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1 Detailed running time benchmark method

To benchmark all methods, we ran all methods with the same hardware configurations (Supplementary Table S1).
For methods that can be run with a different number of threads, we benchmarked them with 1, 4, 8, and 16 threads
(Supplementary Figure S2). For SnapHiC [11], however, we used 32 threads since it is highly computationally
intensive and is recommended to be run on an HPC cluster. To gain statistical significance and remove potential
randomness, we systematically benchmarked all methods five times on all datasets and plotted the distribution of
the running times as box plots (Supplementary Figure S1). Furthermore, we benchmarked all methods at multiple
resolutions (5kb, 10kb, and 25kb) and plotted the timing results independently (Supplementary Figure S1). We
also benchmarked the methods involving multi-threading with different thread configurations (Supplementary Fig-
ure S2). We found that YOLOOP consistently outperformed other commonly used baseline methods across four
cell lines at different resolutions and thread configurations. In our study, we also considered two less prevalent
cases to provide a comprehensive analysis. Specifically, we included HICCUPS (CPU), which is still a proto-
type under development, and Chromosight*, which excludes its time-consuming pre-processing step. Notably,
YOLOOP also outperformed them in most cases (Supplementary Figure S1). On the 25kb low-resolution contact
maps, YOLOOP also showed a highly competitive efficiency to complete within one minute.

Supplementary Table S1: Detailed hardware configuration of the benchmarking environment.

Component Specification

CPU Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
Cores per CPU 16

Threads per Core | 2

Total cores 64
Total Memory 131,599,800 KB
GPU NVIDIA V100

GPU Memory 32,510 MiB

For the purpose of timing, we consistently employed the built-in time command available in Unix-like oper-
ating systems. The time command generates three types of time metrics: real-time, user time, and system time.
Real-time, often referred to as wall clock time, represents the total time taken to execute a command, from start
to finish. This includes both time spent by the process on CPU tasks and time spent waiting on input/output (10)
operations, or other resources. User time is the amount of time the CPU was busy executing code in user mode
(i.e., time spent on the actual computation by the process), while system time is the time the CPU was busy ex-
ecuting code in kernel mode (i.e., time spent on system calls on behalf of the process, such as IO operations).
Multi-threaded algorithms can cause the sum of user time and system time to exceed the real-time, as these al-
gorithms can execute multiple threads in parallel on different CPU cores, thus accumulating CPU time at a faster
rate. Considering these factors, to provide a more intuitive understanding of the execution time, we have chosen
to report all running times in this manuscript in terms of real-time (or wall-clock time). This choice reflects the
actual elapsed time from the perspective of the user, noting the total time a user would have to wait for the comple-
tion of a process or model. Moreover, to ensure the integrity of our benchmarking and to avoid interference from
other processes potentially influencing the running times of the algorithms under test, we implemented a policy of
executing only a single experiment concurrently during the benchmarking process. This strategy provides a clean
and isolated computational environment for each benchmark, thereby enabling a more accurate and representative
measurement of algorithms’ performance.
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Running Time Distribution on 10kb Human Genome with 16 threads
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Running Time Distribution on 25kb Human Genome with 16 threads
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Supplementary Figure S1: Detailed running time comparison on human autosomes at Skb, 10kb, and 25kb reso-
lution. Benchmarked with HiCExplorer [8], HICCUPS [9], Peakachu [10], and Chromosight [6] (both CPU and
GPU versions). All baseline methods were run with 16 threads. YOLOOP consistently outperformed most of the
previous methods. Note that Chromosight™* denotes the running time for Chromosight without pre-processing, and
HiCCUPS (CPU) denotes a prototype of HICCUPS that is still experimental.



Running Time Distribution on 10kb Human Genome with 1 thread(s)
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Running Time Distribution on 10kb Human Genome with 4 thread(s)
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Supplementary Figure S2: Complete running time comparison with multi-threading-enabled algorithms. Even
with as many as 16 threads (main text), YOLOOP still maintained its advantage in efficiency across four cell
lines, achieving state-of-the-art speeds. Note that the running time may not always decrease but even increase
with an increasing number of threads, possibly due to overheads, and false sharing, among other reasons. Since
YOLOOP and Peakachu are not multi-threaded algorithms, their running time distributions remain the same in all

three figures.
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2 Training Time Comparison

Training time analysis helps assess how well our algorithm scales with increasing data size or model complexity.
It evaluates the efficiency, scalability, and feasibility of our computational methods. Supplementary Table S2
presents an efficiency analysis of the training process for the proposed YOLOOP detection framework. For each
cell type, the model converges in approximately 1 hour of training. Furthermore, YOLOOP can be considered a
pre-trained model, with its ready-to-use feature ensuring its applicability.

