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SUPPLEMENTAL METHODS 

The optimization of the PolyaClassifer model.  

Parameter grid search and model selection 

 To identify the optimal PolyaClassifier architecture, we employed a grid search protocol 

where each parameter of the model was varied one at a time as other parameters were held constant 

at a baseline value. For each parameter value tested, we trained 10 models, each using a different 

set of sampled negative controls to provide a measure of performance variability and to control for 

the effect of individual negative samples. Each set of negative sequences contained the same 

number of positive sequences. 70% of them were sampled from the random genome sequences 

without the PASS reads in the middle 50-nt regions. The remaining 30% were from shuffled 

transcript sequences keeping the single nucleotide compositions the same.  

We began by exploring the impact of the input poly(A) sequence size, which we varied 

from 50 to 1000 nt in 50 nt steps. For each step, we trained 10 models using the same positive 

sequences and 10 randomly sampled negatives as described above. Based on the averaged AUROC 

values from the 10 models, we examined the impact of the sequence length parameter on model 

performance. In our final model, we selected 500 nt (+/- 250 nt centered around the cleavage site) 

as the input size because improvement in AUROC values was minimal for longer sequences.  

 Using a similar approach, we tested other model architecture parameters, including the 

number of dense layers, the number of convolutional and LSTM units, the shape of convolutional 

filters, and the dropout rate. The optimal parameter value was chosen to maximize the mean 

AUROC for the validation datasets for the 10 models trained. If multiple parameter values 

produced models within 1 standard error of the maximum AUROC, the most parsimonious 

parameter value was chosen. The final model configuration for each species was trained using the 



combination of the best parameters identified in the grid search and the final models are described 

in detail in Supplemental Table S2. 

 Developing an ensembled PolyaClassifier model using bagging 

 When working with severely imbalanced data, a common approach is to create an 

ensembled model using bagging (Khoshgoftaar et al. 2011). Multiple models are trained on 

resamples of the data and then the predictions are averaged to create a final “bagged” model 

prediction. This approach can improve model accuracy and robustness by leveraging the diversity 

of the available majority-class data, in this case, the large number of possible negative sequences 

(Galar et al. 2012). To investigate if bagging could improve PolyaClassifier performance, we 

sampled the positive poly(A) sequences and negative controls with replacement to create 20 

independent “resamples” of the full dataset. We then used each resampled dataset to train a 

PolyaClassifier model using the species-specific configuration (Supplemental Table S2).  

 To choose the best number of models to bag together, we compared the improvement in 

AUROC as one more model was incorporated into the ensemble. For each number of models in 

the ensemble, we randomly selected 10 random groups of the specific number of models to 

ensemble and then calculated the change in AUROC over the mean of the previous number. For 

example, we randomly selected 10 groups of 3 models, calculated the concatenated AUROC for 

each, and then subtracted the mean AUROC from 10 random groups of 2 models. Using this 

approach, we found that bagging 3 models was the optimal number. When more than 3 models 

were combined, the 95% confidence interval of the mean delta AUROC crossed zero, indicating 

no consistent improvement in model performance. 

 To further examine the impact of negative control sampling on model performance, we 

randomly sampled another 10 random negative sets and positive sequences not included in the 



model training, and used our 3-bagged PolyaClassifer model in S. cerevisiae to calculate the 

AUROC values. The standard deviation was 0.0005, indicating the robustness of our model.  

 Examining the impact of positive site selections 

The sequencing depth and the number of 3’READS available are variable for different 

species. Therefore, we chose appropriate read count thresholds to select high-quality cleavage sites 

for model training and downstream analysis. We required that high-quality cleavage sites show 

PASS reads ≥2% of the most expressed site in the same gene and be supported by ≥10 PASS 

reads in S. cerevisiae and A. thaliana, and by ≥5 PASS reads in S. pombe. Further, we selected 

the most highly-expressed cleavage sites in a top-down fashion with the requirement that sites 

were ≥5 nt apart. As a result, we included different numbers of positive poly(A) sequences in the 

model training across species.  

