values.ref) <- gsub("-", "_", rownames(p.values.ref))
suob.mut.meta$ref.p <- data.frame(p.values.ref)[rownames(suob.mut[["ALT"]]),"ref.p"]

TODO fix for case where length is zero, fix for case where length is one
i <- 0
while (i*9 < nrow(p.values.ref.filtered))
{
 j <- min(c((i+1)*9, nrow(p.values.ref.filtered)))
 print(i*9+1)
 print(j)
 X11()
 p = FeaturePlot(suob, features = paste("alt_", rownames(p.values.ref.filtered)[(i*9+1):(j)], sep=""), ncol=3)
 print(p)
 i <- i + 1
}

i <- 0
while (i*9 < nrow(p.values.ref.filtered))
{
 j <- min(c((i+1)*9, nrow(p.values.ref.filtered)))
 print(i*9+1)
 print(j)
 X11()
 p = FeaturePlot(suob, features = paste("ref_", rownames(p.values.ref.filtered)[(i*9+1):(j)], sep=""), ncol=3)
 print(p)
 i <- i + 1
}

hold up on that filtering, you can also have the opposite direction (ie. low p value on ref, high p-value on alt) so you should be checking on this as well (this requires additional processing to get a separate list of filtered variants)
consider moving to some form of differential expression, this will allow you to see which clusters are affected
typeline("Done, press enter to close")

[bookmark: _Toc173090572]seurat_RNA.R
suppressPackageStartupMessages({
 library(plyr)
 library(dplyr)
 library(Seurat)
 library(patchwork)
})

Utility Functions

typeline
take user input
msg: message to display (prompt)
output: text entered by user
typeline <- function(msg) {
 if (interactive()) {
 txt <- readline(msg)
 } else {
 cat(msg);
 txt <- readLines("stdin",n=1);
 }
 return(txt)
}

userEnterList
get list of entries from the user
msg: messsage to display (prompt)
output: text entered by user
userEnterList <- function(msg) {
 if (interactive()) {
 EXP <- as.integer(strsplit(readline(msg), " ")[[1]])
 } else {
 cat(msg)
 EXP <- as.integer(strsplit(readLines("stdin",n=1), " ")[[1]])
 }
}

identifyNormalRNAEP
custom function for Epithelioid Sarcoma to enable the user to identify the normal cell populations in a sample based on expression of SmarcB1, Rgs5, and Pdgfra
cells are labeled as tumor or normal and this label is stored in "tumNormLabels" in the seurat object
suob: seurat object containing epithelioid sarcoma expression levels
output: seurat object with labels
identifyNormalRNAEP <- function(suob) {
 X11()
 p <- FeaturePlot(suob, features = c("Pdgfra","Rgs5","Smarcb1"))
 print(p)
 normclusters <- userEnterList("enter the non-tumor clusters (space-separated list) \n")
 suob$tumNormLabels <- ifelse(suob$seurat_clusters %in% normclusters, "normal", "tumor")
 print("Identified normal cell clusters: ", normclusters)
 return(suob)
}

Major Functionality

ReadRNA
wrapper for reading 10X genomics library into seurat
path.to.levels: path to output of 10X cellranger containing matrix.mtx, barcodes.tsv, features.tsv, and genes.tsv (usually located in filtered_gene_bc_matrices/genome/)
output: seurat object
ReadRNA <- function(path.to.levels) {
 suob.rna <- Read10X(data.dir = path.to.levels)
 return(suob.rna)
}

TODO: depreciate runSeuratRNA, move all preprocessing steps into filterScaleRNA, make new function that performs only the PCA and clustering (or one that only does PCA, and only does clustering, better options when replacing reduction)

runSeuratRNA
runs the standard seurat RNA filtering/clustering pipeline, generating relevant plots along the way
suob: seurat object
verbose: if TRUE, prints full set of figures with more details
standard_filters: if FALSE, prompts user for filter values and clustering hyperparameters, otherwise uses standard values selected based on experience (if not sure, leave as false)
usevariablefeatures: set to true causes the scaling of data using only variable features, false will use all genes
outputs: seurat object which has been filtered, dimensionally reduced, and clustered
runSeuratRNA <- function(suob, verbose=FALSE, standard_filters=FALSE, usevariablefeatures = TRUE) {
 suob[["percent.mt"]] <- PercentageFeatureSet(suob, pattern = "^mt-")
 X11()
 p = VlnPlot(suob, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol=3)
 print(p)
 X11()
 plot1 <- FeatureScatter(suob, feature1 = "nCount_RNA", feature2 = "percent.mt")
 plot2 <- FeatureScatter(suob, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
 p = plot1 + plot2
 print(p)
 if(standard_filters) {
 mtcutoff <- 10
 nfeatmin <- 3000
 nfeatmax <- 8000
 ncountmin <- 8000
 } else {
 mtcutoff <- typeline("Filtering: Enter value of mt-percent cutoff (default = 5): ")
 print(strtoi(mtcutoff, base = 0L))
 nfeatmin <- typeline("Filtering: Enter minimum features (default = 200): ")
 print(strtoi(nfeatmin, base = 0L))
 nfeatmax <- typeline("Filtering: Enter maximum features: ")
 print(strtoi(nfeatmax, base = 0L))
 ncountmin <- typeline("Filtering: Enter minimum count: ")
 print(strtoi(ncountmin, base = 0L))
 }
 old.cell.count <- ncol(suob[["RNA"]]@counts)
 suob <- subset(suob, subset = nFeature_RNA > strtoi(nfeatmin, base = 0L) & nFeature_RNA < strtoi(nfeatmax, base = 0L) & percent.mt < strtoi(mtcutoff, base = 0L)& nCount_RNA > strtoi(ncountmin, base = 0L))
 filtered.cell.count <- ncol(suob[["RNA"]]@counts)
 cat("Cells before filtering: ", old.cell.count)
 cat("Cells after filtering: ", filtered.cell.count)
 X11()
 p = VlnPlot(suob, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol=3)
 print(p)
 suob <- NormalizeData(suob)
 suob <- FindVariableFeatures(suob, selection.method = "vst", nfeatures = 2000)
 top10 <- head(VariableFeatures(suob), 10)
 if(verbose) {
 X11()
 par(mfrow=c(1,2))
 plot1 = VariableFeaturePlot(suob)
 p = LabelPoints(plot = plot1, points = top10, repel = TRUE)
 print(p)
 }
 if(usevariablefeatures) {
 genes <- VariableFeatures(suob)
 } else {
 genes <- rownames(suob)
 }
 suob <- ScaleData(suob, features = genes)
 #num_dims <- typeline("PCA: Enter number PCA dimensions (default = 50): ")
 num_dims <- 50
 suob <- RunPCA(suob, features = VariableFeatures(object = suob), npcs = strtoi(num_dims, base = 0L))
 print(suob[["pca"]], dims = 1:5, nfeatures = 5)
 if(verbose) {
 X11()
 p = VizDimLoadings(suob, dims = 1:2, reduction = "pca")
 print(p)
 X11()
 p = DimPlot(suob, reduction = "pca")
 print(p)
 X11()
 p = DimHeatmap(suob, dims = 1:15, cells = 500, balanced = TRUE, fast=FALSE)
 print(p)
 }
 X11()
 p = ElbowPlot(suob, ndims = 50)
 print(p)
 if(standard_filters) {
 clu_dims <- 50
 } else {
 clu_dims <- typeline("Clustering: Enter number of PCA dims (consider elbow plot): ")
 print(strtoi(clu_dims))
 }
 #res <- typeline("Clustering: Enter resolution (between 0.4-1.2, higher for larger datasets): ")
 #as.double(res)
 res <- 0.8
 suob <- FindNeighbors(suob, dims = 1:strtoi(clu_dims, base = 0L))
 suob <- FindClusters(suob, resolution = as.double(res))
 head(Idents(suob), 5)
 #map <- typeline("What map to use? (enter umap or tsne): ")
 map <- "umap"
 if (map == "umap") {
 suob <- RunUMAP(suob, dims = 1:strtoi(clu_dims))
 X11()
 p = DimPlot(suob, reduction="umap")
 print(p)
 } else if (map == "tsne") {
 suob <- RunTSNE(suob, dims.use = 1:strtoi(clu_dims))
 X11()
 p = DimPlot(suob, reduction="tsne")
 print(p)
 }
 return(suob)
}

reclusterSeuratRNA
runs seurat findclusters with louvain to regenerate clusters (and corresponding Idents of seurat object), meant to enable re-clustering at a finer or more granular resolution to control the number of clusters
suob: seurat object
res: resolution, required, default for runSeuratRNA is 0.8
plot: generate a umap dimplot with the new clusters
outputs: seurat object which has been reclustered
reclusterSeuratRNA <- function(suob, res, plot=TRUE) {
 suob <- FindClusters(object = suob, resolution = as.double(res))
 if (plot) {
 X11()
 p = DimPlot(suob, reduction="umap")
 print(p)
 }
 return(suob)
}

subsetSeuratRNA
subset a seurat object with a specific list of genes and then re-cluster explicitly for those genes
suob: seurat object
genes: list of genes to keep
res: resolution, required, default for runSeuratRNA is 0.8
plot: generate a umap dimplot with the new clusters
verbose: generate elbowplot for new PCA
subsetSeuratRNA <- function(suob, genes, res, plot=TRUE, verbose=FALSE) {
 suob.subset <- subset(suob, features = genes)
 suob.subset <- NormalizeData(suob.subset)
 all.genes <- rownames(suob.subset)
 suob.subset <- ScaleData(suob.subset, features = all.genes)
 suob.subset <- RunPCA(suob.subset, features = all.genes)
 if (verbose) {
 X11()
 p = ElbowPlot(suob.subset)
 print(p)
 }
 suob.subset <- FindNeighbors(suob.subset, dims = 1:length(suob.subset@reductions$pca))
 suob.subset <- FindClusters(suob.subset, resolution = res)
 suob.subset <- RunUMAP(suob.subset, dims = 1:length(suob.subset@reductions$pca))
 if (plot) {
 X11()
 p = DimPlot(suob.subset, reduction="umap")
 print(p)
 }
 return(suob.subset)
}