Supplementary Table S2: Detailed statistics of YOLOOP model training time

Binding Factor Cell Type Training Samples Training Time

CTCF GM12878 89,676 4.1h

CTCF IMR90 13,618 0.6h

CTCF K562 12,786 0.5h
Bulk Hi-C

CTCF HCT116 26,084 1.2h

RAD21 GM12878 9,806 0.4h

RAD21 mESC 23,656 1.1h
sc Hi-C SMC1 mSEC 16,530 0.5h




3 Detailed accuracy evaluation method

To the best of our knowledge, there is no existing universally used method to calculate the accuracy of the model
by evaluating the differences between the predicted loop coordinates and orthogonal ChIA-PET interaction sites.
Several previously published methods evaluated the model performance by computing the distance from each
prediction to the target and counted them as a matching pair (true prediction) if the distance is within a certain
threshold. Here, we form the problem more rigorously as a unique assignment problem that can be solved with the
Hungarian algorithm [3], and compute the F1-score, precision and recall rates for the predicted loop coordinates.

First, we regard the problem as identifying unique assignments from each loop prediction to each orthogonal
target interaction site. By only counting unique assignments, we remove potential duplicated mapping to the
same target that may cause the accuracy to be biased. Then, this problem can be readily solved by the Hungarian
algorithm [3], which we implemented with scipy in Python.

Suppose there are m loop predictions and n target interaction sites and assume m > n without loss of gener-
ality, then the cost matrix is an mxm square matrix. Specifically, an m X n matrix is first constructed by selecting
the candidate prediction-target pairs within a certain range, as measured by the Euclidean distance (I norm), and
fill in the corresponding matrix entry with zero and otherwise a large value (e.g., 10'°). Next, the cost matrix is
constructed by padding the mxn matrix to a square matrix with sufficiently large values (e.g., 10'°) to prevent
the algorithm from making any matches to those padded regions. The Hungarian algorithm [3] is run on this cost
matrix to search for the unique assignments between loop predictions and targets.

After removing the invalid matches (i.e., matches involving padding regions or non-candidate pairs), the out-
puts of the Hungarian algorithm [3] give the number of true positives (TP). Next, the false positive (FP) is the
number of remaining unmatched loop predictions, and the false negative (FN) is the number of remaining un-
matched target interaction sites. The F1-score, precision, and recall can be calculated as follows.

2 X Precision X Recall

F1= —
Precision + Recall
Precisi TP
recision = ———————
TP+ FP
TP
Recall = —————
TP+ FN
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Supplementary Figure S3: Distribution of chromatin loops in chromosomes in the orthogonal ChIA-PET dataset.
Yellow bars indicate the chromosomes (chrl, 9, 14) consistently used for testing, and blue bars indicate the ones
used for training. The size of our test set is approximately 0.2 on average of the size of our train set by careful
design. All three chromosomes are also selected as they are present in both the human and mouse genome. The
same chromosomes were consistently held out to avoid information leakage or over-fitting.



4 Supplementary Results
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Supplementary Figure S4: A.Statistical analysis of Recall, Precision, Fl-score on GM12878 cell line at 10kb
resolution in 3 test chromosomes. (complementary to Figure 2 in the main text) B. Fl-score curve for YOLOOP
cross-cell type evaluation against machine-learning-based algorithms. C. Precision-Recall curve on GM12878
CTCEF in situ ChIA-PET and HiChIP of cohesin GM 12878 with 0.1 threshold gap with Area Under Curve (AUC)
reported across all benchmark methods.
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Supplementary Figure S5: Detailed statistical evaluation of YOLOOP against benchmarks at GM 12878 Hi-C at
10kb and 5kb resolution. A. Sensitivity analysis in Recall, Precision, and F1-score on GM 12878 cell line at 10kb
resolution. B. Area Under Curve (AUC) score across sensitivity curve on GM 12878 cell line at 10kb resolution.
C. Sensitivity analysis in Recall, Precision, and F1-score on GM 12878 cell line at Skb resolution
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5 Quality Control for Chromatin Interactions

