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Supplemental Fig. S1: SIPSIC detects differential pathway activity of malignant subclones
across cancer types. (A) Heatmap depicting Z-scores of SiPSiC scores of the 20 most
differential hallmark pathways in lung adenocarcinoma. Pathways are sorted by significance
of differential scores, cells in each cell group are sorted by their average Z-score across all
shown pathways. Pathway names mentioned in the text are colored red. (B) Heatmap
depicting Z-scores of SiPSIC scores of all differential hallmark pathways (FDR < 0.01) in
glioblastoma. Pathways upregulated in each group are sorted by significance of differential
scores, cells in each cell group are sorted by their average Z-score across all pathways
upregulated in that group. Pathway names mentioned in the text are in red. (C) Heatmap
depicting Z-scores of SiPSIC scores of all differential hallmark pathways (FDR < 0.01) in
oligodendroglioma. Pathways upregulated in each group are sorted by significance of
differential scores, cells in each cell group are sorted by their average Z-score across all

pathways upregulated in that group. Pathway names mentioned in the text are in red.
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Supplemental Fig. S2: SiPSiC’s ability to overcome patient batch effects is comparable to
explicit batch correction methods. (A-C) UMAP projections based on gene expression,
SiPSIC scores, Seurat Integration, Harmony and scVI, as shown in the titles on top. (A) Cells
were clustered by Louvain algorithm according to gene expression, SiPSiC scores, Seurat
Integration, Harmony and scVI, as shown in the titles on top, UMAPs show cells colored by
cluster. (B) Cells colored by patient identity. (C) Cells colored by malignant meta-module
assignment.
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SARS-CoV-2 infected monkeys. Violin plots showing normalized pathway scores distribution

of the MYC targets pathways for the monkey CD8* T cells, as calculated by the four different

methods. Significant results (FDR < 0.01) are in red.



Supplemental Note 1 - SiPSiC differential pathway analysis of the African green
monkey COVID-19 dataset:

In the African green monkey experiment, two monkeys were inoculated with inactivated SARS-
CoV-2 (henceforth referred to as control) and eight with the active virus (Speranza et al.,
2021). To better study the dynamics of viral infection, these eight monkeys were then split into
two groups of four monkeys each and euthanized three (first group) or ten (second group)
days post inoculation; the monkeys in the 10-day group had already recovered by the 10" day.
Hence, we focused on comparing the active infection (3-day) to the control after calculating
the pathway scores per cell type (Methods). Complete results of all three groups can be found
in Supplemental Table S2.

Analysis of this dataset provided support for pathways that were found upregulated from all
three categories. We found 20 upregulated and 3 downregulated pathways in alveolar cells
(Figure 1B). Here too the cells in the active infection group were enriched in the interferon
alpha and gamma response, complement, E2F targets and apoptosis pathways relative to
both other groups (Supplemental Table S2), supporting our findings from the analysis of
human alveolar cells. In addition, most of the pathways showing therapeutic potential that
were found upregulated in the COVID-19 group of alveolar cells in the human dataset were
also upregulated in the alveolar cells of the active infection group in the monkey dataset,
compared to control. These are the DNA repair, mTORC1 and PI3K/AKT/MTOR signaling,
glycolysis, reactive oxygen species and unfolded protein response pathways. Out of all these
pathways, only interferon signaling was identified by Speranza et al., further highlighting
SiPSiC’s high sensitivity.

Analysis of the immune cells that were found in the monkeys’ lungs revealed that in both B
and CD8" T cells, the interferon alpha and gamma response pathways were enriched in the
3-day group, in accordance with our finding of interferon gamma upregulation in CD8* T cells
from the human dataset and the evidence showing elevated interferon levels in the plasma of
COVID-19 patients and its consequences on immune cells (Schultheil et al., 2020; Speranza
et al., 2021). In addition, both MYC targets pathways (V1 and V2) were found upregulated in
the active infection (3-day) group of CD8" T cells compared to control. We indeed expect to
see upregulation of MYC targets in T cells, since MYC is known to be involved in T cell
proliferation (Gnanaprakasam & Wang, 2017), and increased T cell proliferation occurs in
COVID-19 patients’ lungs (Liao et al., 2020). To confirm this finding, we compared MYC
expression in the control and active infection groups and found that average MYC expression
3 days after infection was 89% higher than control (p < 0.0032, unpaired Wilcoxon test),
strongly supporting SiPSiC’s finding. Furthermore, the inflammatory response pathway was

also enriched in the 3-day group of CD8* T cells, reflecting the anti-viral activity.