TODO: add description
filterScaleRNA <- function(suob, verbose=FALSE, standard_filters=FALSE, usevariablefeatures = TRUE, nvarfeatures = 2000) {
 suob[["percent.mt"]] <- PercentageFeatureSet(suob, pattern = "^mt-")
 X11()
 p = VlnPlot(suob, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol=3)
 print(p)
 X11()
 plot1 <- FeatureScatter(suob, feature1 = "nCount_RNA", feature2 = "percent.mt")
 plot2 <- FeatureScatter(suob, feature1 = "nCount_RNA", feature2 = "nFeature_RNA")
 p = plot1 + plot2
 print(p)
 if(standard_filters) {
 mtcutoff <- 10
 nfeatmin <- 3000
 nfeatmax <- 8000
 ncountmin <- 8000
 } else {
 mtcutoff <- typeline("Filtering: Enter value of mt-percent cutoff (default = 5): ")
 print(strtoi(mtcutoff, base = 0L))
 nfeatmin <- typeline("Filtering: Enter minimum features (default = 200): ")
 print(strtoi(nfeatmin, base = 0L))
 nfeatmax <- typeline("Filtering: Enter maximum features: ")
 print(strtoi(nfeatmax, base = 0L))
 ncountmin <- typeline("Filtering: Enter minimum count: ")
 print(strtoi(ncountmin, base = 0L))
 }
 old.cell.count <- ncol(suob[["RNA"]]@counts)
 suob <- subset(suob, subset = nFeature_RNA > strtoi(nfeatmin, base = 0L) & nFeature_RNA < strtoi(nfeatmax, base = 0L) & percent.mt < strtoi(mtcutoff, base = 0L)& nCount_RNA > strtoi(ncountmin, base = 0L))
 filtered.cell.count <- ncol(suob[["RNA"]]@counts)
 cat("Cells before filtering: ", old.cell.count)
 cat("Cells after filtering: ", filtered.cell.count)
 X11()
 p = VlnPlot(suob, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol=3)
 print(p)
 suob <- NormalizeData(suob)
 ### How much difference does nfeatures make on the outcome of clustering (?!)
 suob <- FindVariableFeatures(suob, selection.method = "vst", nfeatures = nvarfeatures)
 top10 <- head(VariableFeatures(suob), 10)
 if(verbose) {
 X11()
 par(mfrow=c(1,2))
 plot1 = VariableFeaturePlot(suob)
 p = LabelPoints(plot = plot1, points = top10, repel = TRUE)
 print(p)
 }
 if(usevariablefeatures) {
 genes <- VariableFeatures(suob)
 } else {
 genes <- rownames(suob)
 }
 suob <- ScaleData(suob, features = genes)
 return(suob)
}

[bookmark: _Toc173090573]seurat_mutations.R
suppressPackageStartupMessages({
 library(plyr)
 library(dplyr)
 library(Seurat)
 library(patchwork)
 library(Matrix)
 library(hdf5r)
 library(Signac)
 library(EnsDb.Mmusculus.v79)
})

TODO
- review mutation naming scheme, may wish to switch it from X1-110054321 to something like chr1-110054321 which makes much more sense, and also consider making it back to 1 indexing for better compatibility with VCF files later on

Helper Functions

indexMutMeta
add an index field that contains mutation names which are compatible with those typically generated by ReadMut
indexMutMeta <- function(suob.mut.meta) {
 suob.mut.meta$index <- paste0("X", suob.mut.meta$chromosome, "-", (suob.mut.meta$position-1)) # the subtraction is only done because vartrix operates in 0-indexing whereas the original vcfs are in 1-indexing
 return(suob.mut.meta)
}

indexMutMetaUnder <- function(suob.mut.meta) {
 suob.mut.meta$index <- paste0("X", suob.mut.meta$chromosome, "_", (suob.mut.meta$position-1)) # the subtraction is only done because vartrix operates in 0-indexing whereas the original vcfs are in 1-indexing
 return(suob.mut.meta)
}

Major Functionality

ReadMut
Reads a mutation matrix generated by run_vartrix.sh into an object of ALT and REF allele counts
path.to.directory: the location of the directory output by vartrix containing alt_matrix.mtx, ref_matrix.mtx, variants.tsv, and barcodes.tsv
ReadMut <- function(path.to.directory) {
 path_to_alt_variants <- paste(path.to.directory, "/alt_matrix.mtx", sep="")
 path_to_ref_variants <- paste(path.to.directory, "/ref_matrix.mtx", sep="")
 path_to_variant_list <- paste(path.to.directory, "/variants.tsv", sep="")
 path_to_cell_list <- paste(path.to.directory, "/barcodes.tsv", sep="")
 mut.varnames <- readLines(con = path_to_variant_list)
 mut.varnames <- str_remove(mut.varnames, "chr")
 mut.varnames <- paste0("X", mut.varnames)
 mut.varnames <- make.names(mut.varnames, unique=TRUE)
 mut.cellnames <- readLines(con = path_to_cell_list)
 mut.alt <- readMM(file = path_to_alt_variants)
 rownames(x = mut.alt) <- mut.varnames
 colnames(x = mut.alt) <- mut.cellnames
 mut.ref <- readMM(file = path_to_ref_variants)
 rownames(x = mut.ref) <- mut.varnames
 colnames(x = mut.ref) <- mut.cellnames
 mut <- list()
 mut[["ALT"]] <- mut.alt
 mut[["REF"]] <- mut.ref
 return(mut)
}

loadSeuratWithMutations
loads the REF-allele and ALT-allele matrices into the seurat object as assays "REF" and "ALT" respectively, preserving the "RNA" assay, and creates two new assays "ALTB" and "REFB" which are binary representations of whether the allele is present in a cell in any capacity
note: this function makes sure that the cells within the RNA seurat object match those within the mutation matrices, and only keeps those which match (if no cell filtering was done during the mutation counting step, then the agreement between the two should be unanimous)
suob.rna: a suob object of an RNA assay (e.g. generated by ReadRNA)
suob.mut: a mutation object generated by ReadMut
projectname: the name of the project to be used
output: a seurat object with assays "RNA", "REF", "ALT", "REFB", and "ALTB"
loadSeuratWithMutations <- function(suob.rna, suob.mut, projectname, atac=FALSE) {
 suob.rna.matched <- suob.rna[,(colnames(suob.rna) %in% colnames(suob.mut[["ALT"]]))]
 suob.mut.alt.matched <- suob.mut[["ALT"]][,(colnames(suob.mut[["ALT"]]) %in% colnames(suob.rna))]
 suob.mut.ref.matched <- suob.mut[["REF"]][,(colnames(suob.mut[["REF"]]) %in% colnames(suob.rna))]
 cat("Expression Cells before filtering: ", ncol(suob.rna), "\n")
 cat("Mutation Cells before filtering: ", ncol(suob.mut[["ALT"]]), "\n")
 cat("Expression Cells before filtering: ", ncol(suob.rna.matched), "\n")
 cat("Mutation Cells before filtering: ", ncol(suob.mut.alt.matched), "\n")
 if (atac) {
 assay <- CreateChromatinAssay(counts = suob.rna.matched, sep = c(":", "-"), project = projectname)
 suob <- CreateSeuratObject(counts = assay, assay = "peaks")
 } else {
 suob <- CreateSeuratObject(counts = suob.rna.matched, project = projectname)
 }
 suob[["ALT"]] <- CreateAssayObject(counts = suob.mut.alt.matched)
 suob[["REF"]] <- CreateAssayObject(counts = suob.mut.ref.matched)
 suob[["ALTB"]] <- CreateAssayObject(counts = as.data.frame(suob.mut.alt.matched > 0))
 suob[["REFB"]] <- CreateAssayObject(counts = as.data.frame(suob.mut.ref.matched > 0))
 suob.mut.vaf <- suob.mut.alt.matched/(suob.mut.ref.matched+suob.mut.alt.matched)
 suob.mut.vaf[is.na(suob.mut.vaf)] <- 0
 suob[["VAF"]] <- CreateAssayObject(counts = suob.mut.vaf)
 return(suob)
}

loadSeuratATACWithMutations
creates the seurat ATAC object and loads the REF-allele and ALT-allele matrices into that object as assays "REF" and "ALT" respectively, preserving the "ATAC" assay, and creates two new assays "ALTB" and "REFB" which are binary representations of whether the allele is present in a cell in any capacity
note: replaces ReadATAC due to the need to filter the metadata file after checking to make sure that the cells within the RNA seurat object match those within the mutation matrices, only keeping those which match (if no cell filtering was done during the mutation counting step, then the agreement between the two should be unanimous)
path.to.peaks: path to peaks output of 10X cellranger (usually filtered_peak_bc_matrix.h5)
path.to.metadata: path to metadata of cells output from cellranger (usually singlecell.csv)
path.to.fragments: path to compressed fragments file output from cellranger (usually fragments.tsv.gz)
suob.mut: a mutation object generated by ReadMut
projectname: the name of the project to be used
output: a seurat object with assays "ATAC", "REF", "ALT", "REFB", and "ALTB"
loadSeuratATACWithMutations <- function(path.to.peaks, path.to.metadata, path.to.fragments, suob.mut, projectname) {
 counts <- Read10X_h5(filename = path.to.peaks)
 metadata <- read.csv(file = path.to.metadata, header = TRUE, row.names = 1)
 counts.matched <- counts[,(colnames(counts) %in% colnames(suob.mut[["ALT"]]))]
 metadata.matched <- metadata[(rownames(metadata) %in% colnames(suob.mut[["ALT"]])),]
 suob.mut.alt.matched <- suob.mut[["ALT"]][,(colnames(suob.mut[["ALT"]]) %in% colnames(counts))]
 suob.mut.ref.matched <- suob.mut[["REF"]][,(colnames(suob.mut[["REF"]]) %in% colnames(counts))]
 cat("Peak Cells before filtering: ", ncol(counts), "\n")
 cat("Mutation Cells before filtering: ", ncol(suob.mut[["ALT"]]), "\n")
 cat("Peak Cells after filtering: ", ncol(counts.matched), "\n")
 cat("Mutation Cells after filtering: ", ncol(suob.mut.alt.matched), "\n")
 chrom_assay <- CreateChromatinAssay(counts = counts.matched, sep = c(":", "-"), genome = 'mm10', fragments = path.to.fragments)
 suob <- CreateSeuratObject(counts = chrom_assay, assay = "PEAK", meta.data = metadata.matched)
 annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Mmusculus.v79)
 seqlevelsStyle(annotations) <- 'UCSC'
 genome(annotations) <- "mm10"
 Annotation(suob) <- annotations
 suob[["ALT"]] <- CreateAssayObject(counts = suob.mut.alt.matched)
 suob[["REF"]] <- CreateAssayObject(counts = suob.mut.ref.matched)
 suob[["ALTB"]] <- CreateAssayObject(counts = as.data.frame(suob.mut.alt.matched > 0))
 suob[["REFB"]] <- CreateAssayObject(counts = as.data.frame(suob.mut.ref.matched > 0))
 suob.mut.vaf <- suob.mut.alt.matched/(suob.mut.ref.matched+suob.mut.alt.matched)
 suob.mut.vaf[is.na(suob.mut.vaf)] <- 0
 suob[["VAF"]] <- CreateAssayObject(counts = suob.mut.vaf)
 return(suob)
}

