

1 **Supplementary Materials for**

2 **Systematic identification and characterization of exon-intron circRNAs**

3 Yinchun Zhong^{1, #}, Yan Yang^{2, #}, Xiaolin Wang², Bingbing Ren³, Xueren Wang^{4, 5, *}, Ge Shan^{2, *},
4 Liang Chen^{1, *}

5 1. Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Science

6 and Medicine, University of Science and Technology of China, Hefei, 230027, China

7 2. Hefei National Laboratory for Physical Sciences at Microscale, Department of Clinical

8 Laboratory, The First Affiliated Hospital of USTC, School of Basic Medical Sciences, Division

9 of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027,

10 China

11 3. Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National

12 Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang

13 University, Hangzhou, 310016, China

14 4. Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, 030032, China

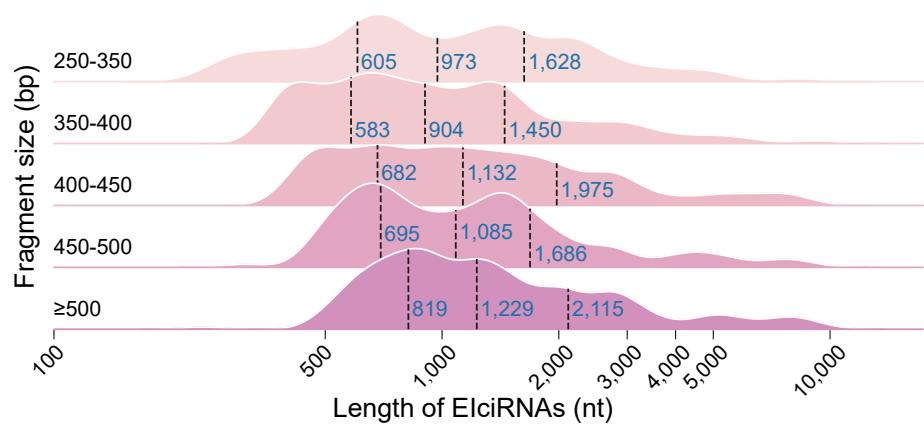
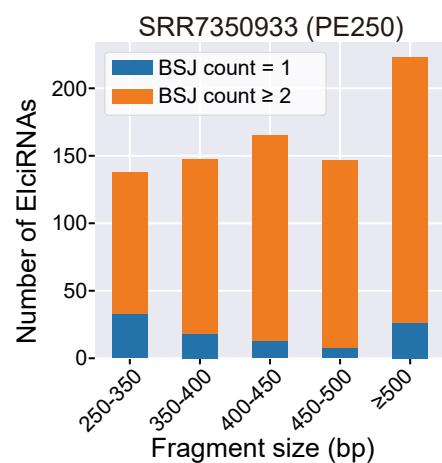
15 5. Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong

16 University of Science and Technology, Wuhan, 430030, China.

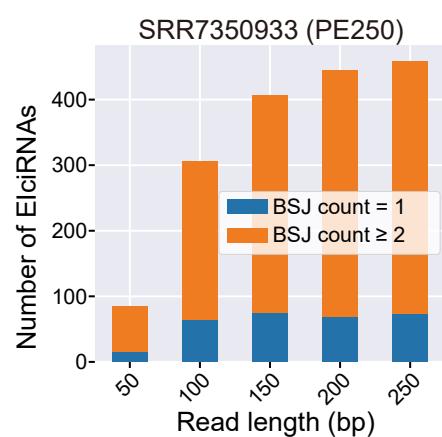
17 **This PDF file includes:**

18 Supplemental Figures S1-S13

19 Descriptions of Supplemental Tables S1-S11

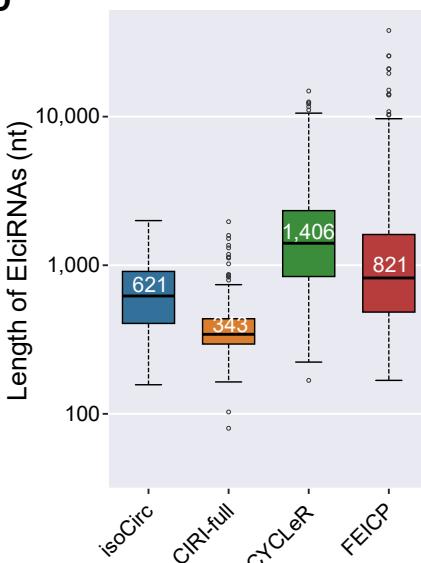


20 Supplemental Methods

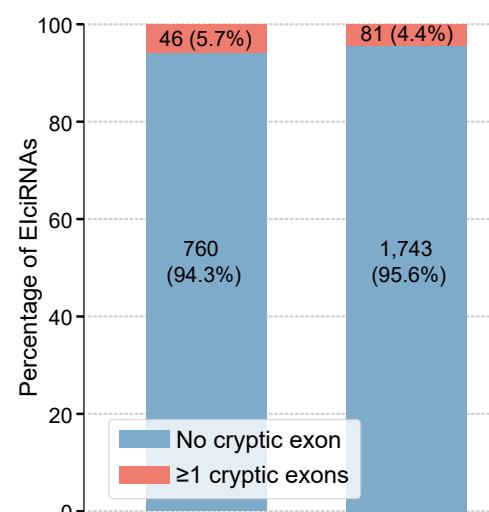
21 References for Supplemental Materials

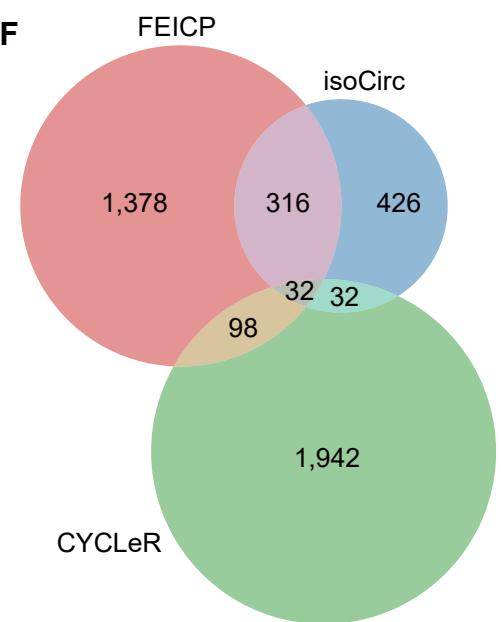

22

Supplemental Figure S1

A


B

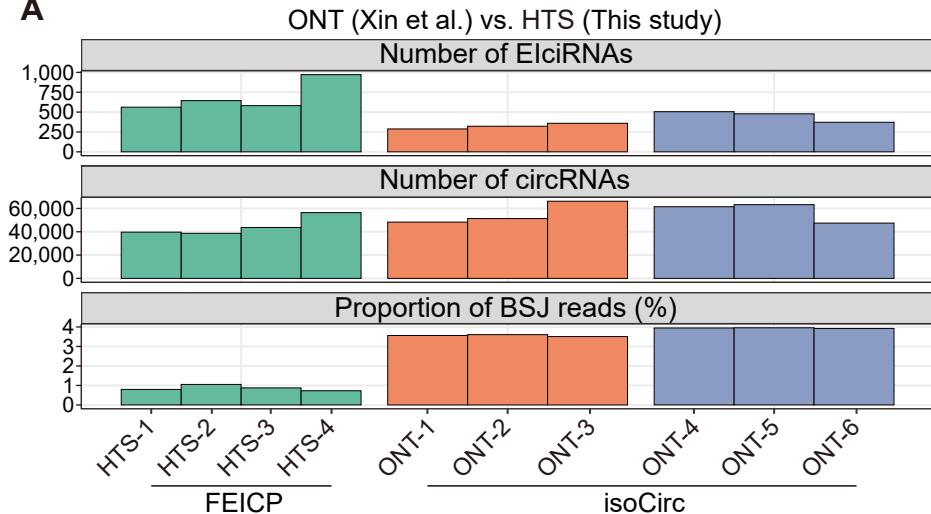

C


D

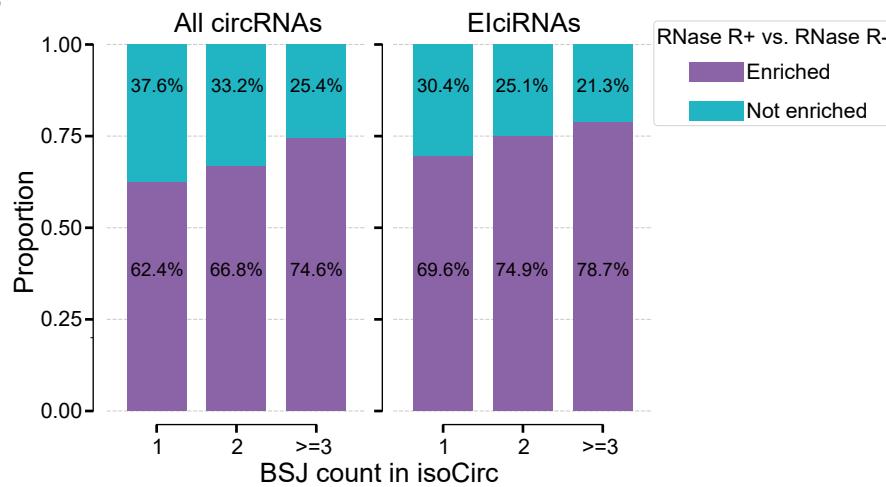
E

F

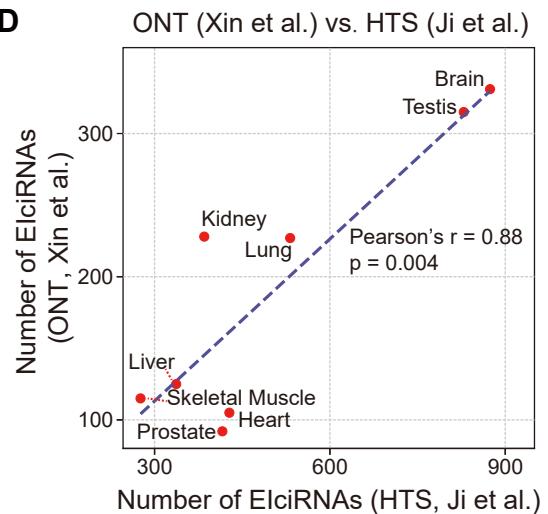
G

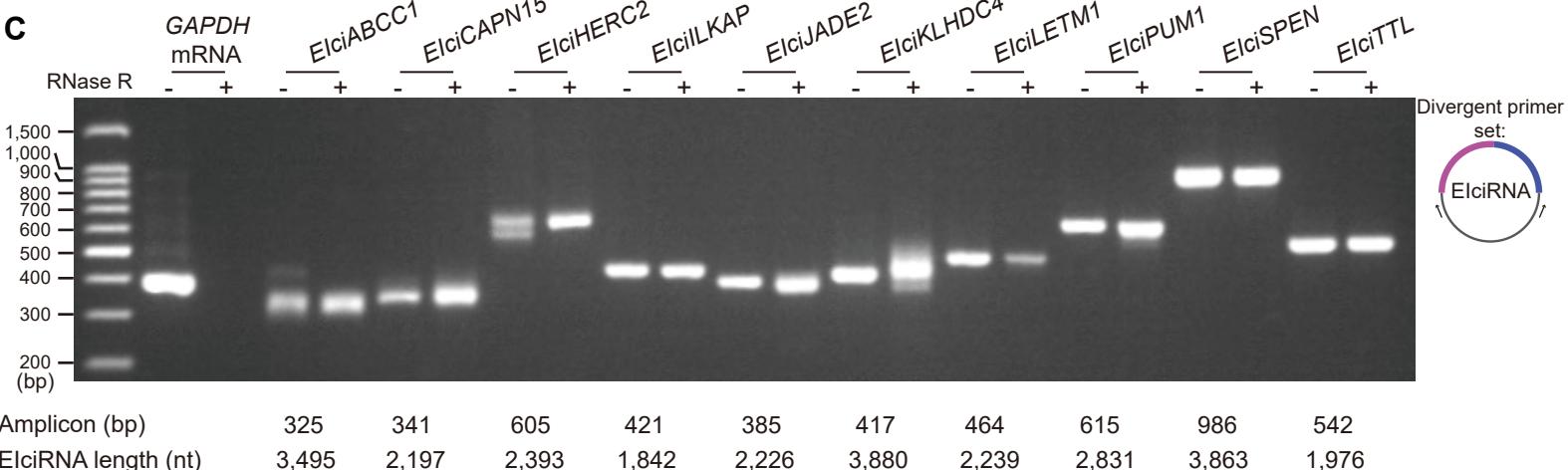


23 **Supplemental Figure S1. Performance of FEICP.**

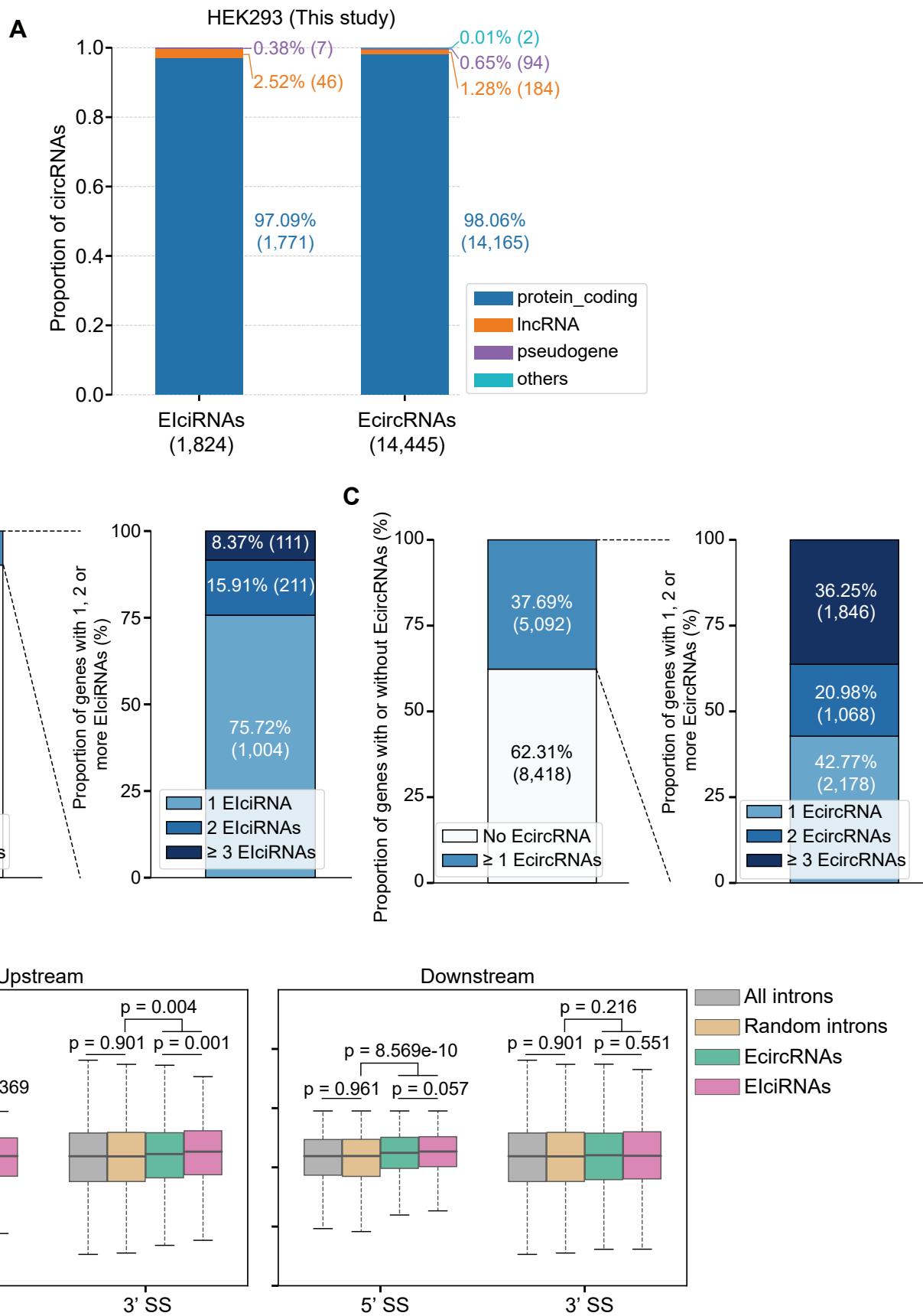

24 **A.** EIciRNA number (left) and length distribution (right) identified on sequencing reads with
25 different fragment size. The dashed lines in the right represent the 25%, 50%, and 75% quantiles
26 of EIciRNA lengths. **B.** EIciRNA number (left) and length distribution (right) identified on
27 sequencing reads with different length trimmed from PE250 data. The dashed lines in the right
28 represent the 25%, 50%, and 75% quantiles of EIciRNA lengths. **C.** Venn diagram showing the
29 overlap of identified EIciRNAs between FEICP and CIRI-full in HEK293 cells. **D.** Boxplots
30 showing the distribution of EIciRNA length identified by isoCirc, CIRI-full, CYCLER, and
31 FEICP in HEK293 cells, with the median length labeled for EIciRNAs in each group. **E.**
32 Stacked bar plots showing the proportion of intron-retaining circRNAs, detected using FEICP
33 or isoCirc, that generate isoforms with or without cryptic exons. **F.** Venn diagram showing the
34 overlap of EIciRNAs identified by FEICP, isoCirc, and CYCLER in HEK293 cells. **G.**
35 Histogram showing the distribution of exon numbers between the start and end exons of
36 EIciRNAs identified by different pipelines.