Raw genome binding/occupancy profiling through ChIA-PET contains information about genomic coordinates
and the intensity of binding events regarding each binding factor (e.g. CTCF, RAD21). We applied a typical
threshold to consider interaction scores larger than 8 to reduce noise and false positives [4, 5]. Other than thresh-
olding, multiple nearby peaks are merged into a single interaction to consolidate overlapping or closely located
binding events. This process helps reduce redundant calls and improves the clarity of identified interactions. We
also filtered out some interactions at both ends of the chromosome due to potential NaN values in the recep-
tive field. Supplementary Table S3 shows the number of interactions before and after quality control, classified
according to cell types and binding factors.

Supplementary Table S3: Data statistics on the number of raw ChIA-PET chromatin interaction numbers within
each cell type and the sample size after quality control.

Binding Factor Cell Type Raw Quality Controled
CTCF GM12878 1,181,427 110,740
CTCF IMR90 471,557 14,842
CTCF K562 129,669 9,053
CTCF HCT116 274,266 24,908
RAD21 GM12878 38,484 7,398
RAD21 mESC 396,144 31,904
Quality Controlled Raw

GM12878 Hi-C chr19: 16,000,000-17,500,000 O ChIA-PET CTCF

Supplementary Figure S6: Visualization of the quality control measurement for ChIA-PET long-range loop inter-
actions on GM 12878 Hi-C for CTCEF interactions at chr19:16,000,000-17,500,000.
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6 Analysis on YOLOOP-captured long- and short-range interactions

YOLOOP also excelled in capturing both long-range and short-range loops. Long-range spatial interactions facil-
itate the efficient binding of transcription factors and regulatory proteins, thereby controlling gene expression. In
our analysis of ChIA-PET captured loops, approximately 50% of the loops spanned a genomic distance exceeding
10 times the resolution. Remarkably, YOLOOP is capable of identifying longer-range loops. Around 38% of the
loops predicted by YOLOOP extended beyond 10x the resolution, and 23% extended beyond 20x the resolu-
tion (Supplementary Figure S8). On the other hand, we observed a scarcity of short-range interactions in their
predictions using methods like Chromosight and Peakachu. These findings highlight YOLOOP’s robust ability to
capture the full spectrum of chromatin interactions, from short-range to long-range.

Memory Usage
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50000+

40000 3 Resolution: 25kb (5,760Mb)
O Resolution: 10kb (10,542Mb)
B Resolution: Skb (24,525Mb)

30000+

20000
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Memory Usage (MByte)
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Supplementary Figure S7: Memory Consumption for YOLOOP on K562 Hi-C. We calculated the memory con-
sumption on 22 autosomes during program execution.

ChIA-PET CTCF ChIA-PET RAD21
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YOLOOP 4, Chromosight 49 Peaokb?ch;j’
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2% ’ ’ o ® 0-50kb
Si 14% 50-100kb
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B9%
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Supplementary Figure S8: Short and long-range loop distribution variations for those discovered by ChIA-PET,
YOLOOP, Chromosight, and Peakachu. Top: Long-range loops mediated by CTCF, RAD21. The pie plot reports
the percentage of loop distances. Bottom: The pie plot reports the recovery rate of YOLOOP, Chromosight, and
Peakachu.

7 Running YOLOOP on scHi-C data

As suggested by [7], the loop enrichment increases after mitosis and remains generally stable throughout the G1
phase. Afterward, the enrichment decreases slightly in the early S phase and late S phase for later-replicating loops.
We aim to determine whether computational methods can replicate such a stable loop pattern upon detection on
G1 phase scHi-C maps (Supplement Table 4). After experimental validation, YOLOOP is able to identify 6,953
chromatin interactions predicted in the G1 phase, 1,501 of which are cross-validated by SnapHi-C with a deviation
of less than 10 kb. (Supplementary Figure S9,S11).
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Number of Predicted Loops on Single-Cell Data
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Supplementary Figure S9: Number of predicted loops by multiple methods on single-cell Hi-C data. HICCUPS
was not able to be benchmarked due to its restriction to .hic format inputs.
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Supplementary Figure S10: Results on G1 phase mESC scHi-C data evaluated with SMC1 HiChIP interactions.
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8 Motif Logo Discovery