[bookmark: _Toc173090574]examples
[bookmark: _Toc173090575]wgs_v_rna_sccaller_data.json
{
 "samples":
 [
 {
 "name":"EPSRC1",
 "list_WGS":"/<path to>/WGS/EPSRC1dna/cell_list_consensus.txt",
 "name_WGS":"EPSRC1dna",
 "list_sc":"/<path to>/EPSRC_splits/EpSRCrna1/cell_list_sccaller.txt",
 "name_sc":"EPSRC1rna",
 "vartrix":"/<path to>/vartrix_WGS_sc_counts_consensus/EPSRC1rna_all_WGS_in_sc_counts/",
 "full_vcf":"/<path to>/WGS/EPSRC1dna/variants_consensus/pseudo_cell/consensus3.vcf.gz"
 },
 {
 "name":"EPSRC2",
 "list_WGS":"/<path to>/WGS/EPSRC2dna/cell_list_consensus.txt",
 "name_WGS":"EPSRC2dna",
 "list_sc":"/<path to>/EPSRC_splits/EpSRCrna2/cell_list_sccaller.txt",
 "name_sc":"EPSRC2rna",
 "vartrix":"/<path to>/vartrix_WGS_sc_counts_consensus/EPSRC2rna_all_WGS_in_sc_counts/",
 "full_vcf":"/<path to>/WGS/EPSRC2dna/variants_consensus/pseudo_cell/consensus3.vcf.gz"
 },
 {
 "name":"EPSRC4",
 "list_WGS":"/<path to>/WGS/EPSRC4dna/cell_list_consensus.txt",
 "name_WGS":"EPSRC4dna",
 "list_sc":"/<path to>/EPSRC_splits/EpSRCrna4/cell_list_sccaller.txt",
 "name_sc":"EPSRC4rna",
 "vartrix":"/<path to>/vartrix_WGS_sc_counts_consensus/EPSRC4rna_all_WGS_in_sc_counts/",
 "full_vcf":"/<path to>/WGS/EPSRC4dna/variants_consensus/pseudo_cell/consensus3.vcf.gz"
 }
],
 "working": "/<path to>/sc_benchmark_results/WGS_hapcaller_sc_max_rna_exonic_overlap_all/"
}

[bookmark: _Toc173090576]wgs_v_sc_exonic_vaf_filters.json
{
 "base":
 {
 "min_cell_count":0.0,
 "min_alt_reads":0.0,
 "min_cell_vaf_factor":0.0,
 "min_sc_qual":0.0,
 "min_vaf":0.01,
 "min_coverage": 1
 },
 "iterables":
 {
 "min_vaf":[0.0, 0.01, 0.02, 0.04, 0.08, 0.12, 0.16, 0.24, 0.32, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
 },
 "is_bulk": false,
 "exonic": true,
 "save_variants": false
}

[bookmark: _Toc173090577]wgs_v_sc_non_exonic_filters.json
{
 "base":
 {
 "min_cell_count":0.0,
 "min_alt_reads":0.0,
 "min_cell_vaf_factor":0.0,
 "min_sc_qual":0.0,
 "min_vaf":0.01,
 "min_coverage": 1
 },
 "iterables":
 {
 "min_alt_reads":[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 100, 200, 300, 400, 500],
 "min_sc_qual":[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 150.0, 200.0]
 },
 "is_bulk": false,
 "exonic": false,
 "save_variants": false
}

[bookmark: _Toc173090578]scripts
[bookmark: _Toc173090579]count_vartrix.py
import os
import argparse
import csv
import allel
import numpy as np
import pandas as pd
import warnings

def parse_args():
 parser = argparse.ArgumentParser(description='Count vartrix entries.')
 parser.add_argument('vartrixdir', help='path to directory containing vartrix files (alt_matrix.mtx, ref_matrix.mtx, variants.tsv)')
 parser.add_argument('vcf', help='VCF file corresponding to the vartrix call')
 parser.add_argument('out', help='Output file')
 args = parser.parse_args()
 return args

def count_vartrix(vardir, vcfdir):
 variants = os.path.join(vardir, "variants.tsv")
 ref_mtx = os.path.join(vardir, "ref_matrix.mtx")
 alt_mtx = os.path.join(vardir, "alt_matrix.mtx")
 variant_list = []
 chromosomes_vartrix = set()
 with open(variants) as f:
 tsvreader = csv.reader(f)
 for row in tsvreader:
 variant_name = row[0]
 if 'chr' in variant_name:
 variant_name = variant_name.split('chr')[1]
 variant_list.append(variant_name)
 chromosomes_vartrix.add('_'.join(variant_name.split('_')[0:-1]))
 cell_list = [set() for _ in range(len(variant_list))]
 ref_list = np.zeros(len(variant_list))
 with open(ref_mtx) as f:
 for i, line in enumerate(f.readlines()):
 if i < 3:
 continue
 entry = line.split(' ')
 ref_list[int(entry[0])-1] = ref_list[int(entry[0])-1] + int(entry[2])
 if int(entry[2]) > 0:
 cell_list[int(entry[0])-1].add(int(entry[1]))
 alt_list = np.zeros(len(variant_list))
 with open(alt_mtx) as f:
 for i, line in enumerate(f.readlines()):
 if i < 3:
 continue
 entry = line.split(' ')
 alt_list[int(entry[0])-1] = alt_list[int(entry[0])-1] + int(entry[2])
 if int(entry[2]) > 0:
 cell_list[int(entry[0])-1].add(int(entry[1]))
 gt_variants = allel.vcf_to_dataframe(vcfdir, fields='*', alt_number=1)
 chromosomes = list(gt_variants['CHROM'])
 missing_chr = []
 for chrom in list(chromosomes_vartrix):
 if not chrom in chromosomes:
 missing_chr.append(chrom)
 if len(missing_chr) > 0:
 print("### WARNING: Chromosomes {} not found in vcf file, will ignore".format(missing_chr))
 # make sure chromosome namings are compatible
 for i, chromosome in enumerate(chromosomes):
 if 'chr' in chromosome:
 chromosome_split = chromosome.split('chr')[1]
 chromosomes[i] = chromosome_split
 positions = list(gt_variants['POS'])
 ref_alleles = list(gt_variants['REF'])
 alt_alleles = list(gt_variants['ALT'])
 map_ind = {str(chromosome) + '_' + str(int(position)-1):i for i, (chromosome, position) in enumerate(zip(chromosomes, positions))}
 entries = []
 for variant in variant_list:
 try:
 index = map_ind[variant]
 except KeyError:
 continue
 loci = str(chromosomes[index]) + ':' + str(positions[index]) + ':' + str(ref_alleles[index]) + '->' + str(alt_alleles[index])
 allele = str(ref_alleles[index]) + '->' + str(alt_alleles[index])
 entry = {'map':loci, 'chromosome':str(chromosomes[index]), 'position':str(positions[index]), 'allele':allele, 'ref_count':ref_list[index], 'alt_count':alt_list[index], 'count':len(cell_list[index])}
 entries.append(entry)
 counts = pd.DataFrame(entries)
 return counts

def main():
 args = parse_args()
 vardir = args.vartrixdir
 vcfdir = args.vcf
 outfile = args.out
 counts = count_vartrix(vardir, vcfdir)
 counts.to_csv(outfile, sep='\t', index=False)

if __name__ == "__main__":
 main()

[bookmark: _Toc173090580]split_script.py
samtools sort -l 0 -t "CB" -O sam -o test.sam -@ 24 /<redacted>/SRCdata/SRC1rna_outs/possorted_genome_bam.bam

import os
import sys
import getopt
import fileinput
import math
import numpy as np
import pysam as ps
import pandas as pd
from collections import defaultdict

def print_to_file(current_tag, out_dir, samfile, read_list):
 name = current_tag.split('_')[0]
 outfile=out_dir+"/"+name+".bam"
 outbam = ps.AlignmentFile(outfile, "wb", template=samfile)
 for item in read_list:
 outbam.write(item)
 outbam.close()

argv = sys.argv[1:]
n_cells = "0"
sam_file_path = ""
barcode_file_path = ""
out_dir = ""
try:
 opts, args = getopt.getopt(argv,"b:c:o:")
except getopt.GetoptError:
 print("split_script4.py -b <path/to/bamfile.bam> -c <path/to/barcodes.tsv> -o <path/to/outfolder>")
 sys.exit(2)
for opt, arg in opts:
 if opt == "-c":
 barcode_file_path = arg
 elif opt == "-o":
 out_dir = arg
 elif opt == "-b":
 sam_file_path = arg
if sam_file_path == "":
 sys.exit("Missing bam_file, use -b option")
if barcode_file_path == "":
 sys.exit("Missing barcode_file, use -c option")
if out_dir == "":
 sys.exit("Missing out_dir, use -o option")

print(ps.__file__)
print(ps.__version__)
barcode_df = pd.read_csv(barcode_file_path, header=None, sep='\t')
barcodes = barcode_df.iloc[:,0].tolist()
samfile = ps.AlignmentFile(sam_file_path, "rb")
#print(samfile.lengths())
missed = 0
bad = 0
b = "finished " + str(0) + " million entries"
sys.stdout.write(b)
sys.stdout.flush()
current_tag = None
read_count = 0
cell_count = 0
read_list = []

for idx,read in enumerate(samfile.fetch(until_eof=True)):
 try:
 tag = read.get_tag("CB", with_value_type=False)
 except KeyError:
 bad = bad + 1
 continue
 if not (tag == current_tag):
 if (current_tag is not None):
 if (current_tag in barcodes):
 print_to_file(current_tag, out_dir, samfile, read_list)
 cell_count = cell_count + 1
 else:
 missed = missed + read_count
 read_list = []
 current_tag = tag
 read_count = 0
 read_list.append(read)
 read_count = read_count + 1
 if idx%10000000 == 0:
 sys.stdout.write("\b" * len(b))
 b = "finished " + str(idx//1000000) + " million entries"
 sys.stdout.write(b)
 sys.stdout.flush()
samfile.close()
print("\n", str(cell_count), " cells were found")
print(str(missed), " entries were from low cell count cells and were not included")
print(str(bad), " entries did not have a CB tag and were not included")

[bookmark: _Toc173090581]sh
[bookmark: _Toc173090582]post_process.sh
#!/bin/bash
run with source /path/to/post_process.sh <working_dir> /path/to/snpeff <njobs>
where working dir is location of folder containing variants folder
working should not include forward slash on last character
snpeff should not include forward slash on last character
running on 50 cores for 9200 cells will take approximately 5 hours
run_snpEff () {
 # $1 snpEff_path
 # $2 reference
 # $3 vcf_dir
 java -jar ${1}/snpEff.jar -c ${1}/snpEff.config -s ${3}/snpEff_summary.html $2 ${3}/variants.vcf > ${3}/annotated.vcf
}

first step run snpEff
export -f run_snpEff
declare -a working=$1
declare -a reference="GRCm38.86"
declare -a snpEff_path=$2
declare -a njobs=$3
ls -d ${working}/variants/*/ | tr "\t" "\n" | parallel --gnu --jobs $njobs run_snpEff $snpEff_path $reference {}
ls -d ${working}/variants/*/ | tr "\t" "\n" > ${working}/cell_list.txt

TODO - consider implementing --nostats and -t options to improve speedup, see manual http://snpeff.sourceforge.net/SnpEff_manual.html

[bookmark: _Toc173090583]run_sccaller.sh
#!/bin/bash
declare -a sc_path="${1}"
declare -a working="${2}"
declare -a reference="${3}"
declare -a path_to_file="${4}"
declare -a nparjobs="${5}"
declare -a bulk_vcf="${working}/bulk_variants/variants.vcf"
declare -a outf=$(basename "$path_to_file" | cut -d "." -f 1)
mkdir ${working}/sc_variants2/${outf}
python2.7 $sc_path si --bam $path_to_file --fasta $reference --output ${working}/sc_variants2/${outf}/variants.vcf --snp_type hsnp --snp_in $bulk_vcf --cpu_num $nparjobs --min_depth 5 --minvar 1 --engine samtools > /dev/null