Supplemental Figure S2


A

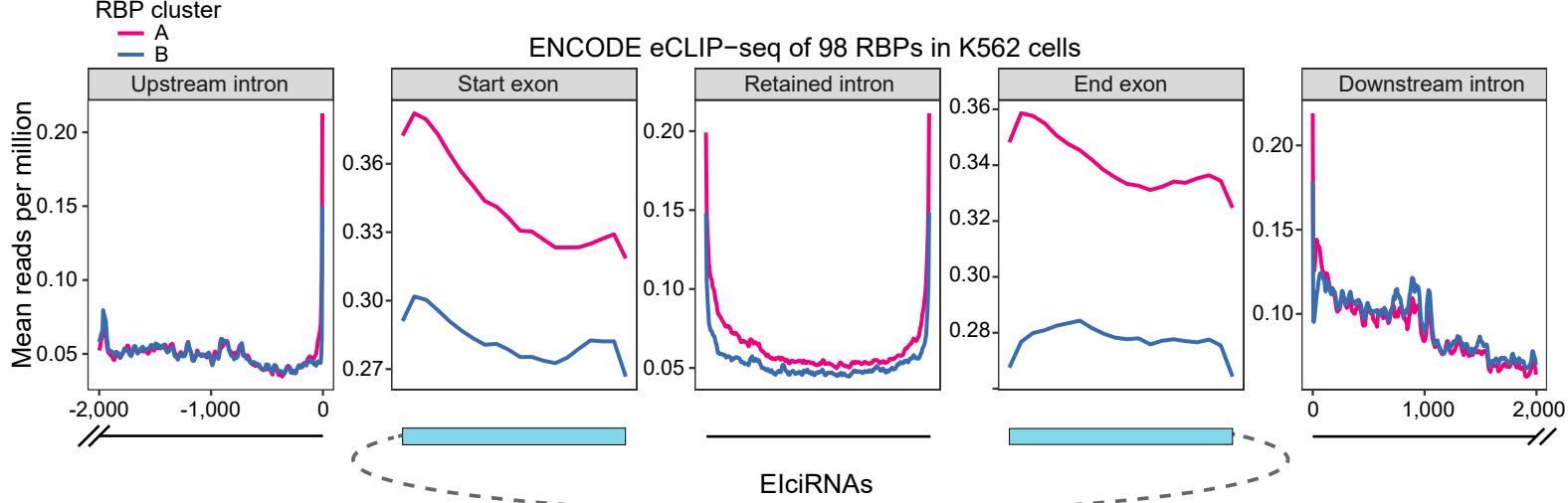
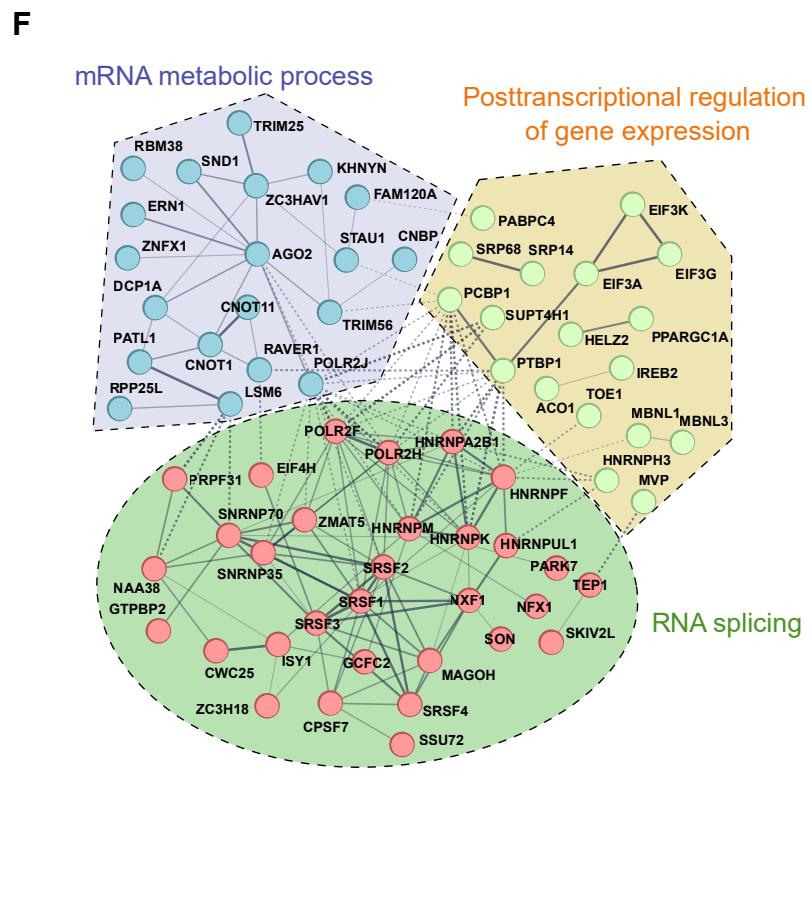
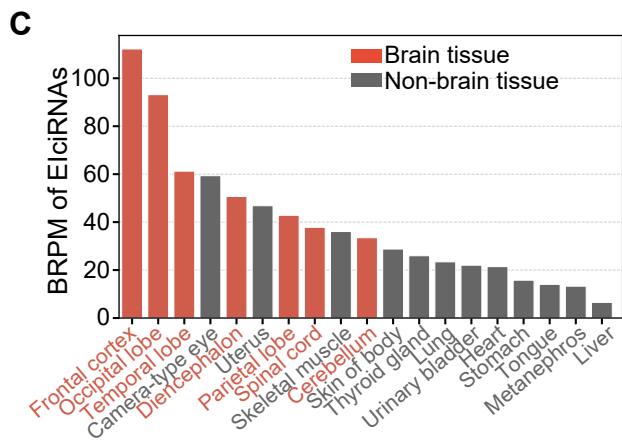
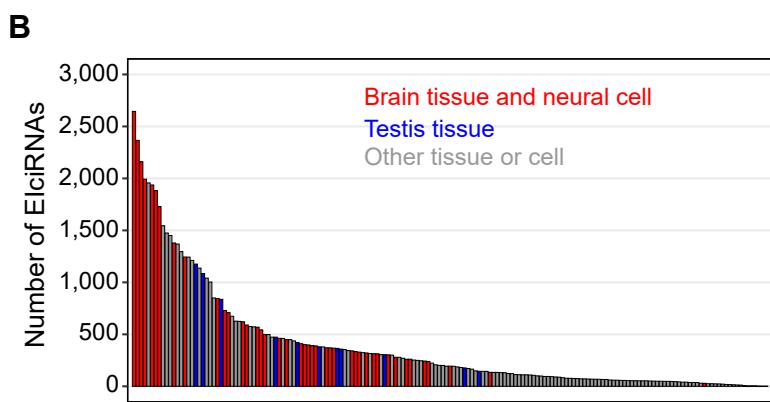
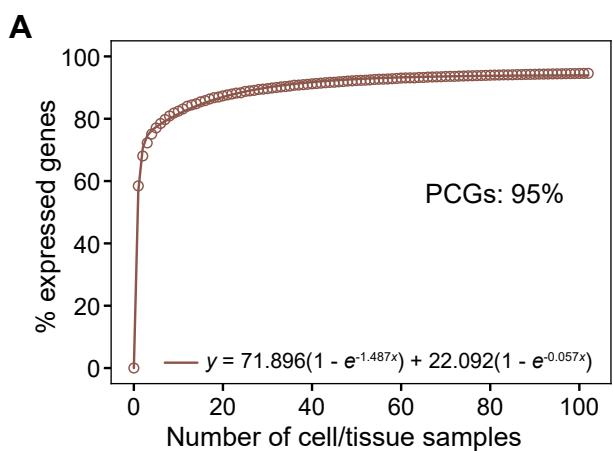

B

D


C

37 **Supplemental Figure S2. Comparison of FEICP with isoCirc.**

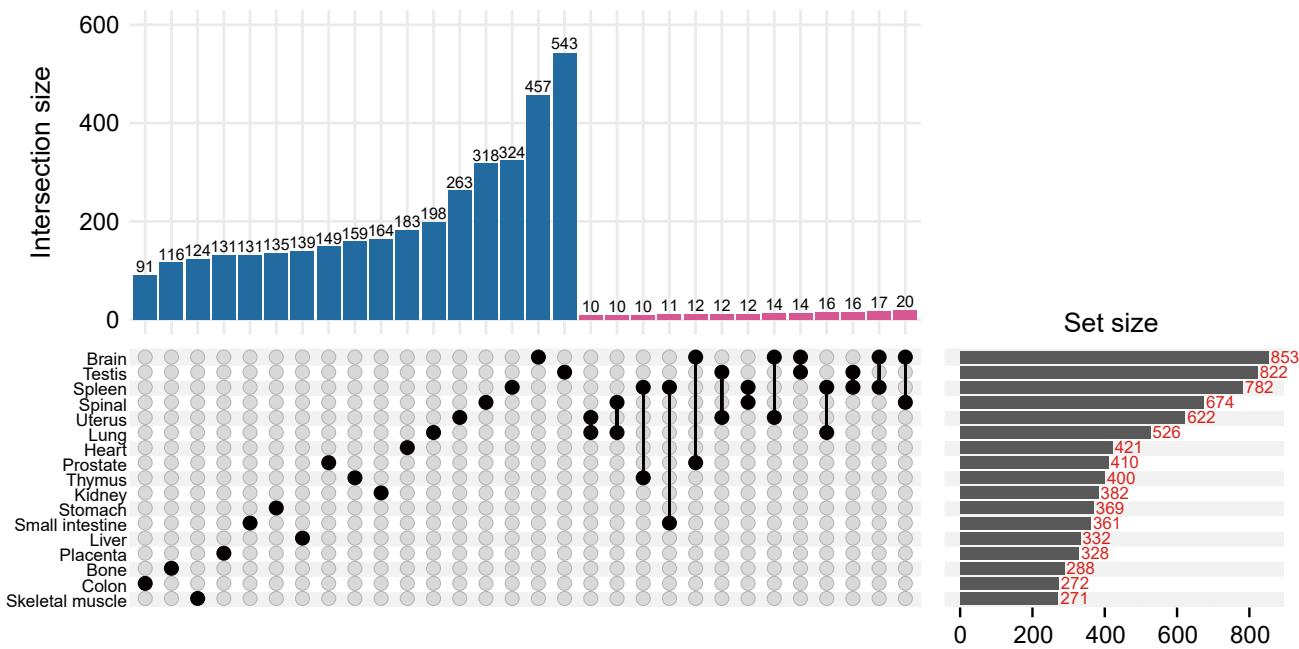
38 **A.** Number of EIciRNAs, circRNAs, and proportions of back-splicing junction (BSJ) reads
39 detected from HTS data in our study and published ONT datasets in HEK293 cells. HTS, high-
40 throughput sequencing; ONT, Oxford Nanopore Technology sequencing. **B.** Stacked bar plots
41 showing the proportion of isoCirc-detected circRNAs and EIciRNAs with or without
42 enrichment in HTS data by RNase R treatment in HEK293 cells. Public total RNA-seq data
43 downloaded from NCBI (SRA: SRR22315104, SRR22315105, SRR22315106, and
44 SRR22315107) were generated with RNase R- samples. EIciRNAs with foldchange ≥ 1.5 and
45 P-value < 0.05 were considered as enriched by RNase R. P-values were calculated using the
46 Student's *t*-test. **C.** RT-PCR validated 10 EIciRNAs identified by FEICP but missed out by
47 isoCirc in HEK293 cells (Supplemental Table S2). RNase R was used to digest linear RNAs,
48 and *GAPDH* mRNA was used as a control for RNase R treatment. Both the lengths of RT-PCR
49 amplicon and EIciRNAs were indicated for each EIciRNA. Divergent primers with both ends
50 located in the retained introns were used to amplify EIciRNAs. **D.** Correlation of EIciRNA
51 number from published HTS or ONT datasets of eight human tissues.






Supplemental Figure S3

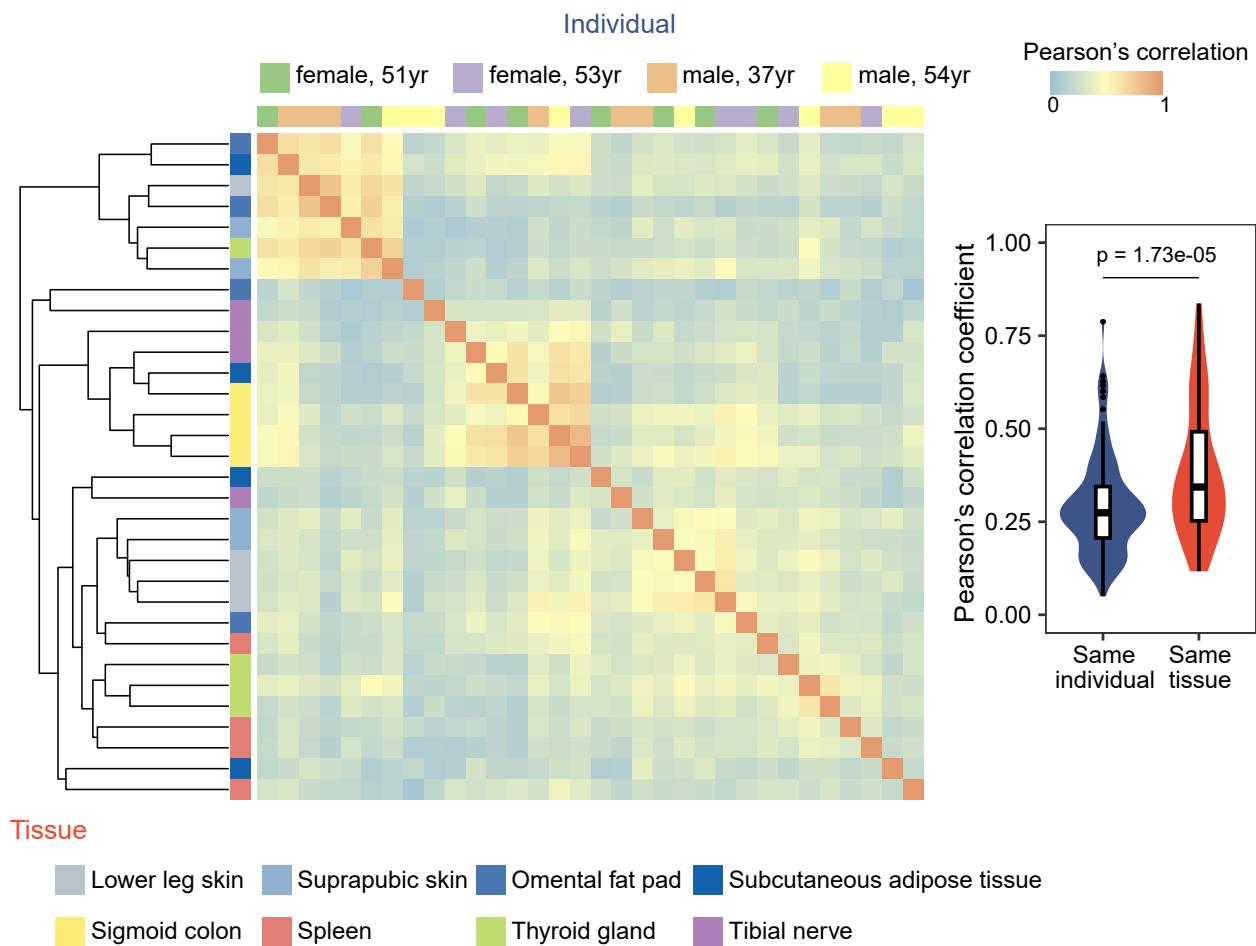
52 **Supplemental Figure S3. Features of EIciRNAs.**

53 **A.** Distribution of parental gene types of EIciRNAs and EcircRNAs detected in HEK293 cells.
54 **B.** Percentage of EIciRNA parent genes (left) and genes that give rise to 1, 2 or more EIciRNAs
55 (right). **C.** Percentage of EcircRNA parent genes (left) and genes that give rise to 1, 2 or more
56 EcircRNAs (right). **D.** Boxplots showing the 5' and 3' splice-site strength of flanking introns of
57 EcircRNAs and EIciRNAs detected in HEK293 cells. All introns annotated in the human
58 genome and randomly selected human introns were used as controls. P-values were calculated
59 using the Wilcoxon rank-sum test.

