
Supplemental Note S1. Preservation of diffusion distances reveals a single trajectory of 
parathyroid cells. 

In single-cell transcriptomics, many analysis tools have been designed to embed individual cells 
into two-dimensions such that cells with similar expression are positioned close together [1-11]. 
PHATE [12] captures both local and global nonlinear structure using an information-geometric 
distance between data points. To do this, PHATE applies a diffusion framework popularized by 
diffusion maps [13]. Kobak and Linderman [14] have recently shown that difference in 
preservation of global structure between t-SNE and UMAP can be attributed to initialization with 
Laplacian eigenmaps [15], which are equivalent to diffusion maps for a symmetric normalized 
Markov matrix like in single-cell data. 

To corroborate our findings in the paper, we show that visualization of the NHP parathyroid cells 
by the first two Laplacian eigenvectors captures the main axis of variation, which corresponds to 
a single trajectory. Visualization with UMAP and t-SNE using diffusion distances also identifies a 
single axis along which PTH changes nonlinearly. 
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