[bookmark: _Toc173090584]run_snpeff.sh
#!/bin/bash
run with ./path/to/run_snpeff.sh /path/to/snpeff_dir <path_to_vcf_file>
where working dir is location of folder containing variants folder
snpeff should not include forward slash on last character

set -e

declare -a snpEff_path=$1
declare -a infile=$2
declare -a reference="GRCm38.86"
declare outpath="$(dirname "${infile}")"
java -jar ${snpEff_path}/snpEff.jar -c ${snpEff_path}/snpEff.config -s ${snpEff_path}/snpEff_summary.html $reference $infile > "${outpath}/annotated.vcf"

[bookmark: _Toc173090585]run_strelka.sh
#!/bin/bash
options can be specified and passed to strelka, such as --exome or --rna or --min-qscore=20
declare -a options=$1
declare -a inf=$2
declare -a working=$3
declare -a temp=$4
declare -a reference=$5
declare -a njobs=$6
declare -a outf=$(basename "$inf" | cut -d "." -f 1)
mkdir "${temp}/strelka_temp/${outf}"
configureStrelkaGermlineWorkflow.py $options --bam $inf --referenceFasta $reference --runDir ${temp}/strelka_temp/${outf} > /dev/null
${temp}/strelka_temp/${outf}/runWorkflow.py -m local -j $njobs > /dev/null 2> /dev/null
mkdir ${working}/variants/${outf}
mv ${temp}/strelka_temp/${outf}/results/variants/* ${working}/variants/${outf}/
rm -r ${temp}/strelka_temp/${outf}/

[bookmark: _Toc173090586]run_vartrix.sh
#!/bin/bash
run with /path/to/run_vartrix.sh /path/to/vcf.vcf /path/to/metadata.tsv /path/to/bam.bam /path/to/barcodes.tsv /path/to/ref.fa /path/to/outdir <atac or rna> nthreads
declare -a vcf="${1}"
declare -a meta="${2}"
declare -a bam="${3}"
declare -a barcode="${4}"
declare -a ref="${5}"
declare -a outdir="${6}"
declare -a rna_opt="${7}"
declare -a nthreads="${8}"

export PATH=/<redacted>/bin/vartrix-1.1.16:$PATH

mkdir $outdir
cp $barcode ${outdir}/
if ["$rna_opt" == "rna"]; then
 vartrix_linux -v $vcf -b $bam -f $ref -s coverage --out-variants ${outdir}/variants.tsv --ref-matrix ${outdir}/ref_matrix.mtx --out-matrix ${outdir}/alt_matrix.mtx -c $barcode --threads $nthreads --mapq 10 --umi
elif ["$rna_opt" == "atac"]; then
 vartrix_linux -v $vcf -b $bam -f $ref -s coverage --out-variants ${outdir}/variants.tsv --ref-matrix ${outdir}/ref_matrix.mtx --out-matrix ${outdir}/alt_matrix.mtx -c $barcode --threads $nthreads --mapq 10
else
 echo "Specify rna or atac" 1>&2
 exit 64
fi
cp "${meta}" "${outdir}/variant_meta_data.tsv"
ln -s $(dirname $barcode) ${outdir}/levels

[bookmark: _Toc173090587]split_bam_cells.sh
#!/bin/bash
to run: source path/to/split_bam_cells.sh <path_to_bam> <name_of_output_directory> <path_to_barcodes> <nthreads>
this script will not generate a list of cells
the file "split_script3.py" must be located in the same folder as this bash source file
nthreads refers to the number of threads which will be used during sorting
requires python3 with pysam (and other dependencies) and samtools
declare -a path_to_bam=$1
declare -a output_dir=$2
declare -a path_to_barcodes=$3
declare -a nthreads=$4
declare -a base_dir="$(cd "$(dirname "${BASH_SOURCE[0]}")" >/dev/null 2>&1 && pwd)"
echo $base_dir
mkdir ${output_dir}
samtools sort -l 0 -t "CB" -O sam -o ${output_dir}/sorted.sam -@ "${nthreads}" ${path_to_bam}
echo "done sorting"
mkdir ${output_dir}/split_bams
python3 ${base_dir}/split_script4.py -b "${output_dir}/sorted.sam" -o "${output_dir}/split_bams" -c "${path_to_barcodes}"
echo "done splitting"
rm ${output_dir}/sorted.sam
question: do we need to index?
for inf in ${output_dir}/split_bams/*.bam; do samtools index -b $inf; done
add a link to the original bam file in the , as well as to the barcode file
echo "done indexing"

[bookmark: _Toc173090588]src
[bookmark: _Toc173090589]cell_list.py
import os
import numpy as np
import pandas as pd
import multiprocessing

from typing import List
from src_alt.parsed_vcf import Cell

class CellList():
 name: str = None
 n_cells: int = 0
 header: str = None
 cells: pd.DataFrame = None
 mutations: pd.DataFrame = None

 def __init__(self, list_of_cells: List[Cell], name: str):
 # TODO add asserts here
 self.name = name
 self.n_cells = len(list_of_cells)
 self.header = list_of_cells[0].head
 cell_ids = [c.cell_id for c in list_of_cells]
 barcodes = [c.cell_barcode for c in list_of_cells]
 mut_per_cell = [c.number_variants for c in list_of_cells]
 pass_per_cell = [c.number_pass for c in list_of_cells]
 insert_per_cell = [c.number_insertions for c in list_of_cells]
 coding_per_cell = [c.number_coding for c in list_of_cells]
 # impact_per_cell=[sum((i != 'MODIFIER') & (i != 'non_coding') for i in c.impacts_) for c in list_of_cells]
 avg_depth_per_cell = [((sum(c.depths_)/c.number_variants)
 if c.number_variants > 0 else 0) for c in list_of_cells]

 self.cells = pd.DataFrame.from_dict({'id': cell_ids})
 self.cells['barcode'] = barcodes
 self.cells['mut_per_cell'] = mut_per_cell
 self.cells['pass_per_cell'] = pass_per_cell
 self.cells['insert_per_cell'] = insert_per_cell
 self.cells['coding_per_cell'] = coding_per_cell
 # self.cells['impact_per_cell']=impact_per_cell
 self.cells['avg_depth_per_cell'] = avg_depth_per_cell
 self.cells.sort_values(by=['id'])

 id_tag = [c.cell_ids_ for c in list_of_cells]
 chr_tag = [c.chromosomes_ for c in list_of_cells]
 pos_tag = [c.positions_ for c in list_of_cells]
 gene_tag = [c.gene_ids_ for c in list_of_cells]
 allele_tag = [c.alleles_ for c in list_of_cells]
 pass_tag = [c.pass_ for c in list_of_cells]
 depth_tag = [c.depths_ for c in list_of_cells]
 vaf_tag = [c.vafs_ for c in list_of_cells]
 label_tag = [c.labels_ for c in list_of_cells]
 impact_tag = [c.impacts_ for c in list_of_cells]
 multia_tag = [c.multi_a_ for c in list_of_cells]
 indel_tag = [c.indels_ for c in list_of_cells]
 qual_tag = [c.qualities_ for c in list_of_cells]

 t_id_tag = np.hstack(np.array([np.asarray(i)
 for i in id_tag], dtype=object))
 t_chr_tag = np.hstack(
 np.array([np.asarray(i) for i in chr_tag], dtype=object))
 t_pos_tag = np.hstack(
 np.array([np.asarray(i) for i in pos_tag], dtype=object))
 t_gene_tag = np.hstack(
 np.array([np.asarray(i) for i in gene_tag], dtype=object))
 t_allele_tag = np.hstack(
 np.array([np.asarray(i) for i in allele_tag], dtype=object))
 t_pass_tag = np.hstack(
 np.array([np.asarray(i) for i in pass_tag], dtype=object))
 t_depth_tag = np.hstack(
 np.array([np.asarray(i) for i in depth_tag], dtype=object))
 t_vaf_tag = np.hstack(
 np.array([np.asarray(i) for i in vaf_tag], dtype=object))
 t_label_tag = np.hstack(
 np.array([np.asarray(i) for i in label_tag], dtype=object))
 t_impact_tag = np.hstack(
 np.array([np.asarray(i) for i in impact_tag], dtype=object))
 t_multia_tag = np.hstack(
 np.array([np.asarray(i) for i in multia_tag], dtype=object))
 t_indel_tag = np.hstack(
 np.array([np.asarray(i) for i in indel_tag], dtype=object))
 t_qual_tag = np.hstack(
 np.array([np.asarray(i) for i in qual_tag], dtype=object))

 self.mutations = pd.DataFrame.from_dict({'id': t_id_tag})
 self.mutations['chromosome'] = t_chr_tag
 self.mutations['position'] = t_pos_tag
 self.mutations['gene'] = t_gene_tag
 self.mutations['allele'] = t_allele_tag
 self.mutations['map'] = self.mutations['chromosome'].astype(
 str) + ':' + self.mutations['position'].astype(int).astype(str) + ':' + self.mutations['allele']
 self.mutations['pass'] = t_pass_tag.astype(int)
 self.mutations['depth'] = t_depth_tag.astype(int)
 self.mutations['vaf'] = t_vaf_tag.astype(float)
 self.mutations['label'] = t_label_tag
 self.mutations['impact'] = t_impact_tag
 self.mutations['multi_a'] = t_multia_tag
 self.mutations['indel'] = t_indel_tag
 self.mutations['quality'] = t_qual_tag.astype(float)
 self.mutations.sort_values(by=['id'])

 # not yet tracked
 # self.allele_depths_ = []
 # self.lines_ = []
 # self.bads_ = []

 def load_from_folder(self, path):
 if not os.path.exists(path):
 raise Exception(path + " does not exist")
 f = open(path + "/header.txt", "r")
 lines = f.readlines()
 f.close()
 self.name = path.split("/")[-1]
 self.n_cells = int(lines[0].split(":")[1])
 self.header = lines[1:]
 self.parsed_mutations = pd.read_csv(
 path + "/body.tsv", sep='\t', dtype=str)
 print("loaded " + path)

 def __init__(self, in_var):
 if isinstance(in_var, CellList):
 self.from_cell_list(in_var)
 elif isinstance(in_var, str):
 self.load_from_folder(in_var)

 def save_to_folder(self, path):
 path_to_folder = path + "/" + self.name
 print(path_to_folder)
 if not os.path.exists(path_to_folder):
 try:
 os.mkdir(path_to_folder)
 except OSError:
 print("Could not create directory from save_to_folder()")
 return
 header_file_path = path_to_folder + "/header.txt"
 f = open(header_file_path, "w")
 f.write("n_cells:" + str(self.n_cells) + "\n")
 f.write(self.header)
 f.close
 body_file_path = path_to_folder + "/body.tsv"
 self.parsed_mutations.to_csv(body_file_path, sep='\t', index=False)
 print("saved " + path_to_folder)