Supplemental Figure S4

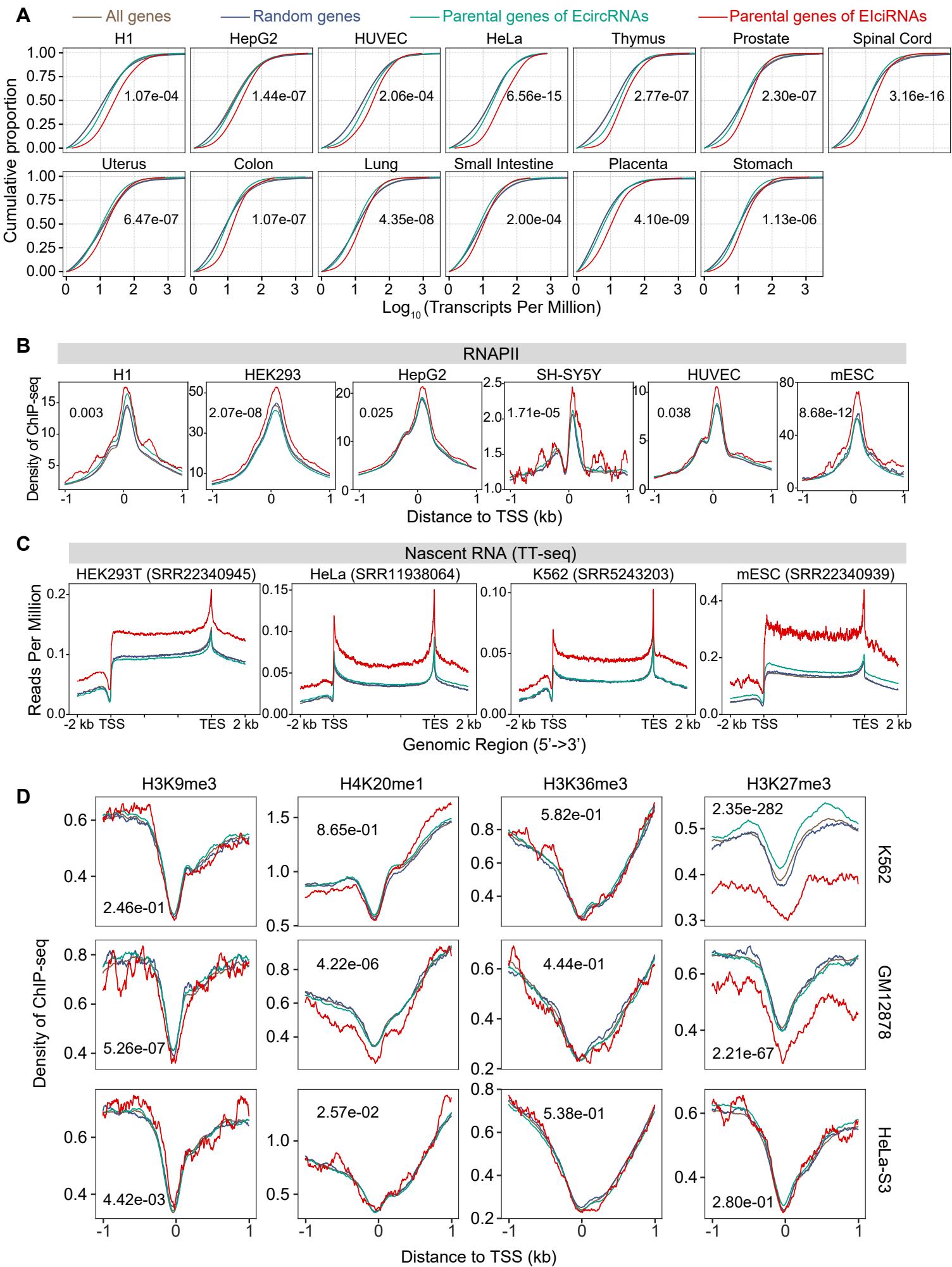


60 **Supplemental Figure S4. Expression features of EIciRNAs across human tissues.**


61 **A.** The percentage of expressed human protein-coding genes (PCGs) with the accumulating
62 number of cell or tissue samples. The circles represented the mean values from 1,000 iterations
63 and exponential curve fitting was applied. The corresponding equation and limit value were
64 shown. **B.** The number of EIciRNAs detected from 244 published HTS datasets in 102 human
65 cell or tissue samples. Brain tissues or neural cells were indicated as red, and testis tissues were
66 indicated as blue. **C.** Bar plots displaying EIciRNA levels from ENCODE HTS data of 19
67 human fetal tissues. 12 non-brain tissues and 7 brain tissues were labeled as grey and red,
68 respectively. BRPM, backspliced reads per million. **D.** The number of EIciRNAs identified in
69 published HTS or ONT datasets of eight human tissues. **E.** Metaplots displaying the mean
70 binding density of 80 RBPs in “Cluster A” and 18 RBPs in “Cluster B” on the retained introns,
71 circular exons, and flanking introns of 1,231 “Cluster 1” EIciRNAs. These clusters were
72 depicted in Fig. 2E. **F.** STRING analysis of protein-protein interaction network for top 100
73 RNA-binding proteins (RBPs) with the most negative correlations to EIciRNAs in 19 human
74 fetal tissues. The network was grouped into 3 clusters using k-means clustering algorithm, and
75 the top-ranked enriched GO term of RBP genes was shown for each group.

Supplemental Figure S5

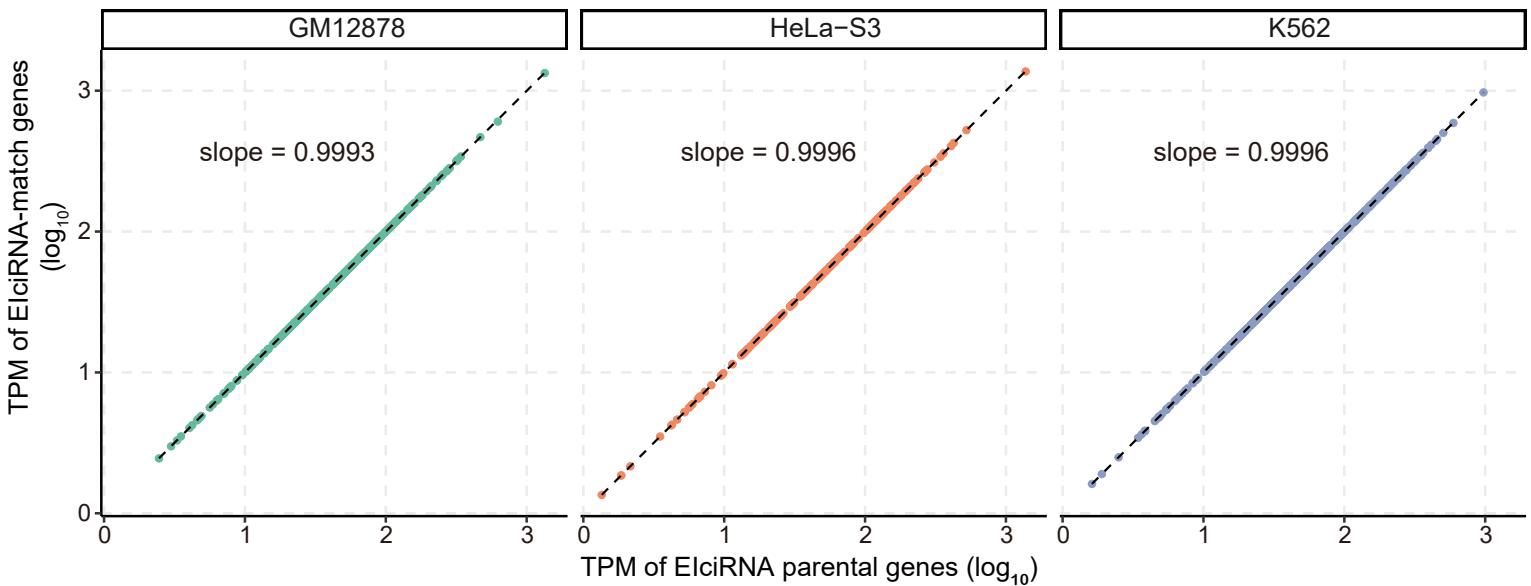
A


B

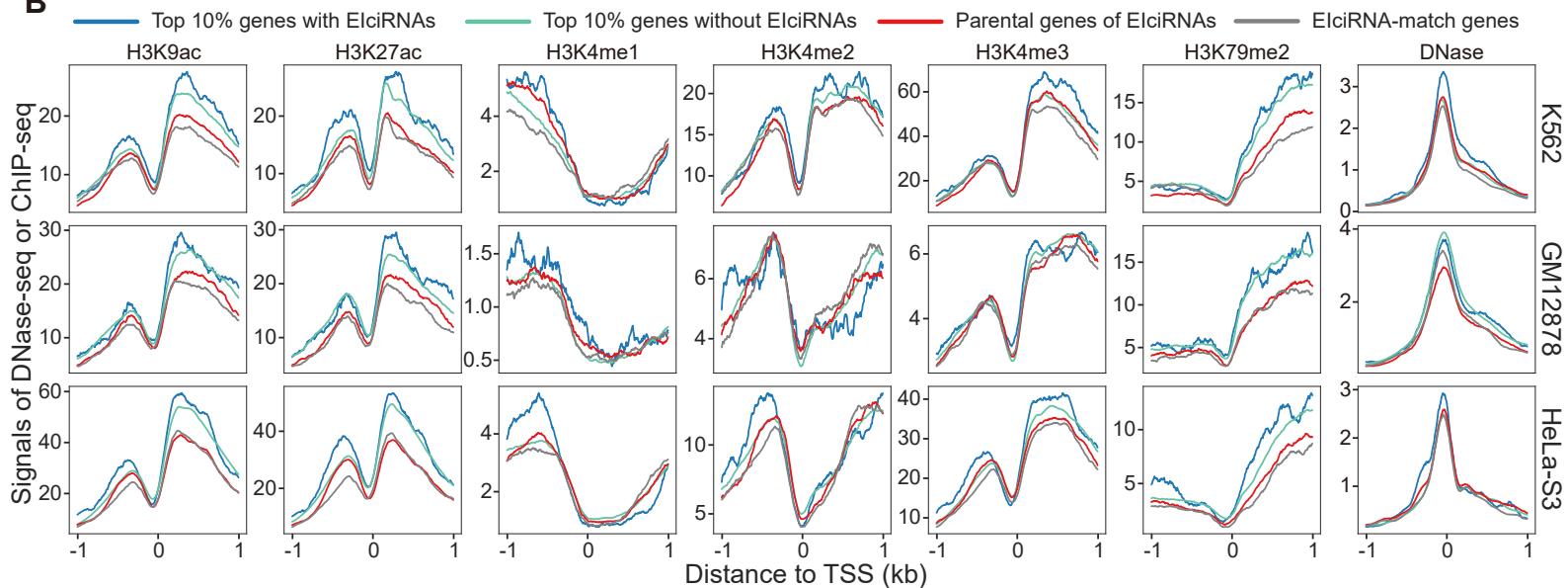
76 **Supplemental Figure S5. Tissue specificity of EIciRNAs across human tissues.**

77 **A.** UpSet plot showing the overlap of EIciRNAs identified in published HTS datasets of 17
78 human tissues. Intersections with no less than 10 EIciRNAs were shown. **B.** Correlation matrix
79 of EIciRNA levels across samples in 8 tissues from four individual human beings. Row
80 annotations indicate different tissues, and column annotations indicate different individuals
81 (left). Violin plots showed the Pearson's correlation coefficients of EIciRNA levels among the
82 same tissue type from distinct individuals or the same individual in different tissues (right). P-
83 value was calculated using the Wilcoxon rank-sum test.

Supplemental Figure S6



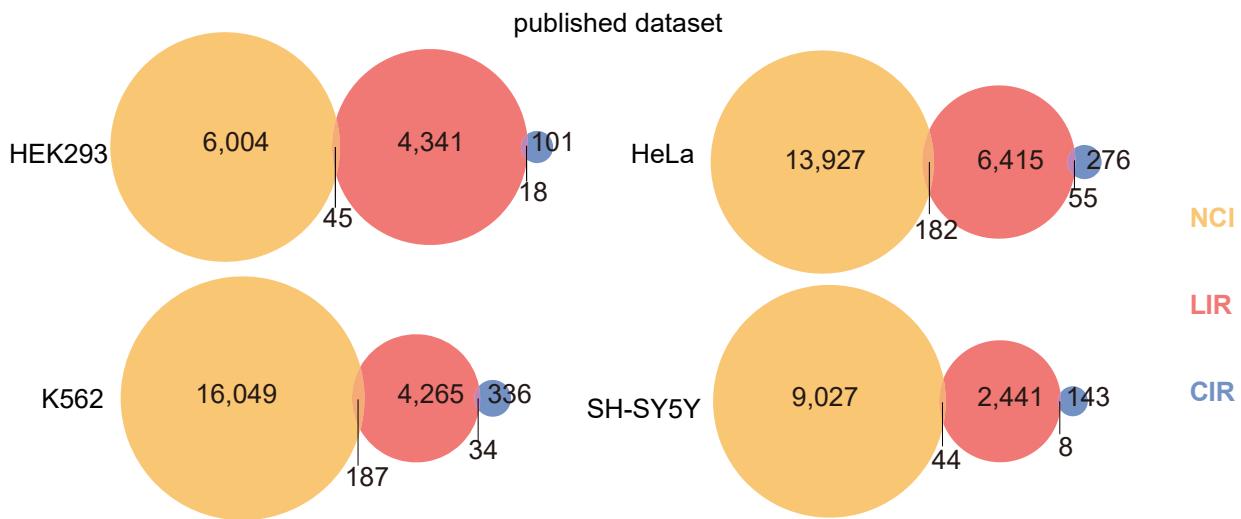
84 **Supplemental Figure S6. Expression and epigenetic regulation of EIciRNA parent genes.**


85 **A.** Cumulative distribution of expression levels (TPM) of all genes, random genes, parental
86 genes of EcircRNAs, and parental genes of EIciRNAs in 4 human cell lines and 9 human tissues.
87 HUVEC, human umbilical vein endothelial cells; All genes, all expressed protein-coding genes
88 (PCGs) with TPM ≥ 1 ; Random genes, 2,000 genes randomly selected from all genes; Parental
89 genes of EIciRNAs, PCGs generating EIciRNAs; Parental genes of EcircRNAs, PCGs
90 generating EcircRNAs but no EIciRNAs; TPM, transcripts per million. **B.** Distributions of
91 RNAPII ChIP-seq signals around the TSS regions of the indicated groups in 6 cell lines. TSS,
92 transcription start site. **C.** Metagene plots showing the coverage (RPM) of TT-seq along the
93 whole gene body regions of the indicated groups in 4 cell lines. RPM, reads per million. **D.**
94 ChIP-seq signals of H3K9me3, H4K20me1, H3K36me3, and H3K27me3 around the regions
95 of the indicated groups of genes in K562, GM12878, or HeLa-S3 cell lines. In A, B, and D, P-
96 values were calculated with the Wilcoxon rank-sum test for the comparison between parental
97 genes of EIciRNAs and parental genes of EcircRNAs.

