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Supplemental Fig. S1: SiPSiC detects differential pathway activity of malignant subclones 

across cancer types. (A) Heatmap depicting Z-scores of SiPSiC scores of the 20 most 

differential hallmark pathways in lung adenocarcinoma. Pathways are sorted by significance 

of differential scores, cells in each cell group are sorted by their average Z-score across all 

shown pathways. Pathway names mentioned in the text are colored red. (B) Heatmap 

depicting Z-scores of SiPSiC scores of all differential hallmark pathways (FDR < 0.01) in 

glioblastoma. Pathways upregulated in each group are sorted by significance of differential 

scores, cells in each cell group are sorted by their average Z-score across all pathways 

upregulated in that group. Pathway names mentioned in the text are in red. (C) Heatmap 

depicting Z-scores of SiPSiC scores of all differential hallmark pathways (FDR < 0.01) in 

oligodendroglioma. Pathways upregulated in each group are sorted by significance of 

differential scores, cells in each cell group are sorted by their average Z-score across all 

pathways upregulated in that group. Pathway names mentioned in the text are in red. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Fig. S2: SiPSiC’s ability to overcome patient batch effects is comparable to 

explicit batch correction methods. (A-C) UMAP projections based on gene expression, 

SiPSiC scores, Seurat Integration, Harmony and scVI, as shown in the titles on top. (A) Cells 

were clustered by Louvain algorithm according to gene expression, SiPSiC scores, Seurat 

Integration, Harmony and scVI, as shown in the titles on top, UMAPs show cells colored by 

cluster. (B) Cells colored by patient identity. (C) Cells colored by malignant meta-module 

assignment.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplemental Fig. S3: SiPSiC consistently detects upregulation of MYC in CD8+ T Cells of 

SARS-CoV-2 infected monkeys. Violin plots showing normalized pathway scores distribution 

of the MYC targets pathways for the monkey CD8+ T cells, as calculated by the four different 

methods. Significant results (FDR < 0.01) are in red. 

  



Supplemental Note 1 - SiPSiC differential pathway analysis of the African green 

monkey COVID-19 dataset: 

In the African green monkey experiment, two monkeys were inoculated with inactivated SARS-

CoV-2 (henceforth referred to as control) and eight with the active virus (Speranza et al., 

2021). To better study the dynamics of viral infection, these eight monkeys were then split into 

two groups of four monkeys each and euthanized three (first group) or ten (second group) 

days post inoculation; the monkeys in the 10-day group had already recovered by the 10th day. 

Hence, we focused on comparing the active infection (3-day) to the control after calculating 

the pathway scores per cell type (Methods). Complete results of all three groups can be found 

in Supplemental Table S2. 

Analysis of this dataset provided support for pathways that were found upregulated from all 

three categories. We found 20 upregulated and 3 downregulated pathways in alveolar cells 

(Figure 1B). Here too the cells in the active infection group were enriched in the interferon 

alpha and gamma response, complement, E2F targets and apoptosis pathways relative to 

both other groups (Supplemental Table S2), supporting our findings from the analysis of 

human alveolar cells. In addition, most of the pathways showing therapeutic potential that 

were found upregulated in the COVID-19 group of alveolar cells in the human dataset were 

also upregulated in the alveolar cells of the active infection group in the monkey dataset, 

compared to control. These are the DNA repair, mTORC1 and PI3K/AKT/MTOR signaling, 

glycolysis, reactive oxygen species and unfolded protein response pathways. Out of all these 

pathways, only interferon signaling was identified by Speranza et al., further highlighting 

SiPSiC’s high sensitivity. 