Bulk Load functions

def get_cells(path: str, name: str, nthreads: int = 1) -> CellList:
 cells = []
 directory_list = open(path)
 directories = directory_list.read().splitlines()
 directory_list.close()
 #directories = directories[:100] # only first 100 lines for testing
 if nthreads >= 1:
 file_paths = [d + 'annotated.vcf' for d in directories]
 path_ind_tuples = zip(file_paths, range(len(file_paths)))
 with multiprocessing.Pool(processes=nthreads) as pool:
 cells = pool.starmap(Cell, path_ind_tuples)
 my_list = CellList(cells, name)
 else:
 for i, direct in enumerate(directories):
 if len(direct) > 1:
 direct = direct + 'annotated.vcf'
 cells.append(Cell(direct, i))
 my_list = CellList(cells, name)
 return my_list

def get_cell_lists(path_list: List[str], name_list: List[str], nthreads: int = 1) -> List[CellList]:
 if not isinstance(path_list, list):
 path_list = [path_list]
 if not isinstance(name_list, list):
 name_list = [name_list]
 assert len(path_list) == len(name_list)
 list_cell_list = []
 for i, path in enumerate(path_list):
 cell_list = get_cells(path, name_list[i], nthreads=nthreads)
 list_cell_list.append(cell_list)
 print("finished loading " + cell_list.name)
 return list_cell_list

[bookmark: _Toc173090590]count_ase_reader.py
import pandas as pd

def count_ase_reader(table_path):
 counts = pd.read_csv(table_path, sep="\t")
 counts['map'] = counts['contig'].astype(str) + ':' + counts['position'].astype(str) + ':' + counts['refAllele'].astype(str) + '->' + counts['altAllele'].astype(str)
 counts['allele'] = counts['refAllele'].astype(str) + '->' + counts['altAllele'].astype(str)
 counts.rename(columns = {'contig':'chromosome', 'refCount':'ref_count', 'altCount':'alt_count'}, inplace = True)
 return counts

[bookmark: _Toc173090591]count_vartrix.py
import os
import argparse
import csv
import allel
import numpy as np
import pandas as pd
import warnings

def parse_args():
 parser = argparse.ArgumentParser(description='Count vartrix entries.')
 parser.add_argument('vartrixdir', help='path to directory containing vartrix files (alt_matrix.mtx, ref_matrix.mtx, variants.tsv)')
 parser.add_argument('vcf', help='VCF file corresponding to the vartrix call')
 parser.add_argument('out', help='Output file')
 args = parser.parse_args()
 return args

def count_vartrix(vardir, vcfdir):
 variants = os.path.join(vardir, "variants.tsv")
 ref_mtx = os.path.join(vardir, "ref_matrix.mtx")
 alt_mtx = os.path.join(vardir, "alt_matrix.mtx")
 variant_list = []
 chromosomes_vartrix = set()
 with open(variants) as f:
 tsvreader = csv.reader(f)
 for row in tsvreader:
 variant_name = row[0]
 if 'chr' in variant_name:
 variant_name = variant_name.split('chr')[1]
 variant_list.append(variant_name)
 chromosomes_vartrix.add('_'.join(variant_name.split('_')[0:-1]))
 cell_list = [set() for _ in range(len(variant_list))]
 cells_w_alt_list = [set() for _ in range(len(variant_list))]
 ref_list = np.zeros(len(variant_list))
 with open(ref_mtx) as f:
 for i, line in enumerate(f.readlines()):
 if i < 3:
 continue
 entry = line.split(' ')
 ref_list[int(entry[0])-1] = ref_list[int(entry[0])-1] + int(entry[2])
 if int(entry[2]) > 0:
 cell_list[int(entry[0])-1].add(int(entry[1]))
 alt_list = np.zeros(len(variant_list))
 with open(alt_mtx) as f:
 for i, line in enumerate(f.readlines()):
 if i < 3:
 continue
 entry = line.split(' ')
 alt_list[int(entry[0])-1] = alt_list[int(entry[0])-1] + int(entry[2])
 if int(entry[2]) > 0:
 cell_list[int(entry[0])-1].add(int(entry[1]))
 cells_w_alt_list[int(entry[0])-1].add(int(entry[1]))
 with warnings.catch_warnings():
 warnings.simplefilter("ignore")
 gt_variants = allel.vcf_to_dataframe(vcfdir, fields='*', alt_number=1)
 chromosomes = list(gt_variants['CHROM'])
 # make sure chromosome namings are compatible
 for i, chromosome in enumerate(chromosomes):
 if 'chr' in chromosome:
 chromosome_split = chromosome.split('chr')[1]
 chromosomes[i] = chromosome_split
 missing_chr = []
 for chrom in list(chromosomes_vartrix):
 if not chrom in chromosomes:
 missing_chr.append(chrom)
 if len(missing_chr) > 0:
 print("### WARNING: Chromosomes {} not found in vcf file, will ignore".format(missing_chr))
 positions = list(gt_variants['POS'])
 ref_alleles = list(gt_variants['REF'])
 alt_alleles = list(gt_variants['ALT'])
 map_ind = {str(chromosome) + '_' + str(int(position)-1):i for i, (chromosome, position) in enumerate(zip(chromosomes, positions))}
 entries = []
 for variant in variant_list:
 try:
 index = map_ind[variant]
 except KeyError:
 continue
 loci = str(chromosomes[index]) + ':' + str(positions[index]) + ':' + str(ref_alleles[index]) + '->' + str(alt_alleles[index])
 allele = str(ref_alleles[index]) + '->' + str(alt_alleles[index])
 entry = {'map':loci, 'chromosome':str(chromosomes[index]), 'position':str(positions[index]), 'allele':allele, 'ref_count':ref_list[index], 'alt_count':alt_list[index], 'cell_count':len(cell_list[index]), 'cells_w_alt_count':len(cells_w_alt_list[index])}
 entries.append(entry)
 counts = pd.DataFrame(entries)
 return counts

def main():
 args = parse_args()
 vardir = args.vartrixdir
 vcfdir = args.vcf
 outfile = args.out
 counts = count_vartrix(vardir, vcfdir)
 counts.to_csv(outfile, sep='\t', index=False)

if __name__ == "__main__":
 main()

[bookmark: _Toc173090592]filtering.py
import copy
from typing import List

from src_alt.parsed_mutation_list import ParsedMutationList

def filter_mutations(cell_mut_array: List[ParsedMutationList],
 cell_filter_: int,
 alt_read_filter_: int,
 vaf_filter_: float,
 depth_filter_: int,
 qual_filter_: float,
 exonic=False,
 splice=False,
 max_cell_filter_: int = None,
 max_alt_read_filter_: int = None,
 limexonic=False
) -> List[ParsedMutationList]:
 # TODO move to within parsed mutations list class
 if not isinstance(cell_mut_array, list):
 cell_mut_array = [cell_mut_array]
 cell_mut_array_copy = []
 for cell_mut in cell_mut_array:
 assert isinstance(cell_mut, ParsedMutationList)
 cell_mut_array_copy.append(copy.deepcopy(cell_mut))
 cell_parsed_array = []
 for cell_mut in cell_mut_array_copy:
 cell_parsed_array.append(cell_mut.parsed_mutations)
 order = len(cell_parsed_array)
 if(exonic):
 for i in range(order):
 #cell_parsed_array[i] = (cell_parsed_array[i])[((cell_parsed_array[i])['impact'] != 'non_coding') & ((cell_parsed_array[i])['impact'] != 'MODIFIER')]
 cell_parsed_array[i] = (cell_parsed_array[i])[((cell_parsed_array[i])['impact'] != 'non_coding') & ((cell_parsed_array[i])['impact'] != 'MODIFIER')]
 print(cell_mut_array_copy[i].name + " total: " + str(len(cell_parsed_array[i])))
 elif(limexonic):
 for i in range(order):
 cell_parsed_array[i] = (cell_parsed_array[i])[((cell_parsed_array[i])['impact'] != 'non_coding') & ((cell_parsed_array[i])['label'] != 'upstream_gene_variant') & ((cell_parsed_array[i])['label'] != 'downstream_gene_variant')]
 print(cell_mut_array_copy[i].name + " total: " + str(len(cell_parsed_array[i])))
 cell_filtered_array = []
 for i in range(order):
 tmp_fil_1 = (cell_parsed_array[i])[(cell_parsed_array[i])['count'].astype(int) > cell_filter_]
 tmp_fil_2 = tmp_fil_1[tmp_fil_1['weighted avg vaf'].astype(float) > vaf_filter_]
 tmp_fil_3 = tmp_fil_2[tmp_fil_2['coverage'].astype(int) > depth_filter_]
 tmp_fil_4 = tmp_fil_3[tmp_fil_3['quality'].astype(float) > qual_filter_]
 tmp_fil_5 = tmp_fil_4[tmp_fil_4['calls'].astype(int) > alt_read_filter_]
 if(splice):
 tmp_fil_6 = tmp_fil_5
 else:
 tmp_fil_6 = tmp_fil_5[~(tmp_fil_5['label'].str.contains("splice_acceptor_variant", regex=False) | tmp_fil_5['label'].str.contains("splice_donor_variant", regex=False) | tmp_fil_5['label'].str.contains("splice_region_variant", regex=False) | tmp_fil_5['label'].str.contains("intron_variant", regex=False))]
 if(max_cell_filter_):
 tmp_fil_7 = tmp_fil_6[tmp_fil_6['count'] <= max_cell_filter_]
 else:
 tmp_fil_7 = tmp_fil_6
 if(max_alt_read_filter_):
 tmp_fil_8 = tmp_fil_7[tmp_fil_7['calls'] <= max_alt_read_filter_]
 else:
 tmp_fil_8 = tmp_fil_7
 cell_filtered_array.append(tmp_fil_8)
 print(cell_mut_array_copy[i].name + " filtered: " + str(len(cell_filtered_array[i])))
 for i, cell_filtered in enumerate(cell_filtered_array):
 cell_mut_array_copy[i].parsed_mutations = cell_filtered.reset_index(drop=True)
 return cell_mut_array_copy