Supplemental Figure S7

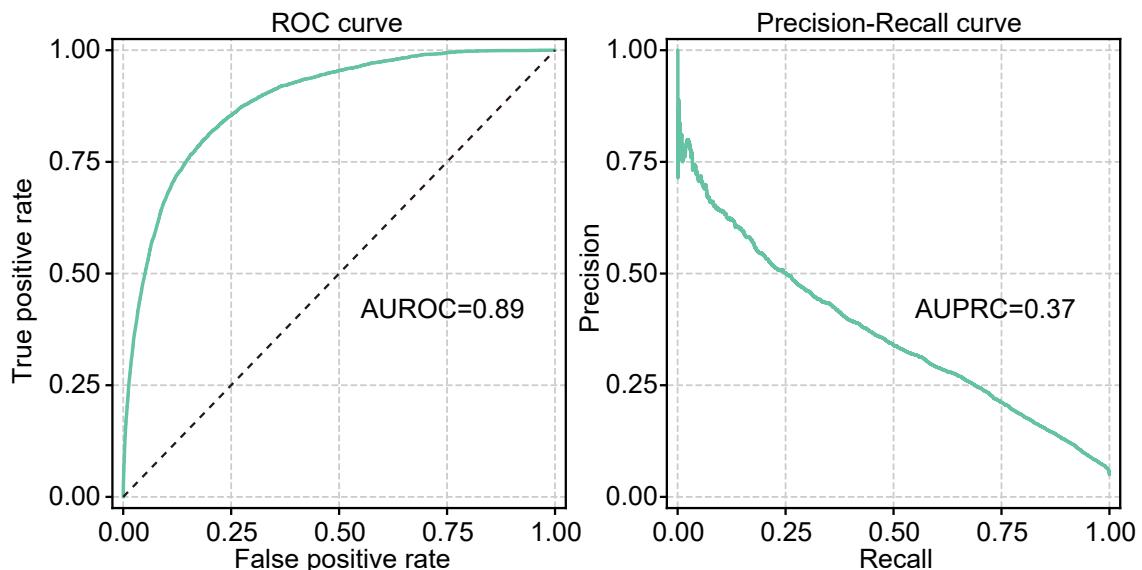
A

B

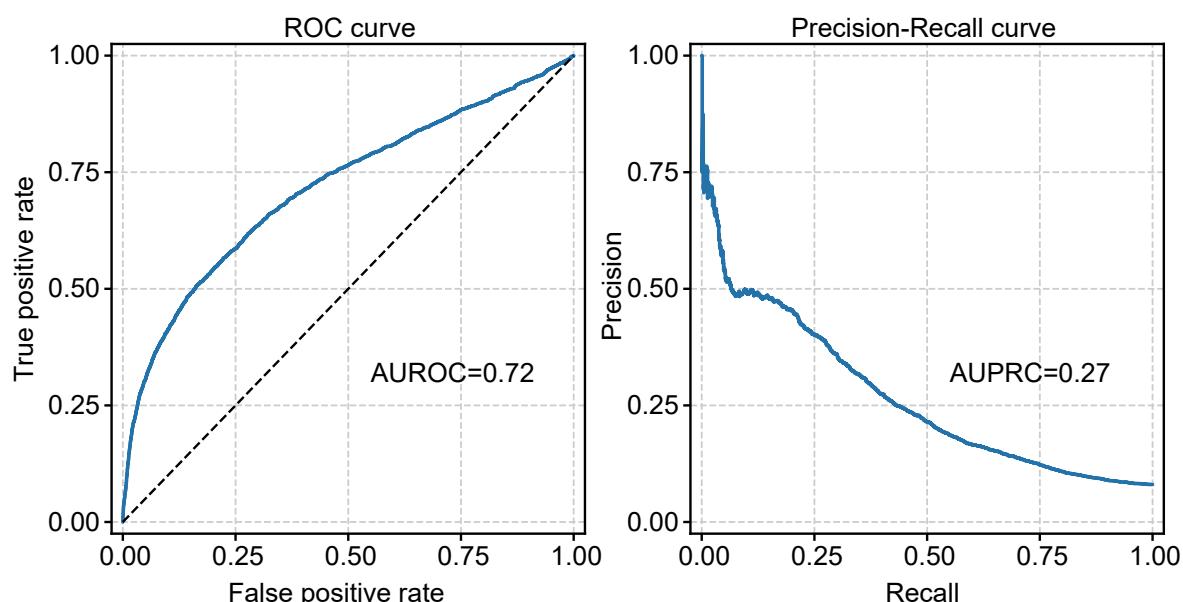


98 **Supplemental Figure S7. Features of Expression and epigenetic marks of genes with or**
99 **without EIciRNA generation.**

100 **A.** Scatter plots displaying the correlation between the expression levels of EIciRNA parental
101 genes and those of “EIciRNA-match” genes that do not generate EIciRNAs in GM12878,
102 HeLa-S3, and K562 cells. The slope of the fitted line of linear regression was indicated for each
103 cell line. For each EIciRNA, the gene with the closest expression level to its parental gene was
104 referred to as its “EIciRNA-match” gene. **B.** ChIP-seq signals of H3K9ac, H4K27ac, H3K4me1,
105 H3K4me2, H3K4me3, H3K79me2 and DNase around the TSS regions of the indicated groups
106 of genes in K562, GM12878, or HeLa-S3 cell lines. The top 10% of genes with the highest
107 expression levels were divided into two groups: genes generating EIciRNAs (“Top 10% genes
108 with EIciRNAs”), and genes generating no EIciRNAs (“Top 10% genes without EIciRNAs”).

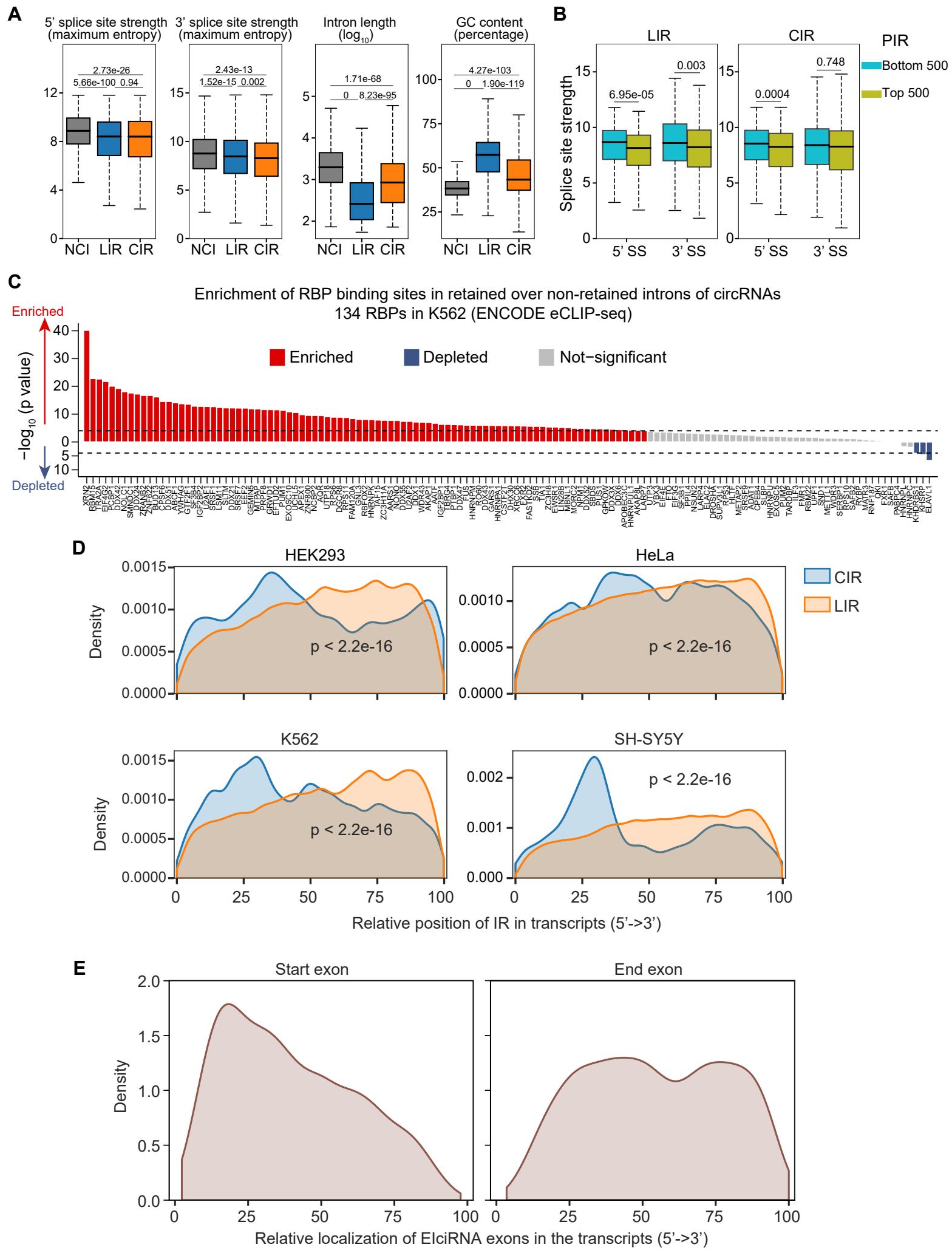

Supplemental Figure S8

A


B

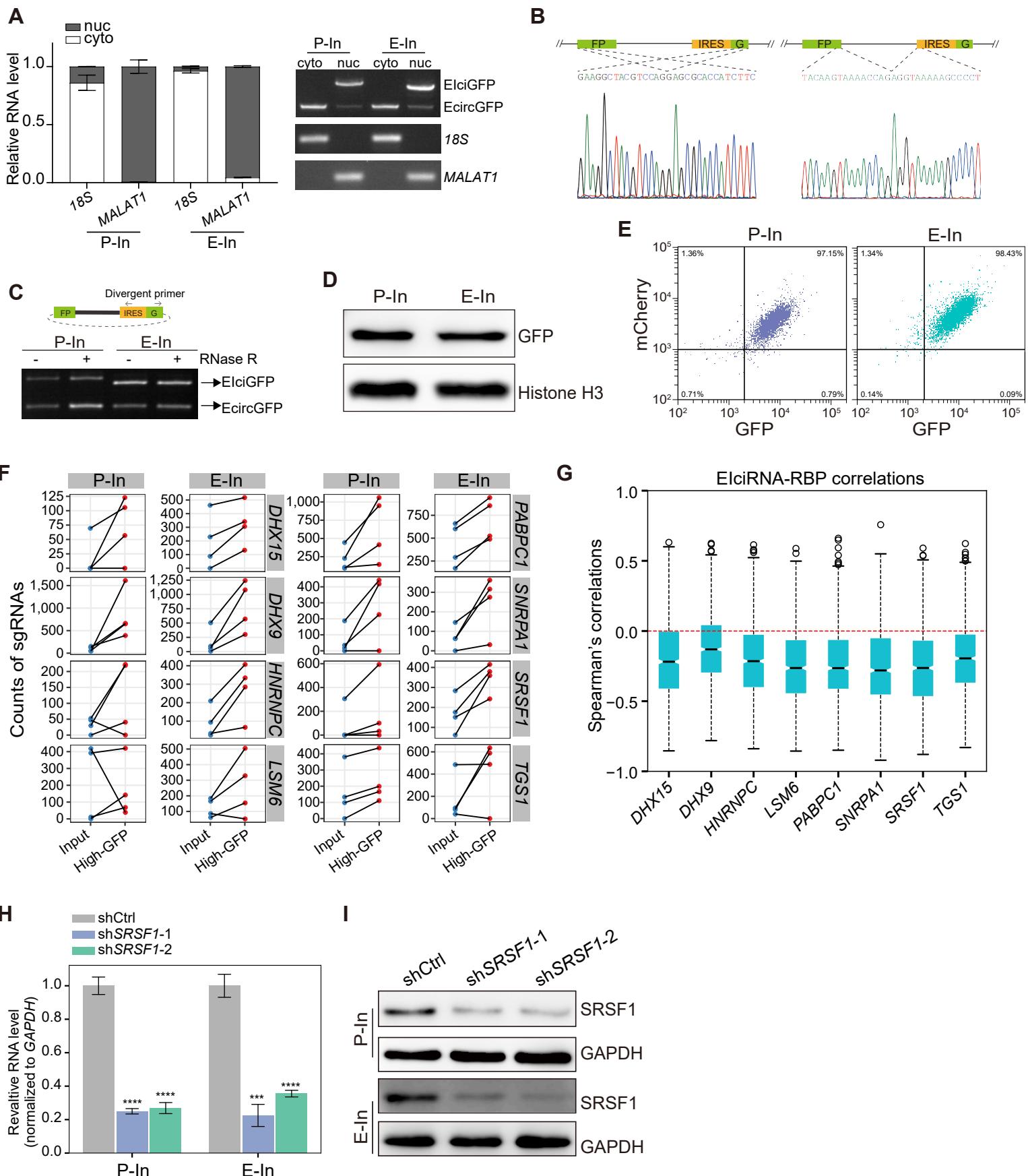
Classify introns retained vs. spliced-out in linear RNAs (NNetwork-linear)

C


Classify NCI vs. CIR using NNetwork-linear

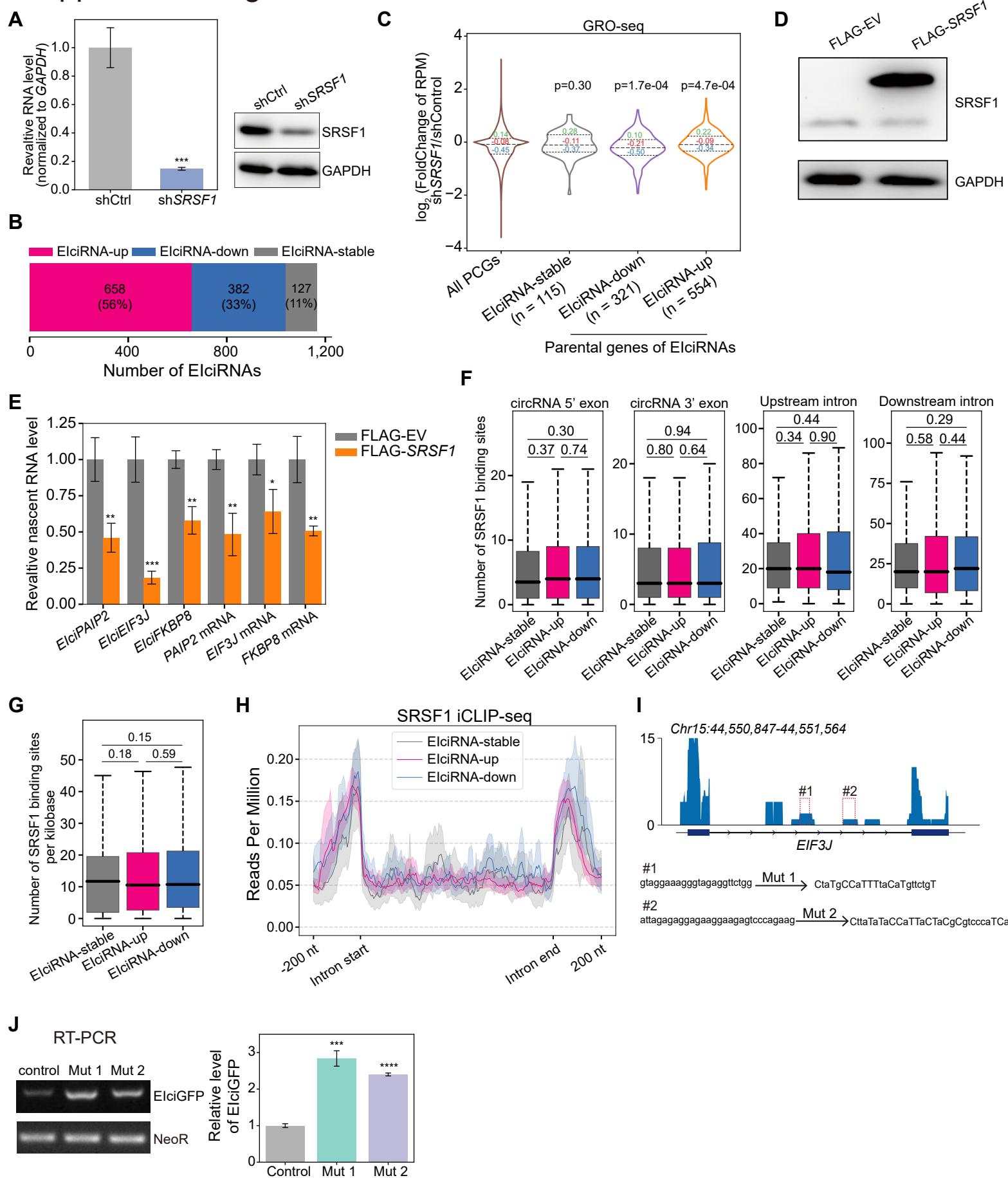
109 **Supplemental Figure S8. Classification and prediction of introns.**

110 **A.** Venn diagrams showing the overlap of NCI, LIR, and CIR detected from the published HTS
111 datasets of HEK293, HeLa, K562, and SH-SY5Y cell lines. LIR was detected from poly(A)-
112 plus RNA-seq data through IRFinder with the cutoff (IRratio ≥ 0.1). CIR was detected from
113 RNase R-treated RNA-seq data using FEICP with the cutoff (PIR ≥ 0.1). NCI represented
114 spliced introns of EcircRNAs with the cutoff (PIR ≤ 0.02). PIR, percent intron retention. **B.** The
115 ROC curve (left) and precision-recall curve (right) illustrating the performance of the neural
116 network predicting intron retention in linear RNAs (NNetwork-linear). The AUROC (area
117 under the ROC curve) and AUPRC (area under the precision-recall curve) values are shown. **C.**
118 The ROC curve (left) and precision-recall curve (right) illustrating the performance of the
119 NNetwork-linear in predicting intron retention in circular RNAs.


