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Reagents 

Reagent or resource Source Product ID Online links 

DMEM, high glucose 
ThermoFisher 
Scientific 

11965092 
https://www.thermofisher.com
/order/catalog/product/11965
092  

Fetal bovine serum (FBS) 
Omega 
Scientific, Inc. 

FB-02 

https://omegascientific.com/pr
oduct/fetal-bovine-serum-
usda-certified-heat-
inactivated/  

Penicillin-Streptomycin 
(10,000 U/mL) 

ThermoFisher 
Scientific 

15140122 
https://www.thermofisher.com
/order/catalog/product/15140
122  

Ultroser™ G serum 
substitute 

Crescent 
Chemical Co. 

67042 
http://www.creschem.com/ultr
oser-g-list.aspx  

TrypLE™ Express Enzyme 
(1X), phenol red 

ThermoFisher 
Scientific 

12605010 
https://www.thermofisher.com
/order/catalog/product/12605
010  

ITS 
ThermoFisher 
Scientific 

51300044 
https://www.thermofisher.com
/order/catalog/product/51300
044 

Alt-R S.p. HiFi Cas9 
Nuclease V3 

IDT 1081060 
https://www.idtdna.com/page
s/products/crispr-genome-
editing/alt-r-crispr-enzymes 

Alt-R CRISPR-Cas9 
tracrRNA 

IDT 1073190 

https://www.idtdna.com/page
s/products/crispr-genome-
editing/alt-r-crispr-cas9-
system 

    
MERSCOPE 140 gene 
panel, VZG170 

Vizgen, Inc. 10400001 
https://vizgen.com/reagents-
and-consumables/  

MERSCOPE Sample 
Preparation Kit 

Vizgen, Inc 10400012 
https://vizgen.com/reagents-
and-consumables/  

MERSCOPE Cell Boundary 
Stain Kit 

Vizgen, Inc 10400118 
https://vizgen.com/reagents-
and-consumables/  

MERSCOPE Non-Beaded 
Slides 

Vizgen, Inc 10500002 
https://vizgen.com/reagents-
and-consumables/ 

MERSCOPE 140-gene 
imaging kit 

Vizgen, Inc 10400004 
https://vizgen.com/reagents-
and-consumables/ 
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Custom Cellpose Training 

We used the deep learning-based segmentation software (Cellpose)(Stringer et al. 

2021) to segment the mononuclear cells (MNCs) and nuclei. Mononuclear cell segmentation 

was performed using a combined DAPI (stains nuclei/chromosome) and cell boundary staining 

(stains cytoplasm) image, with cell boundary staining in the green channel and DAPI in the 

blue channel. We took the maximum projection over the images of 7 layers across the depth 

direction (10 µm interval in between) to obtain the largest extension of the MNCs and nuclei 

footprint. During segmentation, the diameter parameter of Cellpose was set as 24 pixels 

(~26µm) which is close to the averaged diameter across the MNCs across samples. Using 

Cellpose’s model training utility, we built a custom cell detection model based on the native 

“CP” model to perform cell segmentation. Nuclei segmentation was performed using only the 

DAPI images. We again took the maximum projection of the 7 layers to obtain the largest 

possible nuclei footprint across depth. The diameter parameter was set as 16 pixels (~17µm), 

and a custom nuclei detection model trained with Cellpose’s training utility (also based on 

“CP”) was used for detection.  

 To train the custom models, we first generated a 1500 * 1500 pixel (1 pixel ~ 1µm) 

image that contains the representative mononuclear cells (MNCs) and nuclei by visual 

inspection. This image has cell boundary staining in green channel and DAPI-labeled nuclei 

in blue channel. To train the custom MNC segmentation model, we Use the cellpose GUI 

software to automatically segment the sample image with the “CP” option selected in the 

“model zoo” section. CP is one of the basic fluorescence cell segmentation model included in 

cellpose. After the automatic segmentation, we use the GUI’s manual cell selection utility to 

select MNCs that was not detected by the algorithm, and remove false detections. We next 



save the selection result in a temporary folder and use the “train new models with 

image+masks in folder” in the “model” drop down menu to train the custom model. The custom 

model was tested on the sample image using the utilities in the “custom model” section in the 

GUI. If there were still missing MNCs or falsely selected MNCs, we manually fixed the 

selection, saved the fixed selection results and train the custom model again. 

 To train the nucleus segmentation model, we used a similar protocol above and also 

used the “CP” model as base model. The difference is that we only use the blue channel of 

the sample image for automatic segmentations and manual selection fix. 

 For the final MNC and nuclei segmentation model, we examine their performance 

with the nine example patches shown in supplemental Figure 1. For MNC selection, we 

exclude all MNC selections that within our manually selected myotube regions. For the 

remaining MNCs, two types of false positives are noted: part of the multi-nuclei cells are 

selected as a MNC, or the complete multi-nuclei cell labeled as MNC. For nuclei selection, 

false positives come from composites that contain multiple nuclei, or over segment one nuclei 

into two.  

