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Custom Cellpose Training

We used the deep learning-based segmentation software (Cellpose)(Stringer et al.
2021) to segment the mononuclear cells (MNCs) and nuclei. Mononuclear cell segmentation
was performed using a combined DAPI (stains nuclei/chromosome) and cell boundary staining
(stains cytoplasm) image, with cell boundary staining in the green channel and DAPI in the
blue channel. We took the maximum projection over the images of 7 layers across the depth
direction (10 um interval in between) to obtain the largest extension of the MNCs and nuclei
footprint. During segmentation, the diameter parameter of Cellpose was set as 24 pixels
(~26pm) which is close to the averaged diameter across the MNCs across samples. Using
Cellpose’s model training utility, we built a custom cell detection model based on the native
“CP” model to perform cell segmentation. Nuclei segmentation was performed using only the
DAPI images. We again took the maximum projection of the 7 layers to obtain the largest
possible nuclei footprint across depth. The diameter parameter was set as 16 pixels (~17um),
and a custom nuclei detection model trained with Cellpose’s training utility (also based on
“CP”) was used for detection.

To train the custom models, we first generated a 1500 * 1500 pixel (1 pixel ~ 1um)
image that contains the representative mononuclear cells (MNCs) and nuclei by visual
inspection. This image has cell boundary staining in green channel and DAPI-labeled nuclei
in blue channel. To train the custom MNC segmentation model, we Use the cellpose GUI
software to automatically segment the sample image with the “CP” option selected in the
“‘model zoo” section. CP is one of the basic fluorescence cell segmentation model included in
cellpose. After the automatic segmentation, we use the GUI's manual cell selection utility to

select MNCs that was not detected by the algorithm, and remove false detections. We next



save the selection result in a temporary folder and use the “train new models with
image+masks in folder” in the “model” drop down menu to train the custom model. The custom
model was tested on the sample image using the utilities in the “custom model” section in the
GUL. If there were still missing MNCs or falsely selected MNCs, we manually fixed the
selection, saved the fixed selection results and train the custom model again.

To train the nucleus segmentation model, we used a similar protocol above and also
used the “CP” model as base model. The difference is that we only use the blue channel of
the sample image for automatic segmentations and manual selection fix.

For the final MNC and nuclei segmentation model, we examine their performance
with the nine example patches shown in supplemental Figure 1. For MNC selection, we
exclude all MNC selections that within our manually selected myotube regions. For the
remaining MNCs, two types of false positives are noted: part of the multi-nuclei cells are
selected as a MNC, or the complete multi-nuclei cell labeled as MNC. For nuclei selection,
false positives come from composites that contain multiple nuclei, or over segment one nuclei
into two.

Based on these observations, we define model sensitivity as the ratio between the
number of automatically detected correct MNC (or nuclei), and the total manually counted
number of correct MNC (or nuclei). We also define model accuracy as the ratio between the
false positive MNC (or nuclei) detection, and the total automatically detected MNC (or nuclei).
For MNCs, we manually added additional MNCs (false negatives) based on visual inspection.
For nuclei that are compactly gathered and not detected by the algorithm, we inferred the

boundaries of individual nuclei with both visual inspection on the staining and the



transcriptomic density. Overall, across the 10 sample regions the sensitivity for MNC is 0.858

+ 0.039, sensitivity for nuclei is 0.989 £ 0.007, the accuracy for MNC is 0.976+0.007, and the

accuracy for nuclei is 0.986 + 0.003.

After training and validation, the segmentation process on the remaining ROIls was

automatic and no manual intervention was included. Final segmentation results were

presented as a mask containing individual MNCs or nuclei footprints. Based on the masks, we

calculated the boundaries of MNCs and nuclei, then determined the transcripts inside based

on their spatial coordinates given by the MERFISH system.

Unsupervised clustering of mononuclear cells and nuclei

MNCs or nuclei across all samples were pooled together for clustering analysis.