Supplemental Figure S9

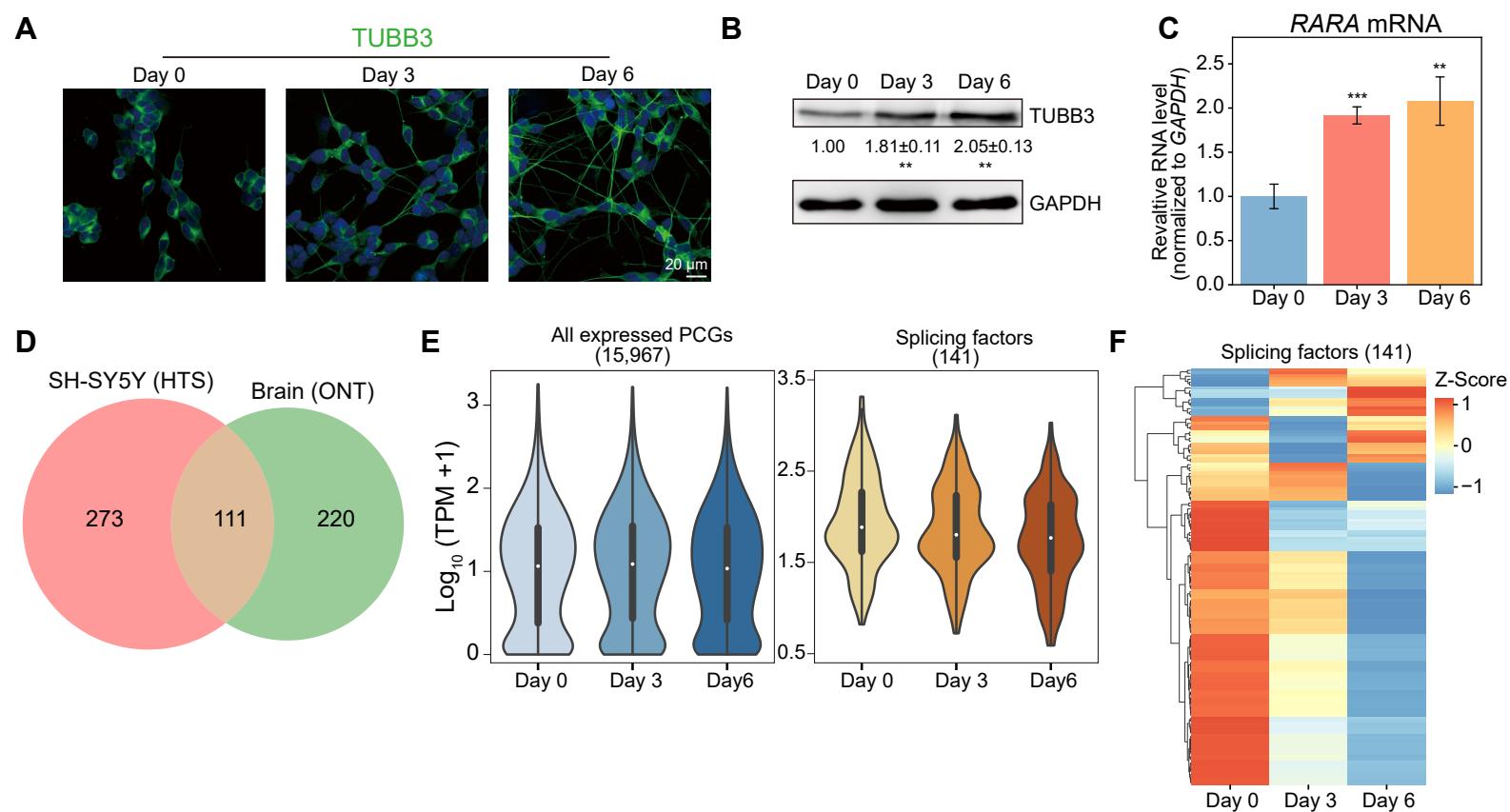
120 **Supplemental Figure S9. Features of CIR.**

121 **A.** Boxplots displaying 5' splice-site strength, 3' splice-site strength, intron length and GC
122 content of NCI, LIR and CIR detected in our HEK293 dataset. **B.** Boxplots displaying the 5'
123 and 3' splice-site strength of 500 LIR (CIR) with the highest PIR and 500 LIR (CIR) with the
124 lowest PIR. PIR, percent intron retention. **C.** RBP binding enrichment in CIR versus NCI from
125 134 RBP eCLIP-seq datasets in ENCODE. **D.** Density curves showing the relative localization
126 of LIR and CIR along their host transcripts from the published HTS datasets of HEK293, HeLa,
127 K562 and SH-SY5Y cells. **E.** Density curves showing the relative localization of start and end
128 exons of EIciRNAs along their host transcripts in HEK293 cells. For A-D, P-values were
129 calculated using the Wilcoxon rank-sum test.


Supplemental Figure S10

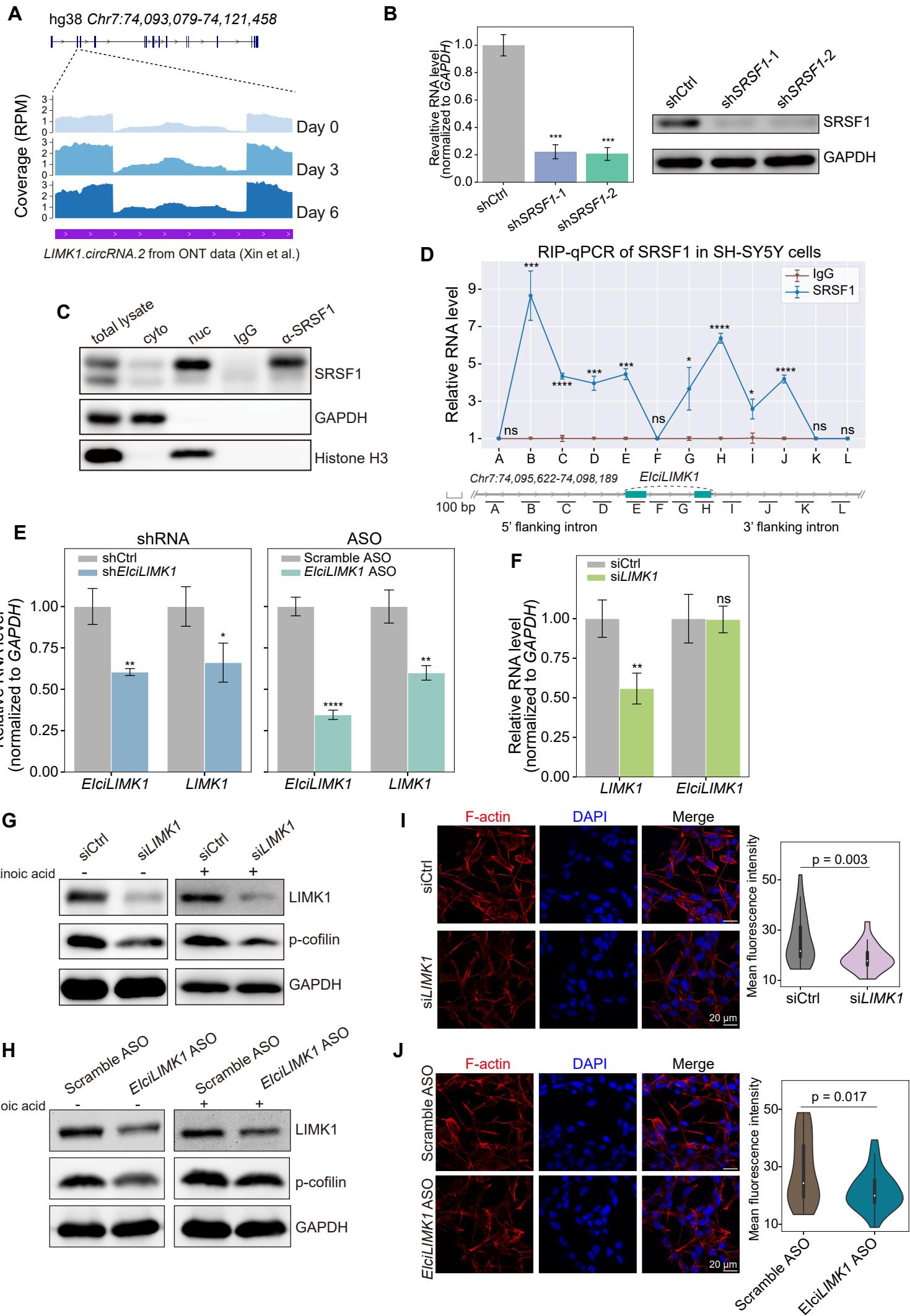
130 **Supplemental Figure S10. Genome-wide CRISPR screening identifies SRSF1 as a**
131 **regulator of EIciRNA biogenesis.**

132 **A.** Stacked bar plots showing the distribution of nuclear and cytosolic markers assessed by RT-
133 qPCR in the cytosol and nucleus obtained through nucleocytoplasmic separation in P-In and E-
134 In cells (left). RT-PCR analysis of EIciGFP and EcircGFP distribution in the nuclear and
135 cytoplasmic fraction of P-In and E-In cells (right). **B.** Sanger sequencing of BSJ sequences (left)
136 and linear splicing junction sequences (right) for RT-PCR products of circGFP in P-In and E-
137 In cells. **C.** RT-PCR showing the expression of EIciGFP and EcircGFP in P-In and E-In cells.
138 RNase R was used for the digestion of linear RNAs. Divergent primers were used to amplify
139 EIciGFP or EcircGFP. **D.** Western blot showing the expression of GFP protein in P-In and E-In
140 cells, respectively. Histone H3 was used as the loading control. **E.** Flow cytometric analysis
141 showed that ~97% of cells co-expressed GFP and mCherry in P-In and E-In cells. **F.** Counts of
142 four sgRNAs for each of eight genes between input and high-GFP groups in P-In and E-In cells.
143 **G.** Boxplots showing the Spearman's correlations, defined in Fig. 2E, between EIciRNAs and
144 8 RBPs. **H-I.** RT-qPCR (**H**) and western blots (**I**) showing the knockdown efficiency of *SRSF1*
145 in P-In and E-In cells. shCtrl, shRNA with scrambled sequences; sh*SRSF1*-1 and sh*SRSF1*-2,
146 two independent shRNAs against *SRSF1*. For A and H, error bars represent standard deviation
147 (SD) in triplicate experiments, and P-values were calculated using two-tailed Student's *t*-test.
148 ***p < 0.001; ****p < 0.0001.


Supplemental Figure S11

149 **Supplemental Figure S11. SRSF1 suppresses the biogenesis of a portion of EIciRNAs.**

150 **A.** RT-qPCR and western blots showing *SRSF1* knockdown in HEK293 cells. shCtrl, shRNA
151 with scrambled sequences; sh*SRSF1*, shRNA against *SRSF1*. **B.** Stacked bar plot showing the
152 proportion of the indicated EIciRNAs. EIciRNA-up, up-regulated EIciRNAs upon *SRSF1*
153 knockdown in HEK293 cells; EIciRNA-down, down-regulated EIciRNAs upon *SRSF1*
154 knockdown in HEK293 cells; EIciRNA-stable, unaltered EIciRNAs upon *SRSF1* knockdown
155 in HEK293 cells. **C.** Violin plots displaying the nascent RNA foldchanges of genes in indicated
156 groups upon *SRSF1* knockdown in HEK293 cells. P-values between all protein-coding genes
157 and genes in the EIciRNA-stable, EIciRNA-down, EIciRNA-up group were calculated and
158 indicated. The 25th, 50th, and 75th percentile of the foldchanges was labelled in blue, red, and
159 green, respectively. **D.** Western blot showing the *SRSF1* protein level when *SRSF1* was
160 overexpressed in HEK293 cells. GAPDH was used as the loading control. FLAG-EV, empty
161 vector. **E.** RT-qPCR analysis of nascent levels for three EIciRNA / mRNA pairs after *SRSF1*
162 overexpression in HEK293 cells. **F.** Boxplots displaying the counts of *SRSF1* binding sites in
163 flanking introns and internal exons of the indicated groups of EIciRNAs. **G.** Boxplots showing
164 the density of *SRSF1* binding sites in CIR of the indicated groups. **H.** Metaplots displaying the
165 binding density of *SRSF1* on the indicated groups of EIciRNAs. **I.** IGV snapshot showing the
166 *SRSF1* iCLIP-seq signals in the *EIciEIF3J* locus. Two *SRSF1* binding GA-rich regions in the
167 retained intron of *EIciEIF3J* were framed as red dotted lines, and labeled as #1 and #2,
168 respectively. **J.** Semi-quantitative RT-PCR gels and the quantification of EIciGFP levels in
169 HEK293 cells after transfection of indicated mutation plasmids. The eukaryotic resistance gene
170 (NeoR) of the plasmids was used as the loading control. For A, E-G, and J, P-values were
171 calculated using two-tailed Student's *t*-test. **p* < 0.05; ***p* < 0.01; ****p* < 0.001; *****p* < 0.0001.
172 In C, P-values were calculated using the Kolmogorov-Smirnov test. In A, E, and J, error bars
173 represent SD in triplicate experiments.


Supplemental Figure S12

174 **Supplemental Figure S12. Expression of splicing factors and EIciRNAs during neuronal
175 differentiation.**

176 **A.** Representative immunofluorescence (IF) images showing the distribution of the neuronal
177 marker TUBB3 during RA-induced SH-SY5Y cell differentiation. **B.** Western blot of TUBB3
178 protein during RA-induced differentiation of SH-SY5Y cells. GAPDH was used as the loading
179 control. **C.** RT-qPCR analysis of *RARA* mRNA levels during RA-induced differentiation of SH-
180 SY5Y cells. Error bars represent SD in triplicate experiments and P-values were calculated with
181 two-tailed Student's *t*-test. **p < 0.01; ***p < 0.001. **D.** Venn diagram showing the overlap of
182 EIciRNAs detected from SH-SY5Y cells and published ONT data of the human brain
183 (GSE141693). **E.** Violin plots showing expression levels of 15,967 protein-coding genes (TPM
184 ≥ 1) and 141 splicing factors (Papasaikas et al. 2015) during the RA-induced differentiation of
185 SH-SY5Y cells. **F.** Heatmap showing expression levels of 141 splicing factors in **E** during the
186 RA-induced differentiation of SH-SY5Y cells.