A D1SCOVERED MOTIFS

E-value[?] sites[?] Width[?] More(?] Submit/Download [?|

1. 1.1e-444 1286 15 l s
2. 4.3e-035 69 15 l e
3. 6.3e-033 63 15 I -
Stopped b req d ber of motifs (3) found.
Sequences
Role Source 7] Alphabet [?]  sequence Count(?]  Total Size [
Primary Sequences ctef_binded.fastq DNA 1297 224679
Background Model
Source: built from the (primary) sequences
Order: 0
Name(?l  Freq.[?l  Bg.[?] Bg.[”]  Freq.[” Name [7]
Adenine 0.25 0.25 A ~ T 0.249 0.249 Thymine
Cytosine 0.25 0.25 c ~ 0.251 0.251 Guanine

B. DI1SCOVERED MOTIFS

E-value [?] sites(?] Width[?] Morel?l Submit/Download 7]

1. 1.6e-448 1277 15 I -
2. 4.8e-024 173 15 I >
3. 1.3e-024 185 15 I -

Stopped because requested number of motifs (3) found.

Sequences
Role Source [7] Alphabet Sequence Count Total Size
Primary Sequences rad21_binded.fastq DNA 1279 205189

Background Model

Source: built from the (primary) sequences

Order: 0

Namel?l  Freq.?l  Bg.[” Bg.?l  Freq.[?] Name[?Z
Adenine 0.254 0.254 A ~ T 0.254 0.254 Thymine
Cytosine 0.244 0.244 c ~ 0.249 0.249 Guanine

Supplementary Figure S11: A. Top 3 identified motif logos on CTCF-supported peaks.B. Top 3 identified motif
logos on RAD21-supported peaks. MEME [, 2] usually finds the most statistically significant (low E-value)
motifs first. We consider a motif with an E-value no larger than 0.05 to be significant
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9 Hi-C matrix Sparsity Calculation

As the sparse matrices may cause space and time complexity issues, we need to quantify the sparsity of the Hi-C
matrices based on their zero count values. The sparsity of a Hi-C matrix can be quantified by a score, which is the
number of zeros in the matrix divided by the total number of elements in the matrix.

zero interaction count

sparsity =
P y total count

10 In-silico single-cell data cell phasing

To categorize the single-cell data into various stages during the mitosis, we followed Nagano et al. [7] using the
following grouping criteria. We counted the number of cis (intra-chromosomal) contacts per cell, binning contacts
by distance into logarithmic bins (143 bins, first one for contacts distanced j 1kb, then each bin covers an exponent
step of 0.125, using base 2). Contacts in bins 1-37 were found to be noisy and were discarded, making bins 38-143
the valid bins [7].

Supplementary Table S4: In-silico assessment criteria for grouping single-cell data by cell phase.

Group | Cell Phase Assessment Criteria (for haploid cells)

1 Post-M Y%mitotic > 30 A %onear < 42

2 Gl Y%near < 61.1

3 Early to mid-S | 61.1 < %mnear < 77

4 Mid-S to G2 Yonear > T7

5 Pre-M Y%onear > 42 A %onear + 1.8 x %mitotic > 100

* %near - percentage of contacts in bins 38-89 out of all valid bins

» %mitotic — percentage of contacts in bins 90-109 out of all valid bins.

Supplementary Table S5: Detailed data accession codes for the contact maps used in the benchmark experiments.

Sequencing protocol | Cell type | GEO Source | 4DN Accession
Hi-C IMR90 GSE63525 4DNFIITOIGOI
Hi-C GM12878 | GSE63525 4DNFIXP4QG5B
Hi-C K562 GSE63525 4DNFI4DGNY7]
Hi-C HCT116 GSE104334 | 4DNFILP99QJS

Supplementary Table S6: Detailed accession codes for contact maps with multi-proximity ligation protocols

Sequencing protocol | Cell type | Source | Accession

Hi-C GM12878 | GEO GSE63525
ChIA-PET GM12878 | 4DN 4DNFISHEOQO9
Micro-C HFFc6 4DN 4DNESWST3UBH
HiChIP GM12878 | GEO GSES80820
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Supplementary Table S7: Hyperparameters tuning for YOLOOP architecture for model training.