SiPSIC also demonstrated the upregulation of the IL6/JAK/STAT3 signaling pathway in the
active infection group of CD8* T cells compared to control (FDR < 5.61 x 10~°), a finding
supported by evidence for high levels of IL6 in the serum of COVID-19 patients even in
relatively mild cases and increased IL6 secretion from epithelial cells infected with SARS-CoV-
2 (Han et al., 2020; Patra et al., 2020; Sanli et al., 2021). This is another example for SiPSiC’s
potential to highlight therapeutically relevant pathways, as the IL6/JAK/STAT3 signaling
pathway has been suggested as a therapeutic target for COVID-19 (Jafarzadeh et al., 2021).
Similarly, the Notch signaling pathway was found upregulated in this group, although with
borderline statistical significance (FDR < 0.034). Notch too has been suggested as a
therapeutic target in COVID-19, as it is known to modulate the immune response and is
involved in a positive feedback loop with IL6 expression in macrophages (Rizzo et al., 2020).
This suggests that CD8* T cells may exhibit the same feedback loop upon SARS-CoV-2
infection, and that IL6 signaling could be moderated in these cells by inhibiting Notch signaling.



Supplemental Note 2 - Comparison of SiPSiC pathway analysis of the glioblastoma
dataset to the reported differential pathway activity from Garofano et al.:

Garofano et al. classified the cells into four distinct cell clusters: glycolytic/plurimetabolic
(GPM), mitochondrial (MTC), neural (NEU) and proliferative/progenitor (PPR) (Garofano et
al., 2021). They found that the GPM and MTC clusters were enriched in cells of the MES- and
AC-like cell states, respectively, while the PPR and NEU clusters were enriched in cells of
both the OPC- and NPC-like states. Gene set enrichment of these clusters is reported for 40
hallmark pathways, and we compared their results to SiPSiC’s. 31 out of the 40 pathways
(78%) were consistent, in the sense that if a pathway was reported as upregulated in one of
Garofano et al. cell clusters, SiPSIC also found it upregulated in the same cell state this cell
cluster is enriched in. For instance, Garofano et al. reported that the DNA repair pathway was
upregulated in the PPR cell cluster, which is enriched in both OPC- and NPC-like cells. Indeed,
SIPSIC found this pathway was upregulated in both the OPC- and NPC-like cell states
compared to both the AC- and MES-like states. Furthermore, out of the nine other pathways,
eight were found by Garofano et al. to be enriched in the MTC cluster, hence we expected
them to be upregulated in the AC-like cell state in our analysis. Seven of these pathways were
found to be “near-consistent” in the sense that they were significantly upregulated in the AC-
like cell state compared to two of the other three cell states and insignificantly either up- (5
pathways) or down-regulated (2 pathways) compared to the third other cell state, making 38
of the 40 (95%) pathways reported by Garofano et al. either completely or near consistent in
our SiPSIC analysis.