Analysis of the immune cells that were found in the monkeys’ lungs revealed that in both B 

and CD8+ T cells, the interferon alpha and gamma response pathways were enriched in the 

3-day group, in accordance with our finding of interferon gamma upregulation in CD8+ T cells 

from the human dataset and the evidence showing elevated interferon levels in the plasma of 

COVID-19 patients and its consequences on immune cells (Schultheiß et al., 2020; Speranza 

et al., 2021). In addition, both MYC targets pathways (V1 and V2) were found upregulated in 

the active infection (3-day) group of CD8+ T cells compared to control. We indeed expect to 

see upregulation of MYC targets in T cells, since MYC is known to be involved in T cell 

proliferation (Gnanaprakasam & Wang, 2017), and increased T cell proliferation occurs in 

COVID-19 patients’ lungs (Liao et al., 2020). To confirm this finding, we compared MYC 

expression in the control and active infection groups and found that average MYC expression 

3 days after infection was 89% higher than control (p < 0.0032, unpaired Wilcoxon test), 

strongly supporting SiPSiC’s finding. Furthermore, the inflammatory response pathway was 

also enriched in the 3-day group of CD8+ T cells, reflecting the anti-viral activity.  



SiPSiC also demonstrated the upregulation of the IL6/JAK/STAT3 signaling pathway in the 

active infection group of CD8+ T cells compared to control (FDR < 5.61 × 10−9), a finding 

supported by evidence for high levels of IL6 in the serum of COVID-19 patients even in 

relatively mild cases and increased IL6 secretion from epithelial cells infected with SARS-CoV-

2 (Han et al., 2020; Patra et al., 2020; Sanli et al., 2021). This is another example for SiPSiC’s 

potential to highlight therapeutically relevant pathways, as the IL6/JAK/STAT3 signaling 

pathway has been suggested as a therapeutic target for COVID-19 (Jafarzadeh et al., 2021). 

Similarly, the Notch signaling pathway was found upregulated in this group, although with 

borderline statistical significance (FDR < 0.034). Notch too has been suggested as a 

therapeutic target in COVID-19, as it is known to modulate the immune response and is 

involved in a positive feedback loop with IL6 expression in macrophages (Rizzo et al., 2020). 

This suggests that CD8+ T cells may exhibit the same feedback loop upon SARS-CoV-2 

infection, and that IL6 signaling could be moderated in these cells by inhibiting Notch signaling. 

  



Supplemental Note 2 - Comparison of SiPSiC pathway analysis of the glioblastoma 

dataset to the reported differential pathway activity from Garofano et al.: 

Garofano et al. classified the cells into four distinct cell clusters: glycolytic/plurimetabolic 

(GPM), mitochondrial (MTC), neural (NEU) and proliferative/progenitor (PPR) (Garofano et 

al., 2021). They found that the GPM and MTC clusters were enriched in cells of the MES- and 

AC-like cell states, respectively, while the PPR and NEU clusters were enriched in cells of 

both the OPC- and NPC-like states. Gene set enrichment of these clusters is reported for 40 

hallmark pathways, and we compared their results to SiPSiC’s. 31 out of the 40 pathways 

(78%) were consistent, in the sense that if a pathway was reported as upregulated in one of 

Garofano et al. cell clusters, SiPSiC also found it upregulated in the same cell state this cell 

cluster is enriched in. For instance, Garofano et al. reported that the DNA repair pathway was 

upregulated in the PPR cell cluster, which is enriched in both OPC- and NPC-like cells. Indeed, 

SiPSiC found this pathway was upregulated in both the OPC- and NPC-like cell states 

compared to both the AC- and MES-like states. Furthermore, out of the nine other pathways, 

eight were found by Garofano et al. to be enriched in the MTC cluster, hence we expected 

them to be upregulated in the AC-like cell state in our analysis. Seven of these pathways were 

found to be “near-consistent” in the sense that they were significantly upregulated in the AC-

like cell state compared to two of the other three cell states and insignificantly either up- (5 

pathways) or down-regulated (2 pathways) compared to the third other cell state, making 38 

of the 40 (95%) pathways reported by Garofano et al. either completely or near consistent in 

our SiPSiC analysis.  