Supplemental Figure S13

187 **Supplemental Figure S13. *EIciLIMK1* promotes neuronal differentiation by enhancing**
188 ***LIMK1* expression.**

189 **A.** IGV snapshot showing *EIciLIMK1* signals during the RA-induced differentiation of SH
190 SY5Y cells. *EIciLIMK1* was also confirmed by the published ONT data from the human brain
191 (Xin et al. 2021). **B.** RT-qPCR and western blot showing the SRSF1 level in SH-SY5Y cells
192 after *SRSF1* knockdown. shCtrl, shRNA with scrambled sequences; sh*SRSF1*-1 and sh*SRSF1*-
193 2, two independent shRNAs against *SRSF1*. **C.** Western blot assessing the distribution of
194 nuclear and cytosolic markers, as well as SRSF1, in whole cell lysate (total), cytosol (cyto),
195 and nucleus (nuc) obtained through the nucleocytoplasmic separation assay. SRSF1 RNA
196 immunoprecipitation (RIP) samples were also included in the analysis. **D.** RT-qPCR analysis
197 of SRSF1 RIP samples showing the binding of SRSF1 on *EIciLIMK1* and the flanking introns
198 in SH-SY5Y cells. The primers covering the *EIciLIMK1* locus were indicated below. **E.** RT-
199 qPCR analysis of the expression levels of *EIciLIMK1* and *LIMK1* mRNA upon shRNA- or
200 ASO-mediated knockdown of *EIciLIMK1* in SH-SY5Y cells. sh*EIciLIMK1* and *EIciLIMK1*
201 ASO were targeting the BSJ sequence of *EIciLIMK1*. Scramble ASO, ASO with scramble
202 sequences. **F.** RT-qPCR analysis of the expression levels of *LIMK1* mRNA and *EIciLIMK1*
203 upon knockdown of *LIMK1* mRNA with siRNA. siCtrl, siRNA with scramble sequences;
204 si*LIMK1*, siRNA against *LIMK1* mRNA. **G-H.** Western blot showing the expression levels of
205 *LIMK1* and p-cofilin protein after knockdown of *LIMK1* mRNA with siRNA (**G**), or
206 knockdown of *EIciLIMK1* with ASO (**H**) in SH-SY5Y cells followed by uninduced or RA-
207 induced differentiation. GAPDH was used as the loading control. **I-J.** Representative IF images
208 showing the changes of F-actin after knockdown of *LIMK1* mRNA with siRNA (**I**), or
209 knockdown of *EIciLIMK1* with ASO (**J**) in SH-SY5Y cells followed by RA-induced
210 differentiation (left). Quantitative analysis of F-actin fluorescence intensity was shown (right).
211 N=40. In B, and D-F, error bars represent SD in triplicate experiments and P-values were
212 calculated with two-tailed Student's *t*-test. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.
213 In I and J, P-values were calculated with the Wilcoxon rank-sum test.

214 **Descriptions of Supplemental Tables S1-S11**

215 **Supplemental Table S1.**

216 A. circRNAs detected from RNase R-treated RNA-seq data of HEK293 cells using CIRI2.

217 B. EIciRNAs detected from RNase R-treated RNA-seq data of HEK293 cells using FEICP.

218 **Supplemental Table S2.**

219 A. Information of 20 EIciRNAs whose expression levels were determined using RT-qPCR to
220 validate the accuracy of FEICP pipeline.

221 B. Information of 10 EIciRNAs detected by FEICP but missed out by isoCirc in HEK293 cells
222 used for validation via RT-PCR.

223 **Supplemental Table S3.**

224 Intron retention in linear RNAs (LIR) detected from HEK293 cells using IRFinder
225 ($IRratio \geq 0.1$).

226 **Supplemental Table S4.**

227 A. List of sequence features used for classification of three categories of introns using deep
228 learning.

229 B. Top 50 sequence features distinguishing three categories of introns from each other.

230 **Supplemental Table S5.**

231 Counts of sgRNAs in CRISPR screening in P-In and E-In reporter cells.

232 **Supplemental Table S6.**

233 Expression levels of EIciRNAs upon *SRSF1* knockdown in HEK293 cells.

234 **Supplemental Table S7.**

235 A. Gene counts in HEK293 cells upon knockdown of *SRSF1*.

236 B. Differential gene expression analysis with DESeq2 upon *SRSF1* knockdown in HEK293

237 cells.

238 **Supplemental Table S8.**

239 Differential analysis of LIR in *SRSF1* knockdown HEK293 cells using IRFinder.

240 **Supplemental Table S9.**

241 Gene counts detected from RNA-seq data during SH-SY5Y differentiation.

242 **Supplemental Table S10.**

243 Public datasets used in this study.

244 **Supplemental Table S11.**

245 Oligonucleotide sequences used in this study.

246 **Supplemental Methods**

247 **Analysis of gene expression from RNA-seq data**

248 For all RNA-seq data analysis, STAR (Dobin et al. 2013) was used to map sequencing reads
249 onto the reference genome (GRCh38 for human and GRCm38 for mouse) using the standard
250 parameters used by ENCODE RNA-seq pipeline. RSEM v1.3.1 (Li and Dewey 2011) was used
251 to estimate the abundance of all transcripts in GENCODE gene annotation GTF file (Frankish
252 et al. 2021).

253 **Differential expression analysis of genes**

254 The read counts of genes were extracted from the RSEM results, and the counts for all genes in
255 each sample were merged into one matrix. The expression matrix was used as the input of R
256 package DESeq2 (Love et al. 2014) to assess the differential expression. A gene was considered
257 significantly differentially expressed with the cutoff (fold change ≥ 1.5 or ≤ 0.667 , and p-value
258 < 0.05).

259 **Definition of EcircRNAs**

260 It was easier to confirm the existence of IR events than to confirm their non-existence, due to
261 the possibility of IR detection failure from insufficient RNA sequencing depth. To minimize
262 the false positive outcomes, a circRNA was considered as an EcircRNA only when it met the
263 following criteria: (1) either its start or end coordinates matched to the exon boundary of known
264 transcripts; (2) no EIciRNA with the same BSJ was detected; (3) the total number of BSJ
265 supporting this circRNA in all samples must be at least 5.

266 **Tissue specificity analysis of genes and circRNAs**

267 Tau method (Yanai et al. 2005) was used to characterize the tissue specificity of genes and
268 circRNAs. The tau value was calculated using the following formula:

$$269 \tau = \frac{\sum_{i=1}^n (1 - y_i)}{n - 1}; y_i = \frac{x_i}{\max_{1 \leq i \leq n} (x_i)}$$

270 x_i indicated the expression level of molecule x in tissue i . Transcripts per million (TPM) was
271 calculated to represent the expression levels of protein-coding genes (PCGs) or lncRNAs, and
272 backspliced reads per million (BRPM) was calculated to represent the expression levels of
273 circRNAs. The tissue specificity index τ values ranged from 0 (expressed in all tissues) to 1
274 (expressed exclusively in one tissue).

275 **Correlations between expression levels of RBPs and EIciRNAs**

276 Expression levels of RBPs (Gerstberger et al. 2014) were calculated across 19 human tissues.
277 1,031 RBPs with TPM ≥ 1 in at least one tissue were regarded as expressed, and selected for
278 further analysis. 1,628 EIciRNAs whose total BRPM in 19 tissues was at least 0.1 were selected
279 for further analysis. Spearman's correlation coefficients between expression levels of the RBPs
280 and EIciRNAs were calculated, followed by hierarchical clustering using hclust function in R
281 based on Euclidean distances and ward.D2 clustering method. Correlations between RBP and
282 sum of EIciRNA BRPM in each tissue were computed, and then all RBPs were ranked
283 according to the correlations. We selected the top 100 RBPs with the most negative correlations,
284 and performed protein-protein interaction analysis using STRING (Szklarczyk et al. 2019),
285 followed by clustering into 3 clusters using k-means clustering algorithm, and the top-ranked
286 associated biological process was shown for each cluster.

287 **The correlation between IR and gene expression**

288 For the detection of EIciRNAs, 38 total RNA-seq data from 19 human tissues were analyzed
289 using FEICP. As for the detection of IR in linear RNAs, all poly(A)-plus RNA-seq data of
290 human tissues from ENCODE portal were downloaded, and those with any problem about the
291 data quality were excluded, leaving 70 datasets from 31 tissues. IRFinder (Middleton et al. 2017)
292 was then used to analyze these datasets, and introns with IRratio ≥ 0.1 were considered to be
293 retained in linear RNAs. For each tissue, genes were binned into deciles according to their TPM
294 values and the proportion of corresponding IR was calculated in each decile.

295 **Defining of CIR, LIR, and NCI used for deep learning**

296 For each intron, the number of reads for exon1-intron junction (E1I), intron-exon2 junction
297 (IE2) and exon1-exon2 junction (E1E2) was calculated. The metric percent intron retention
298 (PIR) was then calculated using the following formula as described in (Braunschweig et al.
299 2014):

300

$$PIR = \frac{\frac{E1I + IE2}{2}}{\frac{E1I + IE2}{2} + E1E2}$$

301 FEICP pipeline was used to detect introns retained in EIciRNAs from RNase R-treated RNA-
302 seq data, and those introns with PIR ≥ 0.1 were selected as CIRs. Similarly, EcircRNAs from
303 the same sequencing data were detected using CIRI2 and the introns with PIR ≤ 0.02 within
304 EcircRNAs were selected as NCI. IRFinder was used to analyze poly(A)-plus RNA-seq data.
305 Those introns with IRratio ≥ 0.1 without warnings were selected as LIRs.

306 **Construction of the NNetwork for intron classification**

307 The deep learning was performed as described with some modifications (Yeom et al. 2021).
308 Introns belonging to only one group were selected, and their sequence features were calculated
309 for deep learning. The sequence features were composed of five groups: sequence motifs,
310 transcript features, RNA secondary structure, nucleosome positioning, and conservation. FIMO
311 (Grant et al. 2011) was used for searching RBP binding motifs. RNAfold from ViennaRNA
312 package (Lorenz et al. 2011) was used for the prediction of RNA secondary structure. NuPoP
313 (Xi et al. 2010) was used for the prediction of nucleosome positioning, and MaxEntScan (Yeo
314 and Burge 2004) was used for the prediction of splice site strength. For conservation analysis,
315 conservation scores represented by PhastCons (Siepel et al. 2005) for multiple alignments of
316 99 vertebrate genomes to the human genome were downloaded from UCSC Genome Browser
317 (<https://hgdownload.cse.ucsc.edu/goldenPath/hg38/phyloP100way>) (Kent et al. 2002) , and
318 bwtool (Pohl and Beato 2014) was used to calculate the sequence conservation. All other
319 sequence features were calculated using custom Python scripts with the help of BEDTools
320 (Quinlan and Hall 2010). A three-layer deep neural network was constructed using Keras v2.6.0
321 (<https://keras.io>) which used TensorFlow (Abadi et al. 2016) as the backend, and was trained
322 using a five-fold cross-validation fold method, to predict the group to which an intron belonged.
323 For assessment of the DNN performance, the ROC curve was plotted, and AUC was calculated
324 using the Python package scikit-learn v1.0.2 (Pedregosa et al. 2011). The decrease of the AUC
325 value when the values of one feature were replaced by its median was used to represent the
326 importance of this feature.

327 **Analysis of RNA-binding protein (RBP) binding in CIR**
328 Public RNA-seq data from K562 under accession SRR1049832 and SRR1049833 were re-
329 analyzed with FEICP, followed by the identification of CIR and NCI. The peak bed files and
330 signal bigwig files for 134 RBPs eCLIP-seq (Van Nostrand et al. 2020) in K562 cells were
331 downloaded from the ENCODE data portal. For each RBP, BEDTools intersect was used to
332 obtain the peaks located in introns. The peak signals were extracted using bwtool from the
333 corresponding bigwig files. The signals of each RBP in CIR over NCI were compared and P-
334 values were calculated with Wilcoxon rank-sum test.

335 **Calculation of the proportion of CIR and genes generating EIciRNAs in human genome**
336 EIciRNAs from 244 public RNA-seq data from 102 human tissue or cell samples were analyzed
337 using FEICP. For n in any of 1, 2, ..., 102, n samples were randomly selected, and the total
338 number of CIR was calculated from them. This process was iterated 1,000 times and then the
339 mean of each number of samples was calculated. To fit these means, a function with two
340 exponential terms, $f(x) = C_1(1-e^{-C_2x})+C_3(1-e^{-C_4x})$, was used. The limit of this function
341 when the variable x was close to ∞ , $C_1 + C_3$, was used to represent the total proportion of
342 CIR in human genome. Calculation of the total proportion of protein-coding genes generating
343 EIciRNAs was performed in a similar approach.

344 **RNA-seq library preparation**
345 Total RNA was extracted using TRIzol reagent (Invitrogen) according to the manufacturer's
346 instructions, followed by DNase treatment. Next, DNase-treated RNA was used for library
347 preparations with the NEBNext Ultra RNA Library Prep Kit for Illumina (NEB, USA)
348 following manufacturer's recommendations. For circRNA sequencing, RNA was digested with
349 3 U of RNase R (Epicentre, USA) per μ g of RNA to remove linear RNAs before library
350 preparation. Each library was sequenced on a NovaSeq 6000 (Illumina) platform and 150-bp
351 paired-end reads were generated, with a sequencing depth of ~30 million reads.

352 **Cell culture, induction of differentiation, and transfection**
353 Human embryonic kidney cells (HEK293) were cultured with DMEM supplemented with 10%
354 FBS and 1% penicillin/streptomycin (P/S), incubated at 37°C, 5% CO₂. SH-SY5Y cells were
355 from Cell Bank/Stem Cell Bank, Chinese Academy of Sciences (SCSP-5014), cultured with
356 DMEM supplemented with 12% FBS and 1% P/S at 37°C, 5% CO₂. For differentiation of SH-
357 SY5Y, cells were seeded in a plate with a density of $1 \times 10^5/\text{cm}^2$ overnight and changed with the
358 complete medium to differentiation medium (DMEM, 1% FBS, 1% P/S, 10 μ M Retinoic Acid).
359 Cells were cultured in the dark at the third and sixth day. The medium was changed every two
360 days. For HEK293 cells, the plasmids (2 μ g/ml, final concentration) were transfected to each
361 well using Lipofectamine 2000 (Invitrogen, 11668019). For SH-SY5Y cells, the plasmids (5
362 μ g/ml, final concentration) were transfected with Lipofectamine 3000 (Invitrogen, L3000008),
363 and 100 nM (final concentration) siRNAs or 2-O-methyl RNA/DNA antisense oligonucleotides
364 (ASOs) were transfected to each well with RNAiMax (Invitrogen, 13778075). All procedures
365 were performed according to the manufacturer's protocol.

366 **Whole-genome CRISPR knockout screen and data analysis**
367 The human CRISPR knockout pooled library (Brunello) was purchased from Addgene (#73179)
368 and infected into reporter cell lines, according to the instructions. After 48 h infection, the
369 infected cells were selected with 1 μ g/ml puromycin for seven days. The uninfected HEK293
370 cells were used to set the control gate of mCherry fluorescence, and mCherry-positive cells
371 were subjected to sorting by GFP using FACS. Among the GFP-positive cells, those with the
372 GFP intensity falling in the top or bottom 10% were collected separately, and then the genomic
373 DNA of 4×10^6 cells was extracted. The sgRNAs were amplified using PCR, and the purified
374 PCR product was subjected to HTS. Primers used for PCR amplification are listed in
375 Supplemental Table S11. For CRISPR screen data analysis, adapters and sequencing primers
376 were removed, and sgRNA sequences were extracted using a custom Python script from raw

377 fastq files. Then the sgRNA sequences were aligned to the Brunello library sequences using
378 bowtie (Langmead et al. 2009). SAMtools idxstats (Li et al. 2009) was used to estimate read
379 counts for each sgRNA from the alignment results. To assess the enrichment of sgRNAs
380 between the input and High-GFP, or Low-GFP groups, we used the MAGeCK (v0.5.9.5)
381 algorithm (Li et al. 2014) to determine positive enrichment scores for each gene via robust rank
382 aggregation (RRA). Candidate genes were defined as effective sgRNAs ≥ 3 , fold change ≥ 1.5 ,
383 and P-value < 0.05 .