To examine whether enough positive poly(A) sequences were included for building the 

PolyaClassifier model, we sampled the training data to include 1000, 2000, 4000, 10000, 20000, 

40000, 60000, 100000, or all positive poly(A) sequences. We used these datasets to train a 3-

bagged PolyaClassifier model for each training set size and calculated the AUROC values on the 

holdout test set. The AUROC values of our final model were all in the saturation phase, indicating 

that a sufficient number of positive sequences were used.  

Cross-species PolyaClassifier performance 

 To evaluate the species-specificity of poly(A) signals, we made predictions for the testing 

set data using the S. cerevisiae, S. pombe, and A. thaliana PolyaClassifier models, as well as the 

human PolyaID model we previously developed (Stroup and Ji 2023). We then calculated the 

AUROC values for the model performances when each model was applied to predict the poly(A) 

sites across species.  



 

Examining the performances of our deep learning models using 3P-seq and Helicos 

sequencing data 

 3P-seq data 

 We downloaded 3P-seq data for one wild-type S. cerevisiae sample SRR1049516 from 

GSE53310 (Subtelny et al. 2014). The data were processed using the steps as 3’READS. We 

required that high-quality cleavage sites were supported by ≥10 3P-seq PASS reads and ≥2% 

reads of the maximum expressed site in a gene. Then we applied an iterative, top-down sampling 

approach to select representative cleavage sites with a minimum distance ≥5 nt from adjacent 

selected sites. We identified 15,808 representative cleavage sites that were used for model 

evaluation. To evaluate the performance of our bagged S. cerevisiae PolyaClassifier model on 3P-

seq data, we combined the representative cleavage sites with an equal number of randomly 

sampled negative controls. We then made predictions for these sequences and calculated the 

AUROC and AUPRC values.  

 To evaluate the performance of our PolyaStrength model, we used the same approach as 

described for 3’READS to define poly(A) site clusters, and selected APA site pairs in 3’UTRs 

showing >8-fold expression differences. We used the PolyaStrength predicted scores to classify 

the highly vs. lowly expressed sites within a pair. AUROC and AUPRC values were calculated to 

evaluate the classification performance.  

 Helicos sequencing data 

 We downloaded normalized read count tracks of the sample GSM1959710 from GSE75587 

(Roy et al. 2016). We selected cleavage sites with expression level ≥1 RPM. After applying the 

iterative selection procedure, we found 21,006 representative cleavage sites ≥5 nt from adjacent 



selected sites. We used similar downstream analysis steps as described for 3P-seq data to evaluate 

the performances of the PolyaClassifer and PolyaStrengh models.  

 

The analyses of massively parallel reporter assays (MPRA) 

 A study used the massively parallel reporter assay that combined the HIS3 coding region 

with a 3’UTR derived from the CYC1 gene in S. cerevisiae. They introduced hundreds of thousands 

of random 50 nt sequences upstream of a fixed cleavage site (Savinov et al. 2021). They 

determined relative HIS3 protein expression levels from the fitness of transformants using a 

growth selection. Based on their results, the polyadenylation activity is one major regulator of 

higher HIS3 expression, and RNA stability can also contribute to the regulation. We predicted the 

PolyaStrength score of each randomized sequence, padding with additional HIS3 CDS sequence 

upstream and genomic sequence downstream to reach the 500 nt input length. We then partitioned 

the MPRA sequences into 4 groups based on the measured expression and calculated the AUROC 

by comparing the PolyaStrength scores classifying the highest (top 5%, 29,502 sequences) vs. 

lowest (bottom 5%, 29,529 sequences) expressed groups. 

 

PolyaCleavage parameter search and model selection 

For the PolyaCleavage model development, we started from the same pool of 

representative cleavage sites used in the PolyaClassifier model. The sites were split into 80% 

training, 10% validation, and 10% testing sets at the gene level. The training set was further split 

into 5 groups for 5-fold cross-validation. We used a parameter grid search approach, similar to that 

used for PolyaClassifier. We calculated the mean correlation between observed and predicted 

cleavage entropy and the correlation between observed and predicted mean cleavage position. The 



optimal value for each parameter was chosen to maximize these two performance measures. If 

multiple parameter values produced models within 1 standard error of the maximum correlation, 

the most parsimonious parameter value was chosen. The final PolyaCleavage model was trained 

using the combination of the best parameters identified by the grid search and is described in detail 

in Supplemental Table S2. 