[bookmark: _Toc173090593]mutation_signature.py
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

mutation signatures:
generate a barplot of the number of variants which follow a specific mutation
signature such as C->T
-> mutation list is any dataframe containing variants with relevant fields of gene, chromosome, position, impact, label, and allele
-> outfile is the path to the output location of the boxplot
def mutation_signatures(mutation_list: pd.DataFrame, outfile: str):
 # TODO update to use parsed mutation list class
 variants = mutation_list[['gene', 'impact', 'label', 'chromosome', 'position', 'allele']]
 variants['ref'] = variants['allele'].str.split('-').str[0]
 variants['alt'] = variants['allele'].str.split('>').str[1]
 signature_indices = ["A", "C", "T", "G"]
 titles = []
 list = []
 for i, ref in enumerate(signature_indices):
 for j, alt in enumerate(signature_indices):
 if(i==j):
 continue
 matches = (variants['ref']==ref) & (variants['alt']==alt)
 list.append(matches.sum())
 titles.append(ref + "->" + alt)
 list.append(len(variants)-sum(list))
 titles.append("N/A")
 figure, axes = plt.subplots(1, 1, figsize=(16,16))
 axes.bar(np.arange(len(list)), list)
 axes.set_xticks(np.arange(len(list)))
 axes.set_xticklabels(titles)
 figure.savefig(outfile)

mutation signatures stranded:
generate a barplot of the number of variants which follow a specific mutation
signature such as C->T, but corrected for strand direction
-> mutation list is any dataframe containing variants with relevant fields of gene, chromosome, position, impact, label, and allele
-> outfile is the path to the output location of the boxplot
def mutation_signatures_stranded(mutation_list: pd.DataFrame, outfile: str):
 # TODO update to use parsed mutation list class
 variants = mutation_list[['gene', 'impact', 'label', 'chromosome', 'position', 'allele', 'strand']]
 variants['ref'] = variants['allele'].str.split('-').str[0]
 variants['alt'] = variants['allele'].str.split('>').str[1]
 signature_indices = ["A", "C", "T", "G"]
 signature_compliments = {"A":"T", "G":"C", "C":"G", "T":"A"}
 classes = ["+", "-", ".", "?"]
 titles = []
 lists = {}
 for h, cla in enumerate(classes):
 list = []
 for i, ref in enumerate(signature_indices):
 for j, alt in enumerate(signature_indices):
 if(i==j):
 continue
 if(cla == "-"):
 b1 = signature_compliments[ref]
 b2 = signature_compliments[alt]
 else:
 b1 = ref
 b2 = alt
 matches = (variants['ref']==b1) & (variants['alt']==b2) & (variants['strand']==cla)
 list.append(matches.sum())
 if cla == "+":
 titles.append(ref + "->" + alt)
 list.append(sum(variants['strand']==cla)-sum(list))
 lists[cla] = list
 if cla == "+":
 titles.append("N/A")
 df = pd.DataFrame(lists, index=titles)
 ax = df.plot(kind='bar', stacked=True, figsize=(10, 6))
 ax.set_ylabel('No. Mutations')
 plt.legend(title='labels', bbox_to_anchor=(1.0, 1), loc='upper left')
 plt.savefig(outfile)

[bookmark: _Toc173090594]overlap_mutation_list.py
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from typing import List

from src_alt.parsed_mutation_list import ParsedMutationList

class OverlapMutationList():
 array = None
 names = None
 overlap_matrix = None

 # TODO fix this, is not actually its own class, it just appends values to a
 # list of mutations, so it should be returned as a list of mutations and
 # then common variants should be its own class since it has a new structure
 def __init__(self, mut_filtered_array: List[ParsedMutationList], unfiltered=None):
 names = []
 mut_overlap_array = []
 overlap_matrix = np.zeros((len(mut_filtered_array), len(mut_filtered_array)))
 for filtered_mut in mut_filtered_array:
 assert isinstance(filtered_mut, ParsedMutationList)
 mut_overlap_array.append(filtered_mut.parsed_mutations)
 mut_comp_array = []
 if (unfiltered is not None) and (len(unfiltered) == len(mut_filtered_array)):
 for unfiltered_mut in unfiltered:
 mut_comp_array.append(unfiltered_mut.parsed_mutations)
 else:
 print("Unfiltered not available: using filtered array for comparisons")
 for filtered_mut in mut_filtered_array:
 mut_comp_array.append(filtered_mut.parsed_mutations)
 order = len(mut_overlap_array)
 overlap = []
 for i in range(order):
 overlap.append([])
 for j in [x for x in range(order) if x != i]:
 temp = (mut_overlap_array[j])[(mut_overlap_array[j])['map'].isin((mut_comp_array[i])['map'])]
 temp = (mut_comp_array[i])[(mut_comp_array[i])['map'].isin((mut_overlap_array[j])['map'])]
 print(mut_filtered_array[j].name + " overlap with " + mut_filtered_array[i].name + ": " + str(len(temp)))
 overlap_matrix[j,i] = len(temp)
 (overlap[i]).append(temp)
 for i in range(order):
 for j in range(order-1):
 (mut_overlap_array[i]) = pd.concat([(mut_overlap_array[i]), (overlap[i])[j]], ignore_index=True)
 (mut_overlap_array[i]).drop_duplicates(subset ='map', keep = 'first', ignore_index=True, inplace = True)
 (mut_overlap_array[i]).sort_values(by=['map'], ignore_index=True, inplace=True)
 print(mut_filtered_array[i].name + " final: " + str(len(mut_overlap_array[i])))
 overlap_matrix[i,i] = len(mut_overlap_array[i])
 names.append(mut_filtered_array[i].name)
 self.array = mut_overlap_array
 self.names = names
 self.overlap_matrix = overlap_matrix

 def get(self, name):
 idx = self.names.index(name)
 return self.array[idx]

 def get_overlap(self, name1, name2):
 # NOTE: in this function, order can matter!
 idx1 = self.names.index(name1)
 idx2 = self.names.index(name2)
 return self.overlap_matrix[idx1, idx2]

 # TODO add processing functions within the class (such as automatic overlap
 # calculation, filtering out variants that appear or dont appear in certain
 # datasets, etc.
 # and move up to be with other classes

Essential Processing Functions

common variants:
calculates the number of datasets for which a particular variant is in common
among datasets
-> returns a single dataframe containing variants with their overlap with each
dataset, as well as a common dataframe which counts the number of datasets
that have a given variant in common
def common_variants(overlap_list: OverlapMutationList, cell_mut_list: List[ParsedMutationList]) -> pd.DataFrame:
 # TODO move inside overap class
 list_array = overlap_list.array
 order = len(list_array)
 common = pd.concat([list_array[0], list_array[1]], ignore_index=True)
 for i in range(2,order):
 common = pd.concat([common, list_array[i]], ignore_index=True)
 common.drop_duplicates(subset ='map', keep = 'first', ignore_index=True, inplace = True)
 for i in range(order):
 common[cell_mut_list[i].name] = common['map'].isin((list_array[i])['map'])
 common['common'] = 0 + common[cell_mut_list[0].name]
 for i in range(1, order):
 common['common'] = common['common'] + common[cell_mut_list[i].name]
 common.set_index('map', inplace=True)
 for i in range(order):
 common = common.join((list_array[i]).set_index('map')['quality'], rsuffix = '_' + cell_mut_list[i].name)
 for i in range(order):
 common = common.join((list_array[i]).set_index('map')['incidence'], rsuffix = '_' + cell_mut_list[i].name)
 return common.sort_values(by='gene').reset_index()

redo common:
recalculates the common column for a dataframe output of common_variants which
has been modified or filtered to remove particular subsets of variants or datasets
where the common column is the counts the number of datasets that have a given
variant in common
def redo_common(common: pd.DataFrame, names: List[str]) -> pd.DataFrame:
 # TODO move inside overlap class
 order = len(names)
 common['common'] = 0 + common[names[0]]
 for i in range(1, order):
 common['common'] = common['common'] + common[names[i]]
 return common

Helper Functions

rank overlap:
generate a barplot of the number of variants which are common to a given number of
datasets
-> common is an output from common_variants or redo_common
-> outfile is the path to the output location of the boxplot
def rank_overlap(common: pd.DataFrame, outfile: str):
 # TODO move inside overlap class
 ranks = common['common'].value_counts(sort=False).sort_index()
 print(ranks)
 figure, axes = plt.subplots(1, 1, figsize=(16,16))
 ranks.plot(kind='bar', ax=axes)
 figure.savefig(outfile)

[bookmark: _Toc173090595]parsed_mutation_list.py
import os
import pandas as pd
import warnings
from typing import List, Union

from src_alt.cell_list import CellList

class ParsedMutationList():
 name = None
 header = None
 n_cells = None
 parsed_mutations = None

 def __init__(self, in_var: CellList):
 if isinstance(in_var, CellList):
 self.from_cell_list(in_var)
 elif isinstance(in_var, str):
 self.load_from_folder(in_var)

 def from_cell_list(self, cell_list: CellList):
 df = cell_list.mutations.copy()
 df['calls'] = (df.loc[:, 'vaf']*df.loc[:, 'depth']).copy()
 # df['pass'] = df['pass'].astype(int)
 self.name = cell_list.name
 self.header = cell_list.header
 self.n_cells = cell_list.n_cells
 group = df.groupby(['map'])
 self.parsed_mutations = group.count().reset_index(
).sort_values(by=['map'], ascending=True)
 self.parsed_mutations.rename(
 columns={list(self.parsed_mutations)[1]: 'count'}, inplace=True)
 df_chromosome = group['chromosome'].first().reset_index().sort_values(by=[
 'map'], ascending=True)
 df_position = group['position'].first().reset_index().sort_values(by=[
 'map'], ascending=True)
 df_pass = group['pass'].mean().reset_index(
).sort_values(by=['map'], ascending=True)
 df_depth = group['depth'].mean().reset_index(
).sort_values(by=['map'], ascending=True)
 df_coverage = group['depth'].sum().reset_index(
).sort_values(by=['map'], ascending=True)
 df_vaf_avg = group['vaf'].mean().reset_index(
).sort_values(by=['map'], ascending=True)
 df_calls = group['calls'].sum().reset_index(
).sort_values(by=['map'], ascending=True)
 df_gene = group['gene'].first().reset_index(
).sort_values(by=['map'], ascending=True)
 df_allele = group['allele'].first().reset_index(
).sort_values(by=['map'], ascending=True)
 df_label = group['label'].first().reset_index(
).sort_values(by=['map'], ascending=True)
 df_impact = group['impact'].first().reset_index(
).sort_values(by=['map'], ascending=True)
 # df_quality = group['quality'].mean().reset_index().sort_values(by=['map'], ascending=True)
 # df_quality = group['quality'].median().reset_index().sort_values(by=['map'], ascending=True)
 df_quality = group['quality'].max().reset_index(
).sort_values(by=['map'], ascending=True)
 self.parsed_mutations['chromosome'] = df_chromosome[list(df_chromosome)[
 1]]
 self.parsed_mutations['position'] = df_position[list(df_position)[1]]
 self.parsed_mutations['gene'] = df_gene[list(df_gene)[1]]
 self.parsed_mutations['allele'] = df_allele[list(df_allele)[1]]
 self.parsed_mutations['label'] = df_label[list(df_label)[1]]
 self.parsed_mutations['impact'] = df_impact[list(df_impact)[1]]
 self.parsed_mutations['pass'] = df_pass[list(df_pass)[1]]
 self.parsed_mutations['depth'] = df_depth[list(df_depth)[1]]
 self.parsed_mutations['coverage'] = df_coverage[list(df_coverage)[1]]
 self.parsed_mutations['calls'] = df_calls[list(df_calls)[1]]
 self.parsed_mutations['avg vaf'] = df_vaf_avg[list(df_vaf_avg)[1]]
 self.parsed_mutations['weighted avg vaf'] = df_calls[list(
 df_calls)[1]]/self.parsed_mutations['coverage']
 self.parsed_mutations['quality'] = df_quality[list(df_quality)[1]]
 self.parsed_mutations['incidence'] = self.parsed_mutations['count']/self.n_cells
 self.parsed_mutations.sort_values(
 by=['chromosome', 'position'], ascending=True, inplace=True)
 self.parsed_mutations.reset_index(drop=True, inplace=True)