384 **Image processing and quantification**

385 Images and the quantifications were analyzed by image processing software, Fiji (Schindelin
386 et al. 2012). For semi-quantitative RT-PCR and western blot experiments, the images were
387 rotated so that the bands were lined up horizontally. The density of the band presented inside
388 the “mountains” was measured and analyzed. The background was subtracted from an area
389 above each band that was the same size as the respective band. For IF images, the color channels
390 were split and merged with Fiji. The fluorescence was analyzed and measured. The cell regions
391 were defined by freehand.

392 **Nuclear run-on and sequencing**

393 Nuclear run-on was performed as described in the previous study (Li et al. 2015; Core et al.
394 2008). Briefly, the cells were harvested in ice-cold hypotonic solution (10 mM Tris-HCl pH 7.4,
395 150 mM KCl, 4 mM MgOAc, 200 units/ml RNase Inhibitor (ABclonal, RK21401)) and were
396 centrifuged at 1,000 g for 3 min at 4°C. The pellets were resuspended in lysis buffer (10 mM
397 Tris-HCl pH 7.4, 150 mM KCl, 4 mM MgOAc, 0.5% NP-40, 10% glycerol, 200 units/ml RNase
398 Inhibitor) and centrifugated by sucrose density gradient. The pellets were lysed with run-on
399 buffer (10 mM Tris-HCl pH 7.4, 5 mM MgCl₂, 150 mM KCl, 1% sarkosyl, 2 mM DTT) and
400 added with 10 mM ATP, CTP, GTP, BrUTP, and 200 units/ml RNase inhibitor. The mixtures
401 were incubated for 5 min at 30°C. The RNA was extracted by TRIzol reagent (Invitrogen) and
402 treated with DNase I (Thermo Fisher, EN0521) digestion. For global run-on sequencing (GRO-
403 seq), the RNA was fragmented by Magnesium and then anti-BrdU antibody (NOVUS, NB500-
404 235) was used to immunoprecipitate the fragmented RNA. The library was constructed
405 following “RNA-seq library preparation”. For real-time quantitative PCR (RT-qPCR) assays,
406 anti-BrdU antibody was used to immunoprecipitate the nascent RNA, which was reverse
407 transcribed to cDNA. RT-qPCR primers used are listed in Supplemental Table S11.

408 **Data analysis of GRO-seq**

409 Raw sequence reads were trimmed for adaptor using cutadapt (Martin 2011). Trimmed reads
410 were mapped to GRCh38 using bowtie2 (Langmead and Salzberg 2012) and only uniquely
411 mapped reads were retained. Density of GRO-seq was then calculated for plus and minus
412 strands and normalized using the total uniquely mapped reads using bamCoverage in deepTools
413 (Ramírez et al. 2016). BEDTools was then used to calculate the signal density of GRO-seq on
414 genes.

415 **Prediction of full-length of EcircRNAs from RNA-seq data**

416 Psirc (pseudo-alignment identification of circular RNAs) v1.0 (Yu et al. 2021) was used to
417 predict the full-length of EcircRNAs from RNA-seq data according to the authors’ instructions
418 (<https://github.com/Christina-hshi/psirc>).

419 **Calculation of *Alu* counts in introns**

420 To determine the number of *Alu* in flanking introns of circRNAs, flanking introns of circRNAs
421 were extracted and then *Alu* was counted using BEDTools. The *Alu* elements were extracted
422 from the repeatMasker file downloaded from UCSC genome Browser
423 (<http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz>).

424 **Gene enrichment analysis**

425 Gene ontology (GO) analysis was performed using the R package ClusterProfiler v4.7.1.003
426 (Wu et al. 2021).

427 **EIciRNA detection from ONT data**

428 isoCirc v1.0.4 was used to re-analyze the nanopore sequencing data of HEK293 and 12 human
429 tissues generated from the previous report (Xin et al. 2021) to obtain the full-length of
430 circRNAs. Then their host transcripts were identified as in “The FEICP pipeline” section. Those
431 circRNAs that retained the whole intron of the corresponding transcript were regarded as
432 EIciRNAs.

433 **Detection of EIciRNAs using CIRI-full and CYCLER**

434 CIRI-full (Zheng et al. 2019) was performed on four replicates of RNase R-treated RNA-seq
435 data in HEK293 cells from this study, according to the instructions (<https://ciri-cookbook.readthedocs.io/en/latest/CIRI-full.html>). Briefly, CIRI-full Pipeline module was
436 used to automatically detect and reconstruct circRNAs, followed by estimating the related
437 abundance of isoforms according to the output of CIRI-full using CIRI-vis. CYCLER (Stefanov
438 and Meyer 2023) was performed on the same set of RNA-seq data according to the instructions
439 (https://raw.githubusercontent.com/stivln/CYCLER/main/CYCLER_workflow.pdf), in which
440 public RNA-seq data (SRR22315104, SRR22315105, SRR22315106, and SRR22315107)
441 without RNase R-treatment was used as control to identify circRNA specific features. For both
442 software, isoforms with a whole intron retained in circRNAs were considered as EIciRNAs.
443

444 **Detection of cryptic exons included in circRNAs**

445 The full-length circRNAs in HEK293 cells were detected from the ONT data generated by Xin
446 et al. using isoCirc (Xin et al. 2021). Exons met: (1) not annotated as exons in gene annotation
447 file; (2) overlapped with introns, were extracted using BEDTools and considered as cryptic
448 exons included in circRNAs.

449 **Analysis of RBP binding density on EIciRNAs**

450 Overlap of the 1,031 RBPs contained in Fig. 2E with the ENCODE eCLIP-seq of K562 resulted
451 in 98 RBPs, in which 80 and 18 belonged to “Cluster A” and “Cluster B”, respectively. The
452 binding density on retained introns, circular exons, and flanking introns of 1,231 EIciRNAs in
453 “Cluster 1” was calculated using deepTools for each RBP. The mean binding density on these
454 regions was calculated and compared for RBPs in “Cluster A” and “Cluster B”, respectively.

455 **Calculation of proportions of genes generating EIciRNAs or EcircRNAs**

456 EIciRNAs were detected from 38 total RNA-seq data of 19 human tissues as described in “The
457 correlation between IR and gene expression” section, and EcircRNAs were detected from the
458 same sets of RNA-seq data using CIRI2. Genes were binned into deciles according to
459 expression levels and proportions of genes generating EIciRNAs or EcircRNAs were calculated
460 for each bin in each tissue.

461 **Definition of EIciRNA-match genes**

462 All expressed protein-coding genes ($TPM \geq 1$) were sorted according to TPM. For each
463 EIciRNA, the gene with the closest expression level to its parental gene was referred as its
464 “EIciRNA-match” gene.

465 **Construction of neural network for predicting intron retention in linear RNAs**

466 Based on the results of IRFinder, introns with $IRRatio \leq 0.02$ were considered as not retained in
467 linear RNAs. The 1,309 sequence features of these spliced introns and LIR were subjected to

468 train a three-layer neural network tasked with predicting whether an intron was retained in
469 linear RNAs or not (NNetwork-linear). The construction of NNetwork-linear and the its
470 application in CIR were similar to description in “Construction of the NNetwork for intron
471 classification” section.

472 **Assessment of enrichment of isoCirc-detected circRNAs**

473 The full-length sequence of EIciRNAs was detected from isoCirc, followed by adding the first
474 30 nucleotides of EIciRNAs and an additional 150 Ns to the end of EIciRNAs. Kallisto (Bray
475 et al. 2016) was used to quantify abundance of these transcripts from the RNase R-treated RNA-
476 seq data generated in this study and the public total RNA-seq data without RNase R treatment
477 (SRR22315104, SRR22315105, SRR22315106, and SRR22315107). P-values were calculated
478 between RNase R+ and RNase R- samples using Student's *t*-test. EIciRNAs with FoldChange
479 ≥ 1.5 and P-value < 0.05 were considered to be enriched by RNase R-treatment.

480 **Assessment of performance of FEICP on sequencing reads with different fragment size
481 and read length**

482 The paired-end 250 (PE250) RNA-seq data without fragmentation was downloaded from NCBI
483 (SRA: SRR7350933), and FEICP was applied to this dataset to detect EIciRNAs. BSJ reads of
484 these EIciRNAs were extracted, followed by inferring their fragment length based on the
485 alignment file and exon-intron structure of EIciRNAs. BSJ reads were categorized into five
486 groups based on their fragment size: 250-350, 350-400, 400-450, 450-500, and ≥ 500 . FEICP
487 was also used to detect EIciRNAs from sequencing reads with varied lengths (PE50, PE100,
488 PE150, PE200) obtained by trimming PE250 data. For each fragment group and read length
489 group, the number and length of EIciRNAs were counted.

490 **Metaplot**

491 To visualize the signal density of DNase-seq and ChIP-seq, the corresponding bigwig files,
492 which represented the fold change of signal over control from ENCODE data portal were
493 downloaded (The ENCODE Project Consortium 2012). The average signal density around the
494 transcript start site (TSS) of genes was then calculated using computeMatrix reference-point
495 implemented in deepTools. For TT-seq of four cell lines, the average signal density along the
496 whole gene body was calculated using computeMatrix scale-regions implemented in deepTools.

497 **t-SNE algorithm**

498 For dimensional reduction of sequence features of introns, R package Rtsne v0.16
499 (<https://github.com/jkrijthe/Rtsne>) was used to perform t-SNE algorithm (van der Maaten and
500 Hinton 2008; van der Maaten 2014).

501 **Public RNA-seq data for verifying sequence features identified by deep learning**

502 In Supplemental Fig. S8, we used publicly available RNase R-treated RNA-seq data for the
503 identification of CIR and NCI. We used polyA-plus RNA-seq data for the identification of LIR.
504 For CIR and NCI, RNA-seq data under bioproject PRJNA722575 for HEK293, HeLa and SH-
505 SY5Y (Liu et al. 2021), and accession SRR1049832, SRR1049833 for K562 were downloaded.
506 As for LIR, data for HEK293, K562 and SH-SY5Y cells were downloaded from the RNA atlas,
507 which provides a comprehensive transcriptome atlas of 300 human tissues and cell lines, and
508 under accession SRR4035637 from our previous study for HeLa cells.

509 **Expression analysis of EIciRNAs after *SRSF1* knockdown**

510 Considering *SRSF1* knockdown could have effect on both linear and back splicing, the
511 following method was used to normalize the read counts of EIciRNAs from FEICP. First, the
512 back-spliced junction counts from CIRI2 and forward-spliced junction counts from STAR were
513 combined into a single matrix of spliced junctions, which was then used to calculate the
514 normalization factors among different biosamples using the generalized linear model (GLM)

515 implemented in estimateSizeFactors function in DESeq2. Second, read counts of EIciRNAs
516 from FEICP were normalized through dividing BSJ counts by the corresponding normalization
517 factors. EIciRNAs with fold change ≥ 2 or fold change ≤ 0.5 were selected as differentially
518 expressed EIciRNAs.

519 **Analysis of SRSF1 iCLIP-seq data in HEK293 cells**

520 The SRSF1 iCLIP-seq data in HEK293 was downloaded under accession SRR3734557,
521 SRR3734558 and SRR3734559. Data analysis of iCLIP-seq data was performed with the
522 previously described pipelines with some modifications (Howard et al. 2018; Wang et al. 2021).
523 Briefly, the first 9 bp in each read (the 5-9 bp of random nucleotides was used for identifying
524 PCR duplicates) were removed, followed by trimming off the adaptor sequence. Trimmed reads
525 were then aligned to the human genome (hg38) allowing no more than one alignment using
526 STAR (--outFilterMultimapNmax 1). Reads were then truncated to their 5' ends, whose
527 genomic locations were considered as the crosslinking sites. Those reads with the same
528 genomic location and 5-bp random nucleotide were duplicated. For motif analysis, a 41-nt
529 region was created by extending 20-nt upstream and downstream of each crosslinking site,
530 followed by extraction of sequences. These sequences were subjected to AME (McLeay and
531 Bailey 2010) for searching motifs, and the outputted motifs were compared against the Ray2013
532 Homo sapiens database (Ray et al. 2013), including 102 known RNA motifs of 80 RBPs, using
533 TOMTOM (Tanaka et al. 2011). The 6-nt motif matched to the known SRSF1-binding motif
534 with p-value < 0.05 was selected.

535 **Plasmids and construction of plasmids**

536 All plasmids were constructed through restriction enzyme digestion along with ligation or
537 recombination (Vazyme). The intron from *EIciPAIP2* or *EIciEIF3J*, including 10-nt exon
538 sequences by the exon-intron boundary was inserted in circGFP plasmid (a gift from Z. Wang)
539 using EcoRI and SalI restriction sites. To knock down *SRSF1* and *EIciLIMK1*, the target
540 sequences of *SRSF1* and *EIciLIMK1* were cloned into pLKO.1 vector between AgeI and EcoRI
541 sites. The shRNA plasmids were used to knockdown *DHX9* (shDHX9, TRCN0000001208),
542 *DHX15* (shDHX15, TRCN0000000006), *HNRNPC* (shHNRNPC, TRCN0000006645), *LSM6*
543 (shLSM6, TRCN0000074718), *SNRPA1* (shSNRPA1, TRCN0000072503), *TGS1* (shTGS1,
544 TRCN0000060829), *PABPC1* (shPABPC1, TRCN0000074640) was obtained from the
545 MISSION shRNA Library (Sigma-Aldrich, Germany). The negative control (shC002) for
546 shRNA plasmid was purchased from Sigma-Aldrich. The coding sequences (CDS) of *SRSF1*
547 and *LIMK1* were cloned in p3 \times FLAG-Myc-CMV-24, respectively. The plasmid of *EIciLIMK1*
548 overexpression was constructed with *EIciLIMK1* corresponding sequences plus the 1.0 kb from
549 upstream and downstream of flanking sequence. PCR primers are listed in Supplemental Table
550 S11.

551 **Construction of the reporter cell lines for CRISPR screening**

552 The cell lines stably expressing GFP and mCherry were constructed as follows. (1) Two GFP-
553 expressing plasmids and a mCherry-expressing plasmid were simultaneously transfected into
554 HEK293 cells; (2) After 48 h transfection, the cells were treated with 600 μ g/ml geneticin
555 (G418) for selection in the following seven days; (3) The single cells co-expressing GFP and
556 mCherry fluorescence were sorted by FACS and then seeded to the 96-well plate; (4)
557 Subsequently, the cells were cultured and subjected to 300 μ g/ml G418 selection for ten days.
558 The single-clone highly co-expressing GFP and mCherry fluorescence was re-sorted to single
559 cell and seeded to the next the 96-well plate. The step (4) was repeated. Finally, the single clone
560 with more than 97% co-expressing GFP and mCherry fluorescence cells was selected and
561 scaled up as the reporter cell lines.

562 **Fluorescence-activated cell sorting (FACS) and flow cytometry**

563 For detecting GFP and mCherry fluorescence from reporter cell lines, the cells were first
564 detached with trypsin-EDTA and resuspended in sorting buffer (1% FBS, 1 mM EDTA in PBS).

565 The 488 nm excitation was used to detect the fluorescence of GFP, and 561 nm excitation was
566 used to detect the fluorescence of mCherry. The MoFlo Astrios Cell Sorter platform (Beckman
567 Coulter) was used to sort single cells co-expressing GFP and mCherry, and distribute the cells
568 into a 96-well plate pre-filled and pre-warmed with 150 μ l DMEM supplemented with 10%
569 FBS and 1% P/S. For measurement of GFP intensity in *SRSF1* knockdown reporter cells, the
570 CytoFLEX platform (Beckman Coulter) was used. The FACS data was analyzed with FlowJo.

571 **Western blotting**

572 Whole-cell lysates were lysed in RIPA lysis buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 5
573 mM EDTA, 1% NP-40, 0.1% SDS, 1 \times Protease Inhibitor Cocktail (TransGen, DI101-01), 1 \times
574 Phosphatase Inhibitor Cocktail (TransGen, DI201-01)) and quantified using Bicinchoninic Acid
575 methods (BCA). The proteins were separated on SDS-PAGE gels and transferred to
576 nitrocellulose membranes (Millipore). The ECL western blotting procedure was used for HRP
577 detection (GE Healthcare). Fiji was used to quantify the bands. These antibodies were utilized
578 for western blots: anti-SRSF1 (Santa Cruz, #sc-33652), anti-LIMK1 (CST, #3842), anti-
579 Phospho-Cofilin (Ser3) (Proteintech, 29715-1-AP), anti-GAPDH (Proteintech, 10494-1-AP),
580 anti-Histone3 (Signalway, #21137), anti-TUBB3 (Proteintech, 66375-1-Ig), anti-GFP
581 (TransGen, HT801-01).