 Based on these observations, we define model sensitivity as the ratio between the 

number of automatically detected correct MNC (or nuclei), and the total manually counted 

number of correct MNC (or nuclei). We also define model accuracy as the ratio between the 

false positive MNC (or nuclei) detection, and the total automatically detected MNC (or nuclei). 

For MNCs, we manually added additional MNCs (false negatives) based on visual inspection. 

For nuclei that are compactly gathered and not detected by the algorithm, we inferred the 

boundaries of individual nuclei with both visual inspection on the staining and the 



transcriptomic density. Overall, across the 10 sample regions the sensitivity for MNC is 0.858 

± 0.039, sensitivity for nuclei is 0.989 ± 0.007, the accuracy for MNC is 0.976±0.007, and the 

accuracy for nuclei is 0.986 ± 0.003. 

 After training and validation, the segmentation process on the remaining ROIs was 

automatic and no manual intervention was included. Final segmentation results were 

presented as a mask containing individual MNCs or nuclei footprints. Based on the masks, we 

calculated the boundaries of MNCs and nuclei, then determined the transcripts inside based 

on their spatial coordinates given by the MERFISH system.  

Unsupervised clustering of mononuclear cells and nuclei  

MNCs or nuclei across all samples were pooled together for clustering analysis. 

Unsupervised clustering was performed using the R package Scrattch.hicat (Tasic et al. 

2018)(https://github.com/AllenInstitute/scrattch.hicat). This package performs iterative 

clustering on the dataset based on differential gene expression profiles, and making 

successive finer splits until no more child clusters fulfilled the predefined differential expression 

criteria(Tasic et al. 2018) are detected. In this study, we focused on adjusting the following 

parameters: q.diff.th and de.score.th. For a group of cells that are going to be separated into 

two clusters, one cluster is named “foreground” which contains most of the cells expressing 

the up-regulated genes, and the other is named “background”, q.diff.th represent a threshold 

that helps determine whether foreground and background are established based on the 

proposition of cells showing high expression levels of the up-regulated genes. De.score.th, on 

the other hand, helps to determine whether foreground and background are separable by 

overall differential gene expression. We aimed to maximize both parameters while ensuring 



the interpretability of the resulting clusters. The final parameters for all nuclei were q. 

diff.th=0.55, de.score.th=200; for MNCs, the parameters are q.diff.th=0.18, de.score.th=111. 

To improve the robustness of our clustering results, we further performed consensus 

clustering by performing the above clustering process (with the same parameters) using a 

random subsample of 80% of cells and repeating for 100 times, followed by final clustering 

based on the co-clustering probability matrix using Louvain clustering algorithm(Tasic et al. 

2018).  

 

Identification of myotube clusters 

Transcripts counts of single myotube and non-myotube region were normalized using 

a similar method to “LogNormalize” in Seurat, except the data were divided by the 

corresponding area, but not the total counts of genes of the region. The normalized data from 

different batches were converted and merged into a Seurat object. The first the top 20 highly 

variable genes were identified with “FindVariableFeatures” function using the “vst” method. 

The expression data corresponding to these features were scaled using the “ScaleData” 

function and used to carry out principal component (PC) analysis. The batch effects were 

observed, so we ran Harmony for batch correction with “RunHarmony” function. To cluster the 

data, we applied Seurat’s “FindNeighbors” using 10 dimensions from the Harmony-corrected 

reduced dimensions, followed by “FindClusters” at resolution 0.5. For the UMAP 

representation, we applied the “RunUMAP” from the Seurat to the selected PCs. Seurat-4.1.3, 

harmony-0.1.1 and standard R packages-4.2.1 were used. 

Differential expression analysis 



Differential expression analyses of transcripts were conducted with Bioconductor 

package DESeq2 (v1.36.0) (Love et al. 2014). To control the high statistical power brought by 

a large number of cells from samples, pseudobulk was calculated for each sample by 

separately aggregating MNCs, nuclei, and myotubes/non-myotube regions. For MNCs and 

nuclei, pseudobulk profiles were aggregated by summing up all the intra-cell (or intra-nuclei) 

raw transcript counts of each sample, with or without separated by the clusters determined in 

the unsupervised clustering step. For myotubes and non-myotube regions, pseudobulk 

profiles were aggregated by summing up the raw transcript counts across all myotubes (or 

non-myotube regions) of each sample. In the final analysis results, p-value was adjusted using 

BH algorithm. 