 

Examining genomic parameters regulating cleavage heterogeneity using the PolyaCleavage 

model.  

We found that both the nucleotide composition around the cleavage site and the presence 

of upstream UA-rich motifs contribute to increased cleavage heterogeneity. To verify these 

findings using our PolyaCleavage model, we altered the poly(A) site compositions by adding or 

removing the cis-elements. For the low entropy sites, we randomly added non-overlapping AU-

rich motifs into the (-15,+15) nt region around the cleavage site. The AU-rich elements included 

those identified through our motif enrichment analysis shown in Figure 3B and were most 

significant: AUAAUA, UAAUAA, AAUAAU, AAAAAU, or AAAAUA. We then measured the 

predicted changes to cleavage entropy using the PolyaCleavage model. We required that sites 

included in this analysis were in the bottom 20% low entropy group, and containing ≥1 U-rich 

motif in both the (-15,0) and (0,15) regions immediately surrounding the cleavage site (N = 222 

sites).  

Inversely, for high entropy sites, we randomly added non-overlapping U-rich motifs to the 

-15 to +15 nt region around cleavage sites. In this analysis, we introduced the top U-rich motifs 

that were significantly enriched in low entropy sites from our motif analysis: UUUUUU, 

UUCUUU, UCUUUU, UUUCUU, and UUUUCU. We required that sites included in this analysis 



were in the top 20% high entropy sites, and containing ≥1 UA-rich motif in both the (-15,0) and 

(0,15) regions immediately surrounding the cleavage site (N = 182 sites).  

For each experiment, we randomly placed up to 4 AU-rich or U-rich motifs into the 

cleavage region one at a time without crossing the cleavage site. We repeated this random 

placement 100 times for each input site. We highlighted representative examples by showing the 

original sequence and PASS read distribution followed by the modified sequence and predicted 

cleavage vector after each sequential motif addition. 

We also modified the number of upstream UA-rich elements to confirm the influence of 

these motifs on the cleavage heterogeneity. We sequentially disrupted the upstream efficiency 

elements of consensus high entropy sites with five existing UA-rich motifs in the (-90,-30) region. 

We sequentially replaced each UA-rich element with randomly sampled nucleotides until only one 

UA-rich motif was left and repeated this disruption 100 times. The randomly sampled nucleotides 

were chosen from a distribution matching the nucleotide distribution in the (-90,-30) region of 

consensus low entropy sites without creating new UA-rich motifs. We then measured the predicted 

change in cleavage entropy after modifying the sequence using the PolyaCleavage model. We 

highlighted a representative example by showing the original sequence and PASS read distribution 

followed by the modified sequence and predicted cleavage vector after each sequential motif 

removal. 

 

PolyaStrength parameter search and model selection 

To develop the PolyaStrength model, we split the set of 3’UTR APA sites into 70% training, 

10% validation, and 20% testing sets at the gene level. The training set was further split into 5 

groups to use for 5-fold cross-validation. We used a parameter grid search approach, similar to that 



used for PolyaClassifier described above. We calculated the mean paired site AUROC and the 

mean correlation between observed and predicted usage scores across all 5 cross-validation folds, 

as described above. The optimal value for each parameter was chosen to maximize these two 

performance measures. The final PolyaStrength model is described in detail in Supplemental Table 

S2. 

 

Identifying motifs contributing to poly(A) site strength 

We used the similar hexamer disruption and motif analysis approaches described for the 

PolyaClassifer model to identify motifs determining the poly(A) strength. We used 9,725 clustered 

poly(A) sites with ≥100 reads and ≥5% of the maximum expressed site in a gene. Next, we 

characterized the cis-regulatory elements that significantly contributed to poly(A) site strength 

using the two-step filtering procedure described above for the PolyaClassifier model, except we 

used the 99.9th percentile in each region during the second filtering step.  