 def load_from_folder(self, path: str):
 if not os.path.exists(path):
 raise Exception(path + " does not exist")
 f = open(path + "/header.txt", "r")
 lines = f.readlines()
 f.close()
 self.name = path.split("/")[-1]
 self.n_cells = int(lines[0].split(":")[1])
 self.header = lines[1:]
 self.parsed_mutations = pd.read_csv(path + "/body.tsv", sep='\t')
 print("loaded " + path)

 def save_to_folder(self, path: str):
 path_to_folder = path + "/" + self.name
 print(path_to_folder)
 if not os.path.exists(path_to_folder):
 try:
 os.mkdir(path_to_folder)
 except OSError:
 print("Could not create directory from save_to_folder()")
 return
 header_file_path = path_to_folder + "/header.txt"
 f = open(header_file_path, "w")
 f.write("n_cells:" + str(self.n_cells) + "\n")
 f.write(self.header)
 f.close
 body_file_path = path_to_folder + "/body.tsv"
 self.parsed_mutations.to_csv(body_file_path, sep='\t', index=False)
 print("saved " + path_to_folder)

helper functions

def save_mutation_array(cell_mut_array: Union[ParsedMutationList, List[ParsedMutationList]], path_to_folder: str):
 if not isinstance(cell_mut_array, list):
 cell_mut_array = [cell_mut_array]
 if not os.path.exists(path_to_folder):
 try:
 os.mkdir(path_to_folder)
 except OSError:
 print("Could not create directory from save_mutations()")
 return
 for i, mut_array in enumerate(cell_mut_array):
 assert isinstance(mut_array, ParsedMutationList)
 mut_array.save_to_folder(path_to_folder)

def load_mutation_array(path_to_folder: str, names: str) -> ParsedMutationList:
 mutation_array = []
 for name in names:
 pathname = path_to_folder + "/" + name
 if os.path.isdir(pathname):
 mutation_array.append(ParsedMutationList(pathname))
 else:
 raise Exception("Could not find file " + pathname + "\n")
 return mutation_array

def get_mutations(list_cell_lists: List[CellList]) -> List[ParsedMutationList]:
 if not isinstance(list_cell_lists, list):
 list_cell_lists = [list_cell_lists]
 cell_parsed_array = []
 for i, list_cell in enumerate(list_cell_lists):
 assert isinstance(list_cell, CellList)
 cell_parsed_raw = ParsedMutationList(list_cell)
 cell_parsed_array.append(cell_parsed_raw)
 print("finished parsing " + cell_parsed_raw.name)
 return cell_parsed_array

generate vcf:
Turn a mutation list dataframe into a vcf file
The mutation list should have unique mutations and 'chromosome', 'position', and 'allele' fields
as generated by a parsed mutation list 'parsed_mutations' dataframe
Likewise, the header should be taken from the 'header' contained in a parsed mutation list
def generate_vcf(mutation_list: pd.DataFrame, header: str, file_name: str, atac=False):
 # TODO update to use mutation list header
 #header = "#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\n"
 if len(mutation_list) == 0:
 warnings.warn("Skipped {} as dataframe was empty".format(file_name))
 return
 lines = mutation_list.sort_values(by=['chromosome','position'])['chromosome'].astype(str)
 if(atac):
 lines = "chr" + lines
 lines = lines + "\t" + mutation_list.sort_values(by=['chromosome','position'])['position'].astype(str)
 lines = lines + "\t."
 lines = lines + "\t" + mutation_list.sort_values(by=['chromosome','position'])['allele'].str.split('-', n = 1, expand = True)[0]
 lines = lines + "\t" + mutation_list.sort_values(by=['chromosome','position'])['allele'].str.split('>', n = 1, expand = True)[1]
 lines = lines + "\t0"
 lines = lines + "\tPASS"
 #lines = lines + "\tNA=0\n"
 lines = lines + "\t\n"
 outfile = open(file_name, "w")
 try:
 outfile.writelines(header.header)
 except:
 f = open(header, "r")
 header = f.readlines()
 f.close()
 outfile.writelines(header)
 for line in lines:
 outfile.write(line)
 outfile.close()

[bookmark: _Toc173090596]parsed_vcf.py
"""
This file contains the parsed VCF and cell objects which parse a single-cell vcf file (or any single vcf file)
and hold the parsed mutational information for that file, the results of which are used to generate a cell list
"""

import warnings

class ParsedVCF():
 number_variants = 0 # number of variants processed
 number_pass = 0 # number of variants which pass filters
 number_insertions = 0 # number of indel variants
 number_coding = 0 # number of variants in a protein-coding region (defined by snpEFF)
 pass_ = [] # list of entries for each variant: whether the variant passes filters
 indels_ = [] # list of entries for each variant: whether the variant is an indel
 multi_a_ = [] # list of entries for each variant: whether the variant is multi-allelic
 depths_ = [] # list of entries for each variant: the measured depth as defined by the total reads in the AD field
 vafs_ = [] # list of entries for each variant: the allele frequency as defined as "# supporting alleles / depth"
 impacts_ = [] # list of entries for each variant: the variant impact as defined by snpEFF
 labels_ = [] # list of entries for each variant: the variant label as defined by snpEFF
 allele_depths_ = [] # list of entries for each variant: the alt-allele count
 chromosomes_ = [] # list of entries for each variant: the chromosome of the variant
 positions_ = [] # list of entries for each variant: the position of the variant
 gene_ids_ = [] # list of entries for each variant: the variant gene as defined by snpEFF
 alleles_ = [] # list of entries for each variant: the unique allele id in format ref->alt
 qualities_ = [] # list of entries for each variant: the quality of the called variant
 bads_ = [] # list of entries for each variant: whether the variant is unusable for some reason
 cell_ids_ = [] # list of entries for each variant: the id of the cell for which the variant was called, used downstream
 n_multi = 0 # number of multiallelic variants
 head = "" # header of the vcf file
 cell_barcode = "" # barcode of the cell
 cell_id = 0 # id of the cell

 def __init__(self, filename: str):
 # TODO solve issues with cell_ids etc. that should only affect cells, not parsed vcfs
 variant_file = open(filename)
 lines = variant_file.readlines()
 variant_file.close()
 for line_o in lines:
 line = line_o.strip()
 if line[0] == '#':
 # line is header
 self.head = self.head + line_o
 if line[1] != '#':
 # line is column head
 line = line[1:]
 line = line.split('\t')
 chrom_index = line.index('CHROM')
 pos_index = line.index('POS')
 filter_index = line.index('FILTER')
 info_index = line.index('INFO')
 format_index = line.index('FORMAT')
 ref_index = line.index('REF')
 alt_index = line.index('ALT')
 qual_index = line.index('QUAL')
 continue
 major_cols = line.split('\t')
 if len(major_cols) > format_index+2:
 raise Exception(
 "{} contains more than one sample".format(filename))
 alts = major_cols[alt_index]
 alts = alts.split(',')
 for alt_n in range(len(alts)):
 if alts[alt_n] == '*':
 # skip the allele as it is spanning and therefore documented elsewhere
 continue
 # format contains quality and depth stats on the variant
 format_header = major_cols[format_index]
 format_header = format_header.split(':')
 format_body = major_cols[format_index+1]
 format_body = format_body.split(':')
 try:
 # AD is depth for ref and alt alleles
 AD_index = format_header.index('AD')
 AD = format_body[AD_index]
 AD = AD.split(',')
 if len(AD) != len(alts)+1: # !!! watch out, this may be incorrect
 AD_i = float("NaN")
 else:
 AD_i = AD[alt_n+1]
 self.allele_depths_.append(AD_i)
 except ValueError:
 # for strelka somatic snps
 try:
 ref_dp_index = major_cols[ref_index] + 'U'
 RD_index = format_header.index(ref_dp_index)
 alt_dp_index = alts[alt_n] + 'U'
 AD_index = format_header.index(alt_dp_index)
 AD_alt = format_body[AD_index].split(',')[0]
 AD_ref = format_body[RD_index].split(',')[0]
 AD = [AD_ref, AD_alt]
 self.allele_depths_.append(AD_alt)
 except ValueError:
 # for strelka somatic indels
 try:
 RD_index = format_header.index('TAR')
 AD_index = format_header.index('TIR')
 AD_alt = format_body[AD_index].split(',')[0]
 AD_ref = format_body[RD_index].split(',')[0]
 AD = [AD_ref, AD_alt]
 self.allele_depths_.append(AD_alt)
 except ValueError:
 # for samtools (?) or varscan (?)
 info_body = major_cols[info_index]
 info_body_split = info_body.split(';')
 info_body_dict = {i.split('=')[0]: i.split(
 '=')[-1] for i in info_body_split}
 DP4 = info_body_dict['DP4'].split(',')
 AD_alt = int(DP4[2]) + int(DP4[3])
 AD_ref = int(DP4[0]) + int(DP4[1])
 AD = [AD_ref, AD_alt]
 self.allele_depths_.append(AD_alt)
 if len(alts) != 2:
 self.n_multi = self.n_multi + 1
 self.multi_a_.append(True)
 else:
 self.multi_a_.append(False)
 try:
 self.qualities_.append(float(major_cols[qual_index]))
 except ValueError:
 if major_cols[qual_index] == ".":
 self.qualities_.append(float(0.0))
 else:
 raise Exception("bad!")
 # self.lines_.append(line_o)
 self.number_variants = self.number_variants + 1
 chromosome = major_cols[chrom_index]
 if 'chr' in chromosome:
 chromosome = chromosome.split('chr')[1]
 self.chromosomes_.append(chromosome)
 self.positions_.append(int(major_cols[pos_index]))
 allele = major_cols[ref_index] + '->' + alts[alt_n]
 self.alleles_.append(allele)
 if major_cols[filter_index] == 'PASS':
 self.number_pass = self.number_pass + 1
 self.pass_.append(True)
 else:
 self.pass_.append(False)
 # The following uses DP to calculate depth, except that it was realized that AD should work fine for _most_ depth calculations (remember, indels filter out low-quality reads from this count)
 # DP_index = None # DP is total depth for variant
 # try:
 # DP_index = format_header.index('DP')
 # except ValueError:
 # DPI_index = format_header.index('DPI')
 # if DP_index is not None:
 # DP = format_body[DP_index]
 # else:
 # self.number_insertions = self.number_insertions + 1
 # DP = format_body[DPI_index]
 # self.depths_.append(int(DP))
 DPI_index = None
 try:
 DPI_index = format_header.index('DPI')
 except ValueError:
 pass
 if DPI_index is not None: # not sure if this is best way to check for indels
 self.number_insertions = self.number_insertions + 1
 self.indels_.append(True)
 DPI = format_body[DPI_index]
 else:
 self.indels_.append(False)
 depth = sum([int(i) for i in AD])
 if depth == 0:
 try:
 if int(DPI) != 0:
 depth = int(DPI)
 self.bads_.append(False)
 else:
 self.bads_.append(True)
 except:
 self.bads_.append(True)
 else:
 self.bads_.append(False)
 self.depths_.append(depth)
 try:
 # this is incorrect, figure out how to deal with multiple alt alleles
 VAF = int(AD[1]) / depth
 except:
 VAF = -1
 self.vafs_.append(VAF)
 info_body = major_cols[info_index]
 info_body = info_body.split(';')
 try:
 ann = [i for i in info_body if 'ANN=' in i][0]
 except:
 self.impacts_.append('None')
 self.gene_ids_.append('None')
 self.labels_.append('None')
 warnings.warn(
 "Could not find annotation for line:\n{}".format(line_o))
 continue
 ann = ann.split('=')[1]
 ann = ann.split(',')
 # the following work fine with the current version of snpEFF,
 # but may not work in the future
 allele_index = 0 # look at INFO=<ID=ANN...
 coding_index = 7 # look at INFO=<ID=ANN...
 label_index = 1 # look at INFO=<ID=ANN...
 impact_index = 2 # look at INFO=<ID=ANN...
 gene_index = 3 # look at INFO=<ID=ANN...
 curr_imp_len = len(self.impacts_)
 curr_lab_len = len(self.labels_)
 curr_gid_len = len(self.gene_ids_)
 for ann_i in range(len(ann)):
 ann_ = ann[ann_i]
 ann_ = ann_.split('|')
 if ann_[allele_index] == alts[alt_n]:
 if ann_[coding_index] == 'protein_coding':
 self.impacts_.append(ann_[impact_index])
 self.gene_ids_.append(ann_[gene_index])
 self.number_coding = self.number_coding + 1
 else:
 self.impacts_.append('non_coding')
 self.gene_ids_.append('NA')
 self.labels_.append(ann_[label_index])
 break
 # temporary code to double check that offset of appends is not broken in for loop
 if not ((len(self.impacts_) == curr_imp_len+1) and (len(self.labels_) == curr_lab_len+1) and (len(self.gene_ids_) == curr_gid_len+1)):
 print(f"{len(self.impacts_)} {curr_imp_len+1}")
 print(f"{len(self.labels_)} {curr_lab_len+1}")
 print(f"{len(self.gene_ids_)} {curr_gid_len+1}")
 print(f"{line_o}")
 print(f"{alts[alt_n]} {ann_[allele_index]}")
 if not (len(self.allele_depths_) == len(self.multi_a_) == len(self.qualities_) == len(self.chromosomes_) == len(self.positions_) == len(self.alleles_) == len(self.pass_) == len(self.indels_) == len(self.bads_) == len(self.depths_) == len(self.vafs_) == len(self.impacts_) == len(self.labels_) == len(self.impacts_) == len(self.labels_) == len(self.gene_ids_) == self.number_variants):
 # raise Exception("Error in parse_vcf: list length mismatch during parsing")
 warnings.warn(
 "Warning in parse_vcf: list length mismatch during parsing")
 self.impacts_.append(None)
 self.labels_.append(None)
 self.gene_ids_.append(None)
 self.cell_ids_ = [0 for i in range(self.number_variants)]