The two remaining pathways are the hallmark Notch and mTORC1 signaling pathways. While
Garofano et al. found that the MTC cluster was enriched in the hallmark Notch signaling
pathway (reported FDR < 1.23 x 10?), SiPSiC analysis found that it was upregulated in the
OPC-like cell state (FDR < 0.0095). Although Netftel et al. did not report upregulation of Notch
in any of the cell states, AUCell supported SiPSiC’s result finding Notch upregulation in the
OPC-like cell state (Supplemental Table S4), but ssGSEA and VAM did not capture this. Prior
research has shown that Notch signaling activation inhibits the maturation and may enhance
the proliferation of oligodendrocyte progenitor cells (John et al., 2002; C. Wang et al., 2017;
S. Wang et al., 1998), suggesting that Notch upregulation in OPC-like glioblastoma cells may
play similar roles in the pathophysiology of the disease. Similarly, while Garofano et al. found
that the mTORCL1 signaling pathway was enriched in the PPR cluster (reported FDR < 1.26 x
10%) and Neftel et al. did not report its upregulation in any of the cell states, SiPSiC found that
it was upregulated in the MES-like cell state (FDR < 3.1 x 107°), supported by AUCell and
VAM which also found the same (Supplemental Table S4). Prior research has shown that in
epithelial cells, TGFBl-induced EMT both promotes and requires the activation of the

PIBK/AKT/MTOR pathway, and more specifically activates the mTORC1 complex (Lamouille



et al., 2014). The same has also been suggested for an EMT-like process in glioblastoma (Iser
et al., 2017; Zhang et al., 2014). SiPSiC found upregulation of the PI3K/AKT/MTOR signaling
pathway in the MES-like cell state (supported by AUCell and ssGSEA), in addition to the
upregulation of the TGF beta signaling and EMT which were mentioned above (both supported
by AUCell, ssGSEA and VAM, see Supplemental Table S4). Combined, these findings may
well account for upregulation of the mTORCL1 signaling in this cell state, supporting our finding

over that reported by Garofano et al. for this pathway.



Supplemental Note 3 - SiPSiC differential pathway analysis of the oligodendroglioma
dataset:

As further validation, we applied SiPSIiC to a lower-grade oligodendroglioma scRNA-seq
dataset (Tirosh et al., 2016). We compared SiPSiC scores of three subpopulations: 924 cancer
stem cells (CSC), 1300 astrocyte-like cells and 1820 oligodendrocyte-like cells (Supplemental
Table S5 and Supplemental Fig. S1C). SiPSiC identified upregulation of the G2/M checkpoint
pathway in the CSC group (FDR < 3.3 x 107'2), consistent with the findings of Tirosh et al.
Furthermore, SiPSIC identified other relevant differential pathways not reported in the original
analysis. The Wnt/beta catenin signaling (FDR < 1.6 x 107%) and DNA repair pathways (FDR
< 1.3 x 107°) were upregulated in the CSCs compared to the two other groups, consistent
with evidence that Wnt signaling plays a central role in the maintenance of stem cells in several
tissues and the stemness of glioma cells in particular (Fodde & Brabletz, 2007; Jin et al., 2011,
Zheng et al., 2010) and that in glioma stem cells, activation of the DNA damage response
confers radioresistance (Bao et al., 2006). Additionally, the CSC subpopulation showed
upregulation of the E2F targets (FDR < 1.5 x 1072%) and MYC targets pathways (FDR <
4.9 x 10~ for MYC targets V1 and FDR < 0.0009 for MYC targets V2). MYC is more highly
expressed in glioma CSCs compared to non-stem glioma cells, and knockdown of MYC
reduces CSC proliferation and promotes apoptosis (J. Wang et al., 2008). Lymphoid-specific
helicase (HELLS) activity is essential for glioblastoma stem cells and correlates with MYC and
E2F targets (G. Zhang et al., 2019), suggesting SiPSiC captures elevated HELLS activity in
CSCs.

Furthermore, SiPSiC analysis suggested that the astrocyte-like cells in oligodendroglioma also
harbor a mesenchymal phenotype. 20 out of 23 pathways (87%) that were upregulated in the
MES-like glioblastoma cells mentioned above were also upregulated in the astrocyte-like cells
of oligodendroglioma, including EMT, hypoxia, glycolysis, and several inflammation-related
pathways, a significant overlap (p < 0.005, Fisher’'s exact test). Similarly, all four pathways
upregulated in the AC-like glioblastoma cells were also upregulated in the astrocyte-like cells

of oligodendroglioma, providing further evidence of their astrocytic nature.