582 **Immunofluorescence (IF) staining**

583 Cells were plated on poly-D-lysine coated coverslips. The plated cells were washed twice with
584 PBS and then fixed with 4% paraformaldehyde (PFA, methanol-free) for 10 min at room
585 temperature, following by washing three times with PBST and permeabilized with PBS plus
586 0.5% Triton X-100 for 10 min on ice. Then the cells were blocked with blocking buffer (PBST
587 plus 1% BSA) for 30 min at room temperature. For the microtube, the plated cells were
588 incubated with anti-TUBB3 (Proteintech, 66375-1-Ig) diluted in blocking buffer at 4°C
589 overnight. After washing three times with PBST, the plated cells were incubated with secondary
590 antibodies diluted in blocking buffer for 2 h at room temperature in the dark. For F-actin, the
591 plated cells were incubated with Actin-Tracker (Beyotime, C2205S) diluted in blocking buffer
592 for 2 h at room temperature. Next, DAPI (Sigma-Aldrich, F6057) was used to stain nuclei. The
593 images were taken at 25 \times (microtube) or 40 \times (F-actin) objective with ZEISS LSM 980 confocal
594 microscope. Fiji was used to quantify the mean intensity of cells by freehand and forty cells
595 were counted in each condition.

596 **PCR reactions**

597 The total RNA was extracted with TRIzol reagent (Invitrogen), and DNase I was used to digest
598 the genomic DNA, according to the manufacturer's protocol. The cDNA was synthesized from
599 the RNAs using reverse transcriptase (ABclonal, RK20400) in the presence of oligo dT or
600 random hexamer primers. The RT-qPCR was performed with Universal SYBR Green Fast
601 qPCR Mix (ABclonal, RK21204) on QuantStudio 3 real-time PCR Instrument according to
602 recommended procedures. For semi-quantitative RT-PCR reaction, 13-25 cycles were used to
603 amplify the segment of DNA. PCR and RT-qPCR primer sequences are listed in Supplemental
604 Table S11.

605 **EU labeling and purification of nascent RNA**

606 The nascent RNA experiment was performed as described in the previous publication with
607 minor modifications (Bao et al. 2018). In brief, the cells were incubated with 250 μ M EU
608 (RiboBio, C00064) for 2 h. The labeled cells were fixed with 90% ethanol for 30 min on ice
609 and permeabilized with 0.5% Triton X-100 diluted in PBS for 15 min on ice. The click
610 chemistry buffer (0.25 mM biotin-azide, 0.3 mM CuSO₄, 0.6 mM THPTA, 1 mM
611 aminoguanidine, 5 mM sodium L-ascorbate) was added in cells to link EU and biotin for 3 min
612 at room temperature. The reaction was stopped by washing three times with stop buffer (0.5%
613 Triton X-100, 2 mM EDTA) at room temperature. The cells were lysed with lysis buffer (20
614 mM Tris-HCl pH 7.4, 1 mM EDTA pH 8.0, 500 mM LiCl, 0.5% LDS, 5 mM DTT) and

615 sonicated in Bioruptor for 10 min on ice. The supernatant was incubated with 100 μ l
616 streptavidin-conjugated magnetic beads to capture biotinylated EU-labeled RNAs for 4 h at 4°C.
617 After stringent washings, the RNA was eluted by elution buffer (10 mM EDTA pH 8.2, 95%
618 formamide) for 5 min at 90°C and extracted by TRIzol reagent. All buffers were supplemented
619 with 200 units/ml RNase inhibitor (ABclonal, RK21401).

620 **Nucleocytoplasmic separation and RIP-qPCR**

621 The cultured cells were rinsed twice with PBS and exposed to a UV cross-linker for 2 min at
622 254 nm and 400 mJ/cm². The irradiated cells were harvested in ice-cold lysis buffer (10 mM
623 Tris-HCl pH 8.4, 140 mM NaCl, 1.5 mM MgCl₂, 0.5% NP-40) and centrifuged at 1,000 g for
624 3 min at 4°C. The supernatant was collected for WB and RNA as the fraction of cytoplasmic.
625 The pellets were resuspended with ice-cold lysis buffer supplementary with 1/10th volume
626 detergent stock (3.3% (w/v) Sodium Deoxycholate, 6.6% (v/v) Tween 40) and incubated on ice
627 for 5 min. The nuclei were collected by centrifugation at 1,000 g for 3 min at 4°C. The nuclei
628 were washed twice using ice-cold lysis buffer. The nuclei were lysed in RIPA buffer (50 mM
629 Tris-HCl pH 8.0, 150 mM NaCl, 5 mM EDTA, 1% NP-40, 0.1% SDS) and sonicated in
630 Bioruptor for 10 min on ice and then centrifuged at 12,000 g for 10 min at 4°C. The supernatant
631 was pre-cleared for 1 h at 4°C with Protein G Magnetic Beads (Thermo). 50 μ l beads was added
632 with 5 μ g anti-SRSF1 antibody (Santa Cruz, #sc-33652) or IgG (as control) together and
633 incubated for 30 min at room temperature. The beads-antibody mixtures were washed twice
634 using RIPA buffer and pre-cleared supernatant was added and incubated overnight at 4°C. The
635 complex was washed five times with RIPA buffer, and three-tenths samples were saved as
636 western blots. Samples were then extracted as RNA by TRIzol reagent (Invitrogen). All buffers
637 were supplemented with RNase inhibitor and 1 \times protease-inhibitor cocktail (Sangon) freshly.

638 **Data visualization**

639 Circos plot was generated using the R package circlize (v0.4.15) (Krzywinski et al. 2009; Gu
640 et al. 2014) to display the distribution of EIciRNAs in the human genome (hg38). For
641 visualization of the overlap of the data set, the Python package matplotlib-venn v0.11.6
642 (<https://github.com/konstantint/matplotlib-venn>) was used to generate Venn diagrams and the
643 R package ComplexUpset (v1.3.5) (<https://github.com/krassowski/complex-upset/>) was used
644 to generate UpSet plots. The heatmap showing hierarchical clustering of correlations between
645 expression levels of EIciRNAs and RBPs was generated with the R package ComplexHeatmap
646 (v2.14.0) (Gu et al. 2016). Other heatmaps were plotted using the function clustermap in the
647 Python package seaborn v0.11.1 (Waskom 2021). Read coverage of SRSF1 iCLIP-seq was
648 calculated with bamCoverage in deepTools and visualized in IGV (Thorvaldsdóttir et al. 2013).
649 All other plots in high-throughput data analysis were generated using the Python package
650 matplotlib v3.5.3 (Hunter 2007) and seaborn v0.11.1, or the R package ggplot2 (v3.4.2)
651 (Wickham 2016).

652 **References for Supplemental Materials**

- 653 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J,
654 Devin M, et al. 2016. TensorFlow: large-scale machine learning on heterogeneous
655 systems. *arXiv*:1603.04467 [cs.DC].
- 656 Bao X, Guo X, Yin M, Tariq M, Lai Y, Kanwal S, Zhou J, Li N, Lv Y, Pulido-Quetglas C et al.
657 2018. Capturing the interactome of newly transcribed RNA. *Nat Methods* **15**: 213-220.
- 658 Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B, Gonatopoulos-
659 Pournatzis T, Frey B, Irimia M, Blencowe BJ. 2014. Widespread intron retention in
660 mammals functionally tunes transcriptomes. *Genome Res* **24**: 1774-1786.
- 661 Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilistic RNA-seq
662 quantification. *Nat Biotechnol* **34**: 525-527.
- 663 Core LJ, Waterfall JJ, Lis JT. 2008. Nascent RNA sequencing reveals widespread pausing and
664 divergent initiation at human promoters. *Science* **322**: 1845-1848.
- 665 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras
666 TR. 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**: 15-21.
- 667 The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements in the
668 human genome. *Nature* **489**: 57-74.
- 669 Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, Sisu C, Wright JC,
670 Armstrong J, Barnes I et al. 2021. GENCODE 2021. *Nucleic Acids Res* **49**: D916-D923.
- 671 Gerstberger S, Hafner M, Tuschl T. 2014. A census of human RNA-binding proteins. *Nat Rev
672 Genet* **15**: 829-845.
- 673 Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a given motif.
674 *Bioinformatics* **27**: 1017-1018.
- 675 Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in
676 multidimensional genomic data. *Bioinformatics* **32**: 2847-2849.
- 677 Gu Z, Gu L, Eils R, Schlesner M, Brors B. 2014. circlize Implements and enhances circular
678 visualization in R. *Bioinformatics*. **30**: 2811-2.
- 679 Howard JM, Lin H, Wallace AJ, Kim G, Draper JM, Haeussler M, Katzman S, Toloue M, Liu
680 Y, Sanford JR. 2018. HNRNPA1 promotes recognition of splice site decoys by U2AF2
681 in vivo. *Genome Res* **28**: 689-698.
- 682 Hunter JD. 2007. Matplotlib: a 2D graphics environment. *Comput Sci Eng* **9**: 90–95.
683 doi:10.1109/MCSE.2007.55
- 684 Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. 2002. The
685 human genome browser at UCSC. *Genome Res* **12**: 996-1006.
- 686 Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA.
687 2009. Circos: an information aesthetic for comparative genomics. *Genome Res* **19**:
688 1639-1645.
- 689 Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nature methods*
690 **9**: 357-359.
- 691 Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment
692 of short DNA sequences to the human genome. *Genome Biol* **10**: R25.
- 693 Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or
694 without a reference genome. *BMC Bioinformatics* **12**: 323.

- 695 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
696 Subgroup GPDP. 2009. The sequence alignment/map format and SAMtools.
697 *Bioinformatics* **25**: 2078-2079.
- 698 Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, Irizarry RA, Liu JS, Brown M, Liu XS. 2014.
699 MAGeCK enables robust identification of essential genes from genome-scale
700 CRISPR/Cas9 knockout screens. *Genome Biol* **15**: 554.
- 701 Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L et al. 2015. Exon-
702 intron circular RNAs regulate transcription in the nucleus. *Nat Struct Mol Biol* **22**: 256-
703 264.
- 704 Liu Z, Tao C, Li S, Du M, Bai Y, Hu X, Li Y, Chen J, Yang E. 2021. circFL-seq reveals full-
705 length circular RNAs with rolling circular reverse transcription and nanopore
706 sequencing. *Elife* **10**: e69457. doi: 10.7554/eLife.69457.
- 707 Lorenz R, Bernhart SH, Höner Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL.
708 2011. ViennaRNA Package 2.0. *Algorithms Mol Biol* **6**: 26.
- 709 Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for
710 RNA-seq data with DESeq2. *Genome Biol* **15**: 550.
- 711 Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
712 *EMBnet journal* **17**: 10-12.
- 713 McLeay RC, Bailey TL. 2010. Motif Enrichment Analysis: a unified framework and an
714 evaluation on ChIP data. *BMC Bioinformatics* **11**: 165.
- 715 Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ, Bomane A, Cosson B, Eyras E,
716 Rasko JE et al. 2017. IRFinder: assessing the impact of intron retention on mammalian
717 gene expression. *Genome Biol* **18**: 51.
- 718 Papasaikas P, Tejedor JR, Vigevani L, Valcárcel J. 2015. Functional splicing network reveals
719 extensive regulatory potential of the core spliceosomal machinery. *Mol Cell* **57**: 7-22.
- 720 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer
721 P, Weiss R, Dubourg V. 2011. Scikit-learn: Machine learning in Python. *J Mach Learn
722 Res.* **12**: 2825-2830.
- 723 Pohl A, Beato M. 2014. bwtool: a tool for bigWig files. *Bioinformatics* **30**: 1618-1619.
- 724 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic
725 features. *Bioinformatics* **26**: 841-842.
- 726 Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke
727 T. 2016. deepTools2: a next generation web server for deep-sequencing data analysis.
728 *Nucleic Acids Res* **44**: W160.
- 729 Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, Gueroussov S, Albu M, Zheng
730 H, Yang A et al. 2013. A compendium of RNA-binding motifs for decoding gene
731 regulation. *Nature* **499**: 172-177.
- 732 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
733 Rueden C, Saalfeld S, Schmid B et al. 2012. Fiji: an open-source platform for
734 biological-image analysis. *Nat Methods* **9**: 676-682.
- 735 Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J,
736 Hillier LW, Richards S et al. 2005. Evolutionarily conserved elements in vertebrate,
737 insect, worm, and yeast genomes. *Genome Res* **15**: 1034-1050.
- 738 Stefanov SR, Meyer IM. 2023. CYCLER-a novel tool for the full isoform assembly and

- 739 quantification of circRNAs. *Nucleic Acids Res* **51**: e10.
- 740 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva
741 NT, Morris JH, Bork P et al. 2019. STRING v11: protein-protein association networks
742 with increased coverage, supporting functional discovery in genome-wide
743 experimental datasets. *Nucleic Acids Res* **47**: D607-D613.
- 744 Tanaka E, Bailey T, Grant CE, Noble WS, Keich U. 2011. Improved similarity scores for
745 comparing motifs. *Bioinformatics* **27**: 1603-1609.
- 746 Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2013. Integrative Genomics Viewer (IGV): high-
747 performance genomics data visualization and exploration. *Briefings in bioinformatics*
748 **14**: 178-192.
- 749 van der Maaten L. 2014. Accelerating t-SNE using tree-based algorithms. *J Mach Learn
750 Res* **2014**: 3221-3245.
- 751 van der Maaten L, Hinton G. 2008. Visualizing high-dimensional data using t-SNE. *J Mach
752 Learn Res* **9**: 2579-2605.
- 753 Van Nostrand EL, Freese P, Pratt GA, Wang X, Wei X, Xiao R, Blue SM, Chen JY, Cody NAL,
754 Dominguez D et al. 2020. A large-scale binding and functional map of human RNA-
755 binding proteins. *Nature* **583**: 711-719.
- 756 Wang X, Li J, Bian X, Wu C, Hua J, Chang S, Yu T, Li H, Li Y, Hu S et al. 2021. CircURI11
757 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in
758 gastric cancer. *Proc Natl Acad Sci U S A* **118**: e2012881118.
- 759 Waskom ML. 2021. Seaborn: statistical data visualization. *J Open Source Softw* **6**: 3021.
- 760 Wickham H. 2016. *ggplot2: elegant graphics for data analysis*. Springer-Verlag, New York.
761 <https://ggplot2.tidyverse.org>.
- 762 Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L et al. 2021.
763 clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *Innovation
764 (Camb)* **2**: 100141.
- 765 Xi L, Fondue-Mittendorf Y, Xia L, Flatow J, Widom J, Wang JP. 2010. Predicting nucleosome
766 positioning using a duration Hidden Markov Model. *BMC Bioinformatics* **11**: 346.
- 767 Xin R, Gao Y, Gao Y, Wang R, Kadash-Edmondson KE, Liu B, Wang Y, Lin L, Xing Y. 2021.
768 isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. *Nat
769 Commun* **12**: 266.
- 770 Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, Bar-Even A, Horn-
771 Saban S, Safran M, Domany E et al. 2005. Genome-wide midrange transcription
772 profiles reveal expression level relationships in human tissue specification.
773 *Bioinformatics* **21**: 650-659.
- 774 Yeo G, Burge CB. 2004. Maximum entropy modeling of short sequence motifs with
775 applications to RNA splicing signals. *J Comput Biol* **11**: 377-394.
- 776 Yeom KH, Pan Z, Lin CH, Lim HY, Xiao W, Xing Y, Black DL. 2021. Tracking pre-mRNA
777 maturation across subcellular compartments identifies developmental gene regulation
778 through intron retention and nuclear anchoring. *Genome Res* **31**: 1106-1119.
- 779 Yu KH, Shi CH, Wang B, Chow SH, Chung GT, Lung RW, Tan KE, Lim YY, Tsang AC, Lo
780 KW et al. 2021. Quantifying full-length circular RNAs in cancer. *Genome Res* **31**:
781 2340-2353.
- 782 Zheng Y, Ji P, Chen S, Hou L, Zhao F. 2019. Reconstruction of full-length circular RNAs