class Cell(ParsedVCF):
 """ This class is identical to the ParsedVCF except that it contains a unique cell_id and barcode """
 def __init__(self, filename: str, cell_id: int):
 # TODO add asserts and catches here
 super().__init__(filename)
 self.cell_barcode = (filename.split("/annotated.vcf")[0]).split("/")[-1]
 self.cell_id = cell_id
 self.cell_ids_ = [cell_id for i in range(self.number_variants)]

[bookmark: _Toc173090597]plot.py
import numpy as np
import seaborn as sns

Basic Abstraction Functions

def axplot(figure, axes_list, in_data_ob, pltfun, gs, figure_ind, title):
 axes_list.append(figure.add_subplot(gs[figure_ind])) # may want to automate the index creation process
 pltfun(in_data_ob, axes_list[-1])
 axes_list[-1].set_title(title)
 return len(axes_list)

def axtitle(axes_list, x_title, y_title):
 axes_list[-1].set_xlabel(x_title)
 axes_list[-1].set_ylabel(y_title)

def violin(data, axes):
 sns.violinplot(y=data, color="0.8", ax=axes)
 sns.stripplot(y=data, size=1, jitter=True, zorder=1, ax=axes)

def scatter(data, axes):
 axes.scatter(data[0], data[1], s=2)

def bar(data, axes):
 axes.bar(data[0], data[1])

def hist(data, axes):
 axes.hist(data[0], bins=data[1], range=data[2], log=True)

def hist_bin(X):
 return np.histogram(X, bins=10, range=(0.0,1.0))

[bookmark: _Toc173090598]ptm.py
filter known PTM sites
#
def filter_known_ptm_sites(mutation_list, ptm_list, isbed=True):
 # TODO find some way to do this in terms of the overlap class
 variants = mutation_list.copy()
 ptms = ptm_list.copy()
 print(ptms.head(n=5))
 if(('chr' in str(ptms['chromosome'].iloc[0])) & (not 'chr' in str(variants['chromosome'].iloc[0]))):
 variants['pmap'] = 'chr' + variants['chromosome'].astype(str) + ':' + variants['position'].astype(int).astype(str)
 else:
 variants['pmap'] = variants['chromosome'].astype(str) + ':' + variants['position'].astype(int).astype(str)
 if(isbed):
 ptms['pmap'] = ptms['chromosome'].astype(str) + ':' + (ptms['position']+1).astype(int).astype(str)
 else:
 ptms['pmap'] = ptms['chromosome'].astype(str) + ':' + ptms['position'].astype(int).astype(str)
 print(variants['pmap'].head(n=10))
 print(ptms['pmap'].head(n=10))
 len1 = variants.shape[0]
 removed = variants[variants['pmap'].isin(ptms['pmap'])]
 variants = variants[~(variants['pmap'].isin(ptms['pmap']))]
 print(removed)
 len2 = variants.shape[0]
 print('removed ', str(len1-len2), ' known PTM sites')
 return variants

[bookmark: _Toc173090599]stats.py
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

from src_alt.plot import axplot, violin, scatter, bar, hist, axtitle
from src_alt.cell_list import CellList
from src_alt.parsed_mutation_list import ParsedMutationList

def cell_stats(cell_list_: CellList, out_name: str):
 assert isinstance(cell_list_, CellList)
 my_list_mutations = cell_list_.mutations.copy()
 my_list_cells = cell_list_.cells.copy()
 f = plt.figure(figsize=(16,16))
 gs = gridspec.GridSpec(nrows=4, ncols=3, height_ratios=[1, 1, 1, 1])
 axes = []
 axplot(f, axes, my_list_cells['mut_per_cell'], violin, gs, (0,0), 'Mutations/Cell')
 axplot(f, axes, my_list_cells['pass_per_cell'], violin, gs, (0,1), 'Pass Mutations/Cell')
 axplot(f, axes, (my_list_cells['mut_per_cell'], my_list_cells['pass_per_cell']), scatter, gs, (0,2), 'Pass vs Total Mutations')
 axplot(f, axes, my_list_cells['coding_per_cell'], violin, gs, (1,0), 'Coding Mutations/Cell')
 coding_mutations = my_list_mutations[my_list_mutations['impact']!='non_coding'].copy()
 impacts, counts = np.unique(coding_mutations['impact'], return_counts=True)
 axplot(f, axes, (impacts, counts), bar, gs, (1,1), 'Impact Counts')
 my_list_mutations['is_impact'] = (my_list_mutations['impact']!='MODIFIER') & (my_list_mutations['impact']!='non_coding')
 my_list_cells['impact_per_cell'] = my_list_mutations.groupby(['id'])['is_impact'].sum().reset_index().sort_values(by=['id'])['is_impact']
 axplot(f, axes, my_list_cells['impact_per_cell'], violin, gs, (1,2), 'Non-Modifier Coding Mutations/Cell')
 axplot(f, axes, my_list_cells['avg_depth_per_cell'], violin, gs, (2,0), 'Avg Mutation Coverage/Cell')
 axplot(f, axes, (my_list_mutations['depth'], 10, (1,10)), hist, gs, (2,1), 'Total Coverage/Mutation')
 vafs, counts = np.unique(my_list_mutations['vaf'], return_counts=True)
 axplot(f, axes, (vafs, counts), scatter, gs, (2,2), 'VAF Counts/Mutation')
 impact_mutations = my_list_mutations[my_list_mutations['is_impact']].copy()
 my_list_cells['impact_avg_depth_per_cell'] = impact_mutations.groupby(['id'])['depth'].mean().reset_index().sort_values(by=['id'])['depth']
 axplot(f, axes, my_list_cells['impact_avg_depth_per_cell'], violin, gs, (3,0), 'Avg Impactful Mutation Coverage/Cell')
 axplot(f, axes, (impact_mutations['depth'], 10, (1,10)), hist, gs, (3,1), 'Total Coverage/Impactful Mutation')
 vafs, counts = np.unique(impact_mutations['vaf'], return_counts=True)
 axplot(f, axes, (vafs, counts), scatter, gs, (3,2), 'VAF Counts/Impactful Mutation')
 plt.show()
 f.savefig(out_name)

def variant_stats(mutations: ParsedMutationList, out_name: str):
 # NOTE: do not use a mutation list that has been mixed with another (such as after finding overlap between two mutation lists) as this will probably provide inconsistent statistics
 variants_list = mutations.copy()
 f = plt.figure(figsize=(16,16))
 gs = gridspec.GridSpec(nrows=3, ncols=2, height_ratios=[1, 1, 1])
 axes = []
 axplot(f, axes, (variants_list['count'], 100, (1,100)), hist, gs, (0,0), 'Variant Cell Number')
 axtitle(axes, '# cells with variant', 'log histogram count')
 axplot(f, axes, (variants_list['depth'], 100, (1,1.1)), hist, gs, (0,1), 'Variant Average Depths')
 axtitle(axes, 'average depth per cell of variant (when called)', 'log histogram count')
 axplot(f, axes, (variants_list['count'], variants_list['depth']), scatter, gs, (1,0), 'Average Depth vs Number Cells')
 axes[-1].set_xlim([0,100])
 axes[-1].set_ylim([0,40])
 axtitle(axes, '# cells with variant', 'average depth per cell')
 axplot(f, axes, (variants_list['coverage'], 100, (1,100)), hist, gs, (1,1), 'Total Variant Site Coverage')
 axtitle(axes, '# reads at variant site (ignoring cells in which the variant was not called)', 'log histogram count')
 axplot(f, axes, (variants_list['count'],variants_list['coverage']), scatter, gs, (2,0), 'Total Coverage vs Number Cells')
 axes[-1].set_xlim([0,100])
 axes[-1].set_ylim([0,100])
 axtitle(axes, '# cells with variant', 'reads at variant site')
 axplot(f, axes, (variants_list['vaf'], 100, (0.0, 1.0)), hist, gs, (2,1), 'Variant overall VAF across Cells')
 axtitle(axes, 'vaf for variant', 'log histogram count')
 f.savefig(out_name)

[bookmark: _Toc173090600]utils.py
import pandas as pd

def to_bed(variants: pd.DataFrame, outfile) -> None:
 variant_indices = variants[['gene', 'impact', 'label', 'count', 'new_count', 'quality', 'new_qual', 'chromosome', 'position']]
 variant_indices['tail'] = variant_indices['position'] + 1
 variant_indices['ref'] = variants['allele'].str.split('-', n = 1, expand = True)[0]
 variant_indices['alt'] = variants['allele'].str.split('>', n = 1, expand = True)[1]
 variant_indices.to_csv(outfile, sep='\t', index=False)

2