Supplemental Methods - Clustering and cluster composition analysis:

We started with all gene expression data provided in the glioblastoma 10x Genomics dataset
published by Neftel et al. To distinguish between malignant and non-malignant cells, we first
inferred malignant cell markers from the Smart-seg2 dataset according to the cell annotation
provided by Neftel et al. Markers were calculated using the Seurat FindMarkers function with
all parameters set to default, and the 10 genes with the highest fold change that passed the
adjusted p < 0.01 threshold were selected as the final malignant markers. This resulted in the
following genes: PTPRZ1, IGF2, FABP7, GPM6A, CHI3L1, EGFR, IGFBP3, BCAN, NNAT
and PDGFRA. We then calculated for each cell in the 10x Genomics dataset the average
expression (in log(TPM +1) units) of these 10 markers as well as the markers of T cells,
macrophages and non-malignant oligodendrocytes provided by Neftel et al. We clustered alll
cells using the Louvain algorithm by applying the Seurat FindClusters function with a 0.5
resolution using the first 15 principal components. This yielded 12 clusters, each showing
either upregulation of malignant markers or markers of one of the non-malignant cell types.
For downstream analysis we focused on the 9635 cells in the clusters marked as malignant.
These cells were then clustered twice using Seurat (version 4.4.0) with identical parameters,
first based on gene expression and second based on SiPSiC’s pathway scores. The first 15
principal components were identified using RunPCA, and used to find the 20-nearest
neighbors using FindNeighbors (with dims = 15). Cells were clustered by the Louvain
algorithm as implemented in the FindClusters function with a resolution of 0.3. Differential
pathways were identified in the pathway-based clustering, using the Wilcoxon rank sum test
implemented in Seurat’s FindAllMarkers function, using parameters slot = counts, only.pos =
true and logfc.threshold = 0.03. All UMAP projections were calculated by RunUMAP based on
the first 15 principal components.

We used the marker genes provided by Neftel et al. for each malignant meta-module to
annotate the cells, using the Seurat addModuleScore function with ctrl = 50, assigning each
cell to the meta-module with the maximal score. This annotation resulted in 2919 AC-like,
2000 NPC-likel, 527 NPC-like2, 2869 MES-likel, 1148 MES-like2 and 172 OPC-like cells.
Throughout the clustering section we used the terms NPC- or MES-like cells to refer to the
combination NPC-likel and NPC-like2 cells or MES-likel and MES-like2 cells, respectively.
To integrate the data for batch correction using Seurat we implemented the standard Seurat
integration pipeline. We started by finding the 2000 most variable genes in each patient’s
normalized data using the SplitObject, NormalizeData and FindVariableFeatures functions,
then detected the relevant features for integration using the SelectintegrationFeatures and
FindintegrationAnchors functions with default values. Lastly, we integrated the data by
executing the IntegrateData function with k.weight = 70. We then clustered the cells using the

same functions and parameters described above for the clustering based on SiPSiC scores.



To apply the scVI integration method, we followed the scVI documentation and used the raw
counts of the same 10x Genomics dataset rather than the TPM values we used in all other
integration methods. Integration was applied using the Python package scVI-tools, version
1.1.2, and Python version 3.9.18. We first selected the 2000 most variable genes using the
FindVariableFeatures function, then followed the standard scVI pipeline by calling the
setup_anndata function with batch_key set to the patient identity as well as the scVI and train
functions to create and train the model required for integration. We proceeded with calling the
get_latent_representation function then the Seurat CreateDimReducObject, and finally
executed the FindNeighbors and RunUMAP functions with dims = 1:10 and the scVI reduction
as input for the reduction parameter, as instructed by the scVI documentation. For the
Harmony integration we used the R harmony package version 1.2.0. We executed the
RunHarmony function with the patient identity variable name as input and all other values set
to default. We then clustered the cells using the same functions and parameters described

above for the clustering based on SiPSIiC scores.
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