 

Studying the APA regulation under diauxic stress 

 To study the APA regulation under diauxic stress, we selected the top two expressed poly(A) 

site clusters in the 3’UTR or extended 3’UTR region of each coding gene by pooling the 3’READS 

measured under rich media and diauxic stress culture conditions. We required that the genes and 

poly(A) sites included in this analysis be well-expressed, with the gene supported by ≥50 total 

PASS reads in the 3’UTR and the two poly(A) sites supported by ≥10 PASS reads and located ≥

50 nt apart. We then compared the usage of the poly(A) site clusters under rich media and diauxic 

stress conditions by comparing the fraction of 3’READS supporting each poly(A) site. We selected 

genes showing significant APA under the stress condition comparing proximal vs. distal sites using 



the cutoff Benjamini-Hochberg correction P-value <0.05 (Fisher’s exact test). For these genes, we 

calculated the proximal poly(A) site isoform abundance ratio as the ratio between the PASS read 

number supporting proximal sites vs. the sum reads of both proximal and distal sites. We next 

grouped poly(A) sites based on their differential usage levels between the diauxic stress vs. rich 

media conditions. We characterized these sites using the PolyaStrength scores, and the distances 

between the two sites.  

 We found that proximal poly(A) sites showing increased isoform ratios under diauxic stress 

tend to be weaker according to PolyaStrength and are paired with stronger distal sites. We 

examined the motif configurations around these sites to confirm the PolyaStrength predictions. We 

tabulated the frequency of UA-rich motifs in the (-90,-25) nt region, A-rich motifs in the (-25,-15) 

region, and U-rich motifs in the (-15,-6) and (2,15) nt regions. Motifs with a Hamming distance 

<= 2 nt compared with the archetypical motifs UAUAUA/AUAUAU, AAAAAA, and UUUUUU 

that were significant according to the PolyaStrength model were included in this analysis. The 

frequencies of the motifs in the indicated regions were compared using the Chi-squared test 

between the high ∆ratio group (>0.25) and the low ∆ratio group (-0.05 – 0.05). 

 We also confirmed the observed differences in motif frequencies using an unbiased motif 

enrichment analysis like that described during the cleavage heterogeneity analysis. We quantified 

the enrichment of 5-mers in the (-90,-25) nt region upstream of proximal and distal sites, 

comparing the high ∆ratio group (>0.25) and the low ∆ratio group (-0.05 – 0.05). 

 

Examining the context of UAG- and GUA-elements in S. pombe.  

To quantify the importance of the nucleotides surrounding UAG and GUA elements in S. 

pombe and to determine their most significant context, we padded “UAG” and “GUA” with all 



combinations of 3 nucleotides on each end to create 4096 possible 9-mers with UAG or GUA in 

the center. We then applied our systematic disruption approach to quantify the importance of each 

padded 9-mer. We examined UAG-containing 9mers where the UAG was found (-80,-30) nt 

upstream of the cleavage site. We also examined GUA-containing 9mers where the GUA was 

found (15,60) nt downstream of the cleavage site. For each position around the central UAG or 

GUA element, we grouped the motifs containing each nucleotide and calculated the mean 

importance score. These scores were combined and normalized to sum to 1 to create a position-

probability matrix (PPM). We calculated the log-likelihood of the PPM assuming that all 

nucleotides are equally important and plotted the position-weight matrix for the nucleotides with 

positive values. 

 

Studying poly(A) site sequence conservation across species 

To examine the sequence conservation surrounding poly(A) sites across yeast and humans, 

we used the phastCons conservation tracks (Siepel et al. 2005). For humans, we used the 100-way 

alignment from UCSC. For S. cerevisiae, we used the 7-way alignment comparing S. cerevisiae to 

other Saccharomyces family members. For S. pombe, we used the 4-way alignment from the 

Fungal Genome Initiative comparing S. pombe to other Schizosaccharomyces family members 

(Rhind et al. 2011). We quantified the mean conservation score within coding regions and used 

this as a normalization factor. We performed the analyses for homologous genes across the three 

species defined by the PomBase database (Harris et al. 2022). We selected the top expressed 

poly(A) site from each homologous protein-coding gene (N = 3296 for S. cerevisiae, 2720 for S. 

pombe, and 3777 for H. sapiens). We calculated the averaged conservation scores and the 95% 

confidence interval values at each position normalized to the mean coding region conservation. 