Unsupervised clustering was performed using the R package Scrattch.hicat (Tasic et al.

2018)(https://github.com/Alleninstitute/scrattch.hicat). This package performs iterative

clustering on the dataset based on differential gene expression profiles, and making

successive finer splits until no more child clusters fulfilled the predefined differential expression

criteria(Tasic et al. 2018) are detected. In this study, we focused on adjusting the following

parameters: q.diff.th and de.score.th. For a group of cells that are going to be separated into

two clusters, one cluster is named “foreground” which contains most of the cells expressing

the up-regulated genes, and the other is named “background”, q.diff.th represent a threshold

that helps determine whether foreground and background are established based on the

proposition of cells showing high expression levels of the up-regulated genes. De.score.th, on

the other hand, helps to determine whether foreground and background are separable by

overall differential gene expression. We aimed to maximize both parameters while ensuring



the interpretability of the resulting clusters. The final parameters for all nuclei were q.
diff.th=0.55, de.score.th=200; for MNCs, the parameters are q.diff.th=0.18, de.score.th=111.
To improve the robustness of our clustering results, we further performed consensus
clustering by performing the above clustering process (with the same parameters) using a
random subsample of 80% of cells and repeating for 100 times, followed by final clustering
based on the co-clustering probability matrix using Louvain clustering algorithm(Tasic et al.

2018).

Identification of myotube clusters

Transcripts counts of single myotube and non-myotube region were normalized using
a similar method to “LogNormalize” in Seurat, except the data were divided by the
corresponding area, but not the total counts of genes of the region. The normalized data from
different batches were converted and merged into a Seurat object. The first the top 20 highly
variable genes were identified with “FindVariableFeatures” function using the “vst” method.
The expression data corresponding to these features were scaled using the “ScaleData”
function and used to carry out principal component (PC) analysis. The batch effects were
observed, so we ran Harmony for batch correction with “RunHarmony” function. To cluster the

data, we applied Seurat’s “FindNeighbors” using 10 dimensions from the Harmony-corrected
reduced dimensions, followed by “FindClusters” at resolution 0.5. For the UMAP
representation, we applied the “RunUMAP” from the Seurat to the selected PCs. Seurat-4.1.3,

harmony-0.1.1 and standard R packages-4.2.1 were used.

Differential expression analysis



Differential expression analyses of transcripts were conducted with Bioconductor
package DESeq2 (v1.36.0) (Love et al. 2014). To control the high statistical power brought by
a large number of cells from samples, pseudobulk was calculated for each sample by
separately aggregating MNCs, nuclei, and myotubes/non-myotube regions. For MNCs and
nuclei, pseudobulk profiles were aggregated by summing up all the intra-cell (or intra-nuclei)
raw transcript counts of each sample, with or without separated by the clusters determined in
the unsupervised clustering step. For myotubes and non-myotube regions, pseudobulk
profiles were aggregated by summing up the raw transcript counts across all myotubes (or
non-myotube regions) of each sample. In the final analysis results, p-value was adjusted using
BH algorithm.

For differential expression analysis between myotube and non-myotube regions, due
to the concern that myotube and non-myotube regions covers large areas and thus are more
subject to background noise compared to nuclei and MNC regions, we applied a gene count
threshold based on the intra myotube (non-myotube region) blank gene counts for each
genotype, and only use the genes with average intra-myotube (non-myotube region) gene
counts higher than blank gene counts for differential gene analysis (Supplemental Figure 7C-
E).

Pseudotime analysis

To obtain a batch-effect-corrected gene expression matrix for downstream analysis, we
utilized Seurat(Hao et al. 2021) to compute the integration anchors (FindIntegrationAnchors)
of the area normalized MERFISH data, and then integrated (IntegrateData) the batches using

these anchors. This corrected Seurat object was used as inputs to create a Monocle(Trapnell



et al. 2014; Qiu et al. 2017; Cao et al. 2019) newCellDataSet. Differential expression between
clusters was calculated using “differentialGeneTest” function in Monocle. Differential
expression between clusters was calculated using “differentialGeneTest” function in Monocle.
“‘DDRTree” method was used for dimensionality reduction, and the pseudotime trajectory plot
was generated using the “plot_cell_trajectory” function.