The two remaining pathways are the hallmark Notch and mTORC1 signaling pathways. While 

Garofano et al. found that the MTC cluster was enriched in the hallmark Notch signaling 

pathway (reported FDR < 1.23 × 10-3), SiPSiC analysis found that it was upregulated in the 

OPC-like cell state (FDR < 0.0095). Although Neftel et al. did not report upregulation of Notch 

in any of the cell states, AUCell supported SiPSiC’s result finding Notch upregulation in the 

OPC-like cell state (Supplemental Table S4), but ssGSEA and VAM did not capture this. Prior 

research has shown that Notch signaling activation inhibits the maturation and may enhance 

the proliferation of oligodendrocyte progenitor cells (John et al., 2002; C. Wang et al., 2017; 

S. Wang et al., 1998), suggesting that Notch upregulation in OPC-like glioblastoma cells may 

play similar roles in the pathophysiology of the disease. Similarly, while Garofano et al. found 

that the mTORC1 signaling pathway was enriched in the PPR cluster (reported FDR < 1.26 × 

10-3) and Neftel et al. did not report its upregulation in any of the cell states, SiPSiC found that 

it was upregulated in the MES-like cell state (FDR < 3.1 × 10-75), supported by AUCell and 

VAM which also found the same (Supplemental Table S4). Prior research has shown that in 

epithelial cells, TGFB1-induced EMT both promotes and requires the activation of the 

PI3K/AKT/MTOR pathway, and more specifically activates the mTORC1 complex (Lamouille 



et al., 2014). The same has also been suggested for an EMT-like process in glioblastoma (Iser 

et al., 2017; Zhang et al., 2014). SiPSiC found upregulation of the PI3K/AKT/MTOR signaling 

pathway in the MES-like cell state (supported by AUCell and ssGSEA), in addition to the 

upregulation of the TGF beta signaling and EMT which were mentioned above (both supported 

by AUCell, ssGSEA and VAM, see Supplemental Table S4). Combined, these findings may 

well account for upregulation of the mTORC1 signaling in this cell state, supporting our finding 

over that reported by Garofano et al. for this pathway. 

  



Supplemental Note 3 - SiPSiC differential pathway analysis of the oligodendroglioma 

dataset: 

As further validation, we applied SiPSiC to a lower-grade oligodendroglioma scRNA-seq 

dataset (Tirosh et al., 2016). We compared SiPSiC scores of three subpopulations: 924 cancer 

stem cells (CSC), 1300 astrocyte-like cells and 1820 oligodendrocyte-like cells (Supplemental 

Table S5 and Supplemental Fig. S1C). SiPSiC identified upregulation of the G2/M checkpoint 

pathway in the CSC group (FDR < 3.3 × 10−12), consistent with the findings of Tirosh et al. 

Furthermore, SiPSiC identified other relevant differential pathways not reported in the original 

analysis. The Wnt/beta catenin signaling (FDR < 1.6 ×  10−6) and DNA repair pathways (FDR 

< 1.3 ×  10−6) were upregulated in the CSCs compared to the two other groups, consistent 

with evidence that Wnt signaling plays a central role in the maintenance of stem cells in several 

tissues and the stemness of glioma cells in particular (Fodde & Brabletz, 2007; Jin et al., 2011; 

Zheng et al., 2010) and that in glioma stem cells, activation of the DNA damage response 

confers radioresistance (Bao et al., 2006). Additionally, the CSC subpopulation showed 

upregulation of the E2F targets (FDR < 1.5 ×  10−26) and MYC targets pathways (FDR < 

4.9 ×  10−12 for MYC targets V1 and FDR < 0.0009 for MYC targets V2). MYC is more highly 

expressed in glioma CSCs compared to non-stem glioma cells, and knockdown of MYC 

reduces CSC proliferation and promotes apoptosis (J. Wang et al., 2008). Lymphoid-specific 

helicase (HELLS) activity is essential for glioblastoma stem cells and correlates with MYC and 

E2F targets (G. Zhang et al., 2019), suggesting SiPSiC captures elevated HELLS activity in 

CSCs. 

Furthermore, SiPSiC analysis suggested that the astrocyte-like cells in oligodendroglioma also 

harbor a mesenchymal phenotype. 20 out of 23 pathways (87%) that were upregulated in the 

MES-like glioblastoma cells mentioned above were also upregulated in the astrocyte-like cells 

of oligodendroglioma, including EMT, hypoxia, glycolysis, and several inflammation-related 

pathways, a significant overlap (p < 0.005, Fisher’s exact test). Similarly, all four pathways 

upregulated in the AC-like glioblastoma cells were also upregulated in the astrocyte-like cells 

of oligodendroglioma, providing further evidence of their astrocytic nature.  