We also performed similar analyses for poly(A) sites from non-homologous genes (N = 2225 for 

S. cerevisiae, 1260 for S. pombe, and 12,325 for H. sapiens), and well-expressed sites grouped 

based on their relative genomic locations.  

We further investigated the conservation of motif families surrounding top poly(A) sites in 

homologous protein-coding genes. We mapped the location of each hexamer surrounding these 

poly(A) sites and calculated the CDS-normalized mean conservation score. We grouped motifs 

that were significant according to PolyaClassifier into families and used not-significant motifs 

assigned to no motif family as the “other” group for reference. For S. cerevisiae, this included 40 

UA-rich, 31 A-rich, and 51 U-rich, and 3535 other motifs. For S. pombe, we included 63 A-rich, 

87 U-rich, 23 GUA-containing, 19 UAG-containing, 11 GUA+UAG-containing, and 2792 other 

motifs. We then plotted the distribution of CDS-normalized mean conservation scores for each 

motif family surrounding conserved top poly(A) sites.  

 

Examining genetic variants impacting poly(A) motifs in S. cerevisiae 

 We analyzed genetic variants identified in 1,011 S. cerevisiae isolates (Peter et al. 2018). 

For significant poly(A) motifs defined by our deep learning models in S. cerevisiae, we 

examined their overlap with SNPs from the variant dataset. We grouped the motifs and variants 

by the distance to the cleavage sites and calculated the enrichment of overlapping variants 

relative to the background region +/- 1 kb around the poly(A) sites. At each position 𝑥𝑥 around the 

cleavage sites, the enrichment statistic 𝐸𝐸 for motif family 𝑓𝑓 was calculated as: 

𝐸𝐸𝑓𝑓,𝑥𝑥 = log2 ��
𝑂𝑂𝑓𝑓,𝑥𝑥

𝑁𝑁𝑓𝑓,𝑥𝑥
� / �

𝑉𝑉𝑓𝑓
𝑀𝑀𝑓𝑓
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Where 𝑂𝑂𝑓𝑓,𝑥𝑥 is the number of variants overlapping motifs from family 𝑓𝑓 at position 𝑥𝑥, 𝑁𝑁𝑓𝑓,𝑥𝑥 is the 

motif coverage for family 𝑓𝑓 at position 𝑥𝑥, 𝑉𝑉𝑓𝑓 is the number of variants overlapping motifs from 



family 𝑓𝑓 in the wider background region, and 𝑀𝑀𝑓𝑓 is the motif coverage for family 𝑓𝑓 in the 

background region. The motif coverage calculates the number of motifs from family 𝑓𝑓 that cross 

position 𝑥𝑥. 

 

The analyses of A. thaliana poly(A) sites 

We downloaded the 3’READS data for A. thaliana from the GEO database (Supplemental 

Table S1) (Guillermina Kubaczka et al. 2024). For read mapping, we used the Ensembl reference 

genome assembly TAIR10 and the corresponding gene annotation from release 58. The data 

analysis steps were the same as for S. cerevisiae. To build the PolyaClassifer model, the 500-nt 

sequences surrounding 47,618 representative cleavage sites were used as positives, and a similar 

grid search approach for S. cerevisiae was used to find the best model training parameters. The 

hexamer disruption approach was taken to identify the poly(A) motifs. The significant motifs we 

identified in A. thaliana can be grouped into four families: (1) the A-rich family which contained 

motifs with at least 4 As, (2) the U-rich family with motifs containing at least 4 Us and no UGUA, 

and (3) the UGUA-containing family. We then calculated the mean per-site and sum importance 

profiles for these families of motifs.  
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