For differential expression analysis between myotube and non-myotube regions, due 

to the concern that myotube and non-myotube regions covers large areas and thus are more 

subject to background noise compared to nuclei and MNC regions, we applied a gene count 

threshold based on the intra myotube (non-myotube region) blank gene counts for each 

genotype, and only use the genes with average intra-myotube (non-myotube region) gene 

counts higher than blank gene counts for differential gene analysis (Supplemental Figure 7C-

E). 

Pseudotime analysis 

To obtain a batch-effect-corrected gene expression matrix for downstream analysis, we 

utilized Seurat(Hao et al. 2021) to compute the integration anchors (FindIntegrationAnchors) 

of the area normalized MERFISH data, and then integrated (IntegrateData) the batches using 

these anchors. This corrected Seurat object was used as inputs to create a Monocle(Trapnell 



et al. 2014; Qiu et al. 2017; Cao et al. 2019) newCellDataSet. Differential expression between 

clusters was calculated using “differentialGeneTest“ function in Monocle. Differential 

expression between clusters was calculated using “differentialGeneTest” function in Monocle. 

“DDRTree” method was used for dimensionality reduction, and the pseudotime trajectory plot 

was generated using the “plot_cell_trajectory” function.  

Co-expressed transcript module analysis 

For the single myotube MERFISH data, the gene co-expression network analysis was 

performed using the R package WGCNA (v.1.72.1) (Langfelder and Horvath 2008).  Genes 

are not always informative for co-expression or modules detection as their expression can be 

linked to technical biases(Lemoine et al. 2021). We removed genes with low variation between 

pairwise samples (p > 0.05) in the differential expression test of Monocle 

(differentialGeneTest).   

We next tested the blanks genes (Decoding barcodes not linked to a gene), which work 

as false positive misidentification controls, and found that the background level counts may 

cause technical biases. To avoid the biased background noise effect, we set up a threshold 

for the area normalized and batch corrected MERFISH data based on the blanks’ values. The 

genes whose values are higher than 0.015 in at least 30 myotubes were kept for WGCNA 

analysis. The function "TOMsimilarityFromExpr" was used to calculate the TOM similarity 

matrix, then "flashClust" function of package flashClust (v.1.2.3) was applied for cluster 

analysis. The "cutreeDynamic" function was used to identify the modules consisting of groups 

of genes with higher value of the connection strength and shared functions. Both networkType 

and TOMType were set as "unsigned". The soft-thresholding power, cut height, and minimal 



module size were set as 4, 0.94, and 8, for non-DUX4 target genes respectively. Intramodular 

connectivity, which is defined as the sum of a gene’s connection strengths within the same 

module, was calculated by the function "intramodularConnectivity".   

We performed gene set enrichment analysis of genes in the modules using the online 

tool gProfiler(Reimand et al. 2007). GO analyses for molecular function cellular component 

biological process were carried out sequentially, followed by pathway enrichment utilizing the 

KEGG, Reactome, and WikiPathways databases. The statistical domain scope was used for 

the analyzed non-DUX4 target genes as custom background. The significance threshold is 

the g:SCS threshold. The user threshold is 0.05. Cluster analysis of the DUX4 target genes in 

the FSHD1 and DEL5 myotubes were done similarly, with the soft-thresholding power, cut 

height, and minimal module size set as 4, 0.8, and 3. Their module tree plots were generated 

by "plotDendroAndColors" fuction in WGCNA package. The fourth power of correlation, 

accompanied by its corresponding positive or negative sign, of DUX4 target genes and 

selected non-DUX4 target genes were visualized using Cytoscape 3.9.1 software.  

 

Linear mixed effect modeling 

Linear mixed-effect modeling (LME) is used to address the repeated measurement 

issues that occur when doing statistical tests with multiple items from the same sample (for 

example, multiple myotubes come from the same sample in Figure 2 I,J). The LME model 

utilizes linear regression to estimate the difference between variables by      examining      

the significance of regression coefficients. Importantly, it (“fitlme” in MATLAB) introduces the 

concept of “fixed effect” and “random effect”. “Fixed effect” represents the parameters that do 

not vary during the linear regression, and practically, represent the actual variables that to be 



tested. “Random effect” represents random variables that have impact the “fixed effect”, and 

practically, often represent the groupings of the “fixed effect” variables(Yu et al. 2022). The 

model will represent the data in the following format: 

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝜀𝜀 

In which y is the measured data from the experiment (for example, nuclei counts in each 

myotube), X represent the “fixed effect” variable that going to be tested (for example, 

genotypes of each myotube in y), Z is the “random effect” variable (for example, the sample 

each myotube in y comes from), and 𝜀𝜀 is the residual error(Yu et al. 2022). The significance 

of the regression variable β will be used as the statistical test result and the significance level 

is p < 0.05. Compared with a paired t-test or repeated measures ANOVA, LME can handle 

unbalanced designs and missing values, and has greater statistical power in the presence of 

missing values(Stobart et al. 2018; Indersmitten et al. 2019; Yu et al. 2022). 
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