  



Supplemental Methods - Clustering and cluster composition analysis: 

We started with all gene expression data provided in the glioblastoma 10x Genomics dataset 

published by Neftel et al. To distinguish between malignant and non-malignant cells, we first 

inferred malignant cell markers from the Smart-seq2 dataset according to the cell annotation 

provided by Neftel et al. Markers were calculated using the Seurat FindMarkers function with 

all parameters set to default, and the 10 genes with the highest fold change that passed the 

adjusted p < 0.01 threshold were selected as the final malignant markers. This resulted in the 

following genes: PTPRZ1, IGF2, FABP7, GPM6A, CHI3L1, EGFR, IGFBP3, BCAN, NNAT 

and PDGFRA. We then calculated for each cell in the 10x Genomics dataset the average 

expression (in log(TPM +1) units) of these 10 markers as well as the markers of T cells, 

macrophages and non-malignant oligodendrocytes provided by Neftel et al. We clustered all 

cells using the Louvain algorithm by applying the Seurat FindClusters function with a 0.5 

resolution using the first 15 principal components. This yielded 12 clusters, each showing 

either upregulation of malignant markers or markers of one of the non-malignant cell types. 

For downstream analysis we focused on the 9635 cells in the clusters marked as malignant.  

These cells were then clustered twice using Seurat (version 4.4.0) with identical parameters, 

first based on gene expression and second based on SiPSiC’s pathway scores. The first 15 

principal components were identified using RunPCA, and used to find the 20-nearest 

neighbors using FindNeighbors (with dims = 15). Cells were clustered by the Louvain 

algorithm as implemented in the FindClusters function with a resolution of 0.3. Differential 

pathways were identified in the pathway-based clustering, using the Wilcoxon rank sum test 

implemented in Seurat’s FindAllMarkers function, using parameters slot = counts, only.pos = 

true and logfc.threshold = 0.03. All UMAP projections were calculated by RunUMAP based on 

the first 15 principal components. 

We used the marker genes provided by Neftel et al. for each malignant meta-module to 

annotate the cells, using the Seurat addModuleScore function with ctrl = 50, assigning each 

cell to the meta-module with the maximal score. This annotation resulted in 2919 AC-like, 

2000 NPC-like1, 527 NPC-like2, 2869 MES-like1, 1148 MES-like2 and 172 OPC-like cells. 

Throughout the clustering section we used the terms NPC- or MES-like cells to refer to the 

combination NPC-like1 and NPC-like2 cells or MES-like1 and MES-like2 cells, respectively. 

To integrate the data for batch correction using Seurat we implemented the standard Seurat 

integration pipeline. We started by finding the 2000 most variable genes in each patient’s 

normalized data using the SplitObject, NormalizeData and FindVariableFeatures functions, 

then detected the relevant features for integration using the SelectIntegrationFeatures and 

FindIntegrationAnchors functions with default values. Lastly, we integrated the data by 

executing the IntegrateData function with k.weight = 70. We then clustered the cells using the 

same functions and parameters described above for the clustering based on SiPSiC scores. 



To apply the scVI integration method, we followed the scVI documentation and used the raw 

counts of the same 10x Genomics dataset rather than the TPM values we used in all other 

integration methods. Integration was applied using the Python package scVI-tools, version 

1.1.2, and Python version 3.9.18. We first selected the 2000 most variable genes using the 

FindVariableFeatures function, then followed the standard scVI pipeline by calling the 

setup_anndata function with batch_key set to the patient identity as well as the scVI and train 

functions to create and train the model required for integration. We proceeded with calling the 

get_latent_representation function then the Seurat CreateDimReducObject, and finally 

executed the FindNeighbors and RunUMAP functions with dims = 1:10 and the scVI reduction 

as input for the reduction parameter, as instructed by the scVI documentation. For the 

Harmony integration we used the R harmony package version 1.2.0. We executed the 

RunHarmony function with the patient identity variable name as input and all other values set 

to default. We then clustered the cells using the same functions and parameters described 

above for the clustering based on SiPSiC scores. 
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