Co-expressed transcript module analysis

For the single myotube MERFISH data, the gene co-expression network analysis was
performed using the R package WGCNA (v.1.72.1) (Langfelder and Horvath 2008). Genes
are not always informative for co-expression or modules detection as their expression can be
linked to technical biases(Lemoine et al. 2021). We removed genes with low variation between
pairwise samples (p > 0.05) in the differential expression test of Monocle
(differentialGeneTest).

We next tested the blanks genes (Decoding barcodes not linked to a gene), which work
as false positive misidentification controls, and found that the background level counts may
cause technical biases. To avoid the biased background noise effect, we set up a threshold
for the area normalized and batch corrected MERFISH data based on the blanks’ values. The
genes whose values are higher than 0.015 in at least 30 myotubes were kept for WGCNA
analysis. The function "TOMsimilarityFromExpr" was used to calculate the TOM similarity
matrix, then "flashClust" function of package flashClust (v.1.2.3) was applied for cluster
analysis. The "cutreeDynamic" function was used to identify the modules consisting of groups
of genes with higher value of the connection strength and shared functions. Both networkType

and TOMType were set as "unsigned". The soft-thresholding power, cut height, and minimal



module size were set as 4, 0.94, and 8, for non-DUX4 target genes respectively. Intramodular
connectivity, which is defined as the sum of a gene’s connection strengths within the same
module, was calculated by the function "intramodularConnectivity".

We performed gene set enrichment analysis of genes in the modules using the online
tool gProfiler(Reimand et al. 2007). GO analyses for molecular function cellular component
biological process were carried out sequentially, followed by pathway enrichment utilizing the
KEGG, Reactome, and WikiPathways databases. The statistical domain scope was used for
the analyzed non-DUX4 target genes as custom background. The significance threshold is
the g:SCS threshold. The user threshold is 0.05. Cluster analysis of the DUX4 target genes in
the FSHD1 and DEL5 myotubes were done similarly, with the soft-thresholding power, cut
height, and minimal module size set as 4, 0.8, and 3. Their module tree plots were generated
by "plotDendroAndColors" fuction in WGCNA package. The fourth power of correlation,
accompanied by its corresponding positive or negative sign, of DUX4 target genes and

selected non-DUX4 target genes were visualized using Cytoscape 3.9.1 software.

Linear mixed effect modeling

Linear mixed-effect modeling (LME) is used to address the repeated measurement
issues that occur when doing statistical tests with multiple items from the same sample (for
example, multiple myotubes come from the same sample in Figure 2 1,J). The LME model
utilizes linear regression to estimate the difference between variables by examining
the significance of regression coefficients. Importantly, it (“fitlme” in MATLAB) introduces the
concept of “fixed effect” and “random effect”. “Fixed effect” represents the parameters that do

not vary during the linear regression, and practically, represent the actual variables that to be



tested. “Random effect” represents random variables that have impact the “fixed effect”, and
practically, often represent the groupings of the “fixed effect” variables(Yu et al. 2022). The
model will represent the data in the following format:
y=XB+Zu+e

In which y is the measured data from the experiment (for example, nuclei counts in each
myotube), X represent the “fixed effect” variable that going to be tested (for example,
genotypes of each myotube in y), Z is the “random effect” variable (for example, the sample
each myotube in y comes from), and ¢ is the residual error(Yu et al. 2022). The significance
of the regression variable 3 will be used as the statistical test result and the significance level
is p < 0.05. Compared with a paired t-test or repeated measures ANOVA, LME can handle
unbalanced designs and missing values, and has greater statistical power in the presence of

missing values(Stobart et al. 2018; Indersmitten et al. 2019; Yu et al. 2022).
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