Hyperparameter Value

Batch size 64

Learning rate 1.00E-03

Input size 512

Input Channel 1

Train Epoch 20

Class num 1

Layers 225

Anchors 3
[10,13, 16,30, 33,23]

Grid Cells [30,61, 62,45, 59,119]
[116,90, 156,198, 373,326]

Optimizer Adam

Steps 100

Model Parameters 3,157,200

Supplementary Table S8: Hyperparameters tunning for Chromosight v1.6.2-0. Experiments on Chromosight

were carried out following the tutorial provided by its developers.
figured according to the recommended setting regarding all possible parameter candidates.

https://github.com/koszullab/chromosight

Most of the hyperparameters were con-
Code access:

Hyperparameter Value Benchmarked Candidates
Minimum distance (bp) 2,000 7+
Maximum distance (bp) 200,000 VA
Detection threshold (Pearson coefficient) Auto Auto or [0, 1]
Sub-sampling False True,False
Minimum separation Auto 7t

N-mad 5 7
Proportion of zero-valued pixels 0.3 [0, 1]
Proportion of missing values 0.75 [0, 1]

Thread number 16 1,4,8, 16

15


https://github.com/koszullab/chromosight

Supplementary Table S9: Hyperparameters tunning for Peakachu v2.2. Experiments on Peakachu were con-
ducted in two stages. Random forest models were first trained and then applied to each chromosome. The
hyperparameters used during the training and detection stages are listed separately in the table. Code access:
https://github.com/tariks/peakachu

Stage Hyperparameter Value Benchmarked Candidates
Training Resolution (kb) 5kb, 10kb, 25kb 5kb-100kb
Balance False True/False
Lower bound for loop loci distance (bin) 6 7+
Upper bound for loop loci distance (bin) 300 VA
Probability threshold 0.5 [0,0.1,...0.9]
Detection  Resolution (bp) 5kb, 10kb, 25kb 5kb-100kb
Balance False True/False
Lower bound for loop loci distance (bin) 6 7+
Upper bound for loop loci distance (bin) 300 /A
Probability threshold 0 (for AUC analysis, set as 0.5 for prediction) [0, 0.1,...0.9]

Supplementary Table S10: Hyperparameters setting for HICExplorer v3.7.2. Experiments on HiCExplorer were
conducted following its official manual. Detailed configuration of its hyperparameters is shown in the table below.
Code access: https://github.com/deeptools/HiCExplorer

Hyperparameter Value Benchmarked Candidates

Peak width (bin) 2 /A

Window size (bin) 5 7+

p-value threshold 0.1 [0, 1]

Peak interaction threshold 10 RT

Obs/exp interactions per peak threshold 1.5 Rt

p-value rejection threshold 0.025 [0, 1]

Maximum loop distance (bp) 2,000,000 usually <2MB

Thread number 16 1,4,8, 16

Method to compute the expected value per distance mean mean, mean_nonzero, mean_nonzero_ligation

Supplementary Table S11: Hyperparameters setting for HICCUPS (Juicer v.1.6). Experiments on HICCUPS were
conducted following its official manual. Detailed configuration of its hyperparameters is shown in the table below.
Code access: https://github.com/aidenlab/juicer/wiki/HiCCUPS

Hyperparameter Value Benchmarked Candidates

Normalization NONE NONE, VC, VC_SQRT, KR
FDR 0.1 [0, 1]

Window size (bin) 5 VA

Peak width 2 Y/

Threshold 10 /A

Centroid distance ~ 20kb Z% (in kb)
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Supplementary Table S12: Hyperparameters setting for SnapHiC v0.2.0. Experiments on SnapHiC were con-
ducted following its official manual. Detailed configuration of its hyperparameters is shown in the table below.
Code access: https://github.com/HuMingLab/SnapHiC

Stage Hyperparameter Value

Step 1  Genome mm9
Parallelism threaded
threads 32
Steps bin rwr
Method sliding window

Step2  Genome mm9
Parallelism threaded
threads 32
Steps hic interaction post-process
Method sliding window
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