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Supplemental Results 

Simulation study of recall and precision in SV calling 

To enhance the accuracy and sensitivity of SV detection, five inference software packages: 

Sentieon (v202010.01) (Kendig et al. 2019), DELLY (v0.8.1) (Rausch et al. 2012), Smoove 

(https://github.com/brentp/smoove), manta (v1.6.0) (Chen et al. 2016) and CNVnator (v0.3.3) 

(Abyzov et al. 2011), involving different SV detection strategies, were applied to the data. To 

achieve a balance between recall rate and precision in SV calling with diverse supported callers, 

we conducted a simulation study which aimed to access recall and precision in SV calling across 

various thresholds, taking into account SVs supported by one to five callers. To retain the 

genomic characteristics of sorghum, we simulated the variations based on the Chromosome 1 

and Chromosome 2 of the standard sorghum reference genome BTx623 (v3.1.1) using Mason 

(v2.0.9) software (Holtgrewe, 2010). SNP and small indel rates were respectively set to 0.0001 

and 0.000001. The rates of all SV types, including DEL, INS, INV, DUP, INV and TRA, were 

set to 0.0000005. Consequently, there were 15,477 SNVs (SNPs + small Indels), 384 BNDs, 43 

DELs, 73 DUPs, 43 INSs, and 77 INVs generated in the simulated variants. 30´ NGS pair-reads 

(34 million Illumina short-reads (150 bp)) were simulated. The pipeline used for variant calling 



in the BAP was then utilized for the simulated reads. Because Mason can only simulate multiple 

BNDs to represent the breakends of TRAs, which was manifested through the fact that the 

number of BNDs (384) was far higher than the other SVs even though we set the same rate for 

all SVs, we compared all breakpoints between the simulated SVs and the identified SVs using 

our ensemble pipeline to calculate the true positive, false positive, and false negative rates in 

different fusion thresholds using a home-made script. Generally, the precision rate increases 

while the recall rate decreases with the increment of the supported callers (Supplemental Fig S1). 

The recall and precision trendlines cross between the “supported by at least 1 caller” and 

“supported by at least 2 callers” points, which indicates the balance point of the recall and 

precision. 

In current developed NGS-based tools, various algorithms differ in their strength and weakness 

in identifications of different SV types as mentioned above. Support by more callers will lead to 

more accuracy in SV calling, while also increasing type II error. Based on the result of the 

balancing study of recall and precision, we consider “supported by at least 2 callers” is a 

reasonable threshold for the SV fusion workflow in our study. 

Structural variant calling and validation of fusion workflow 

An average of 90.26% DEL/INS (PI 329545, 91.47%; PI 337680, 96.10%; PI 651495, 88.78%; 

Rio, 82.57%; RTx430, 92.37%) and 85.91% DUP (PI 329545, 93.74%; PI 337680, 97.22%; PI 

651495, 86.34%; Rio, 59.16%; RTx430, 93.09%) were identified using our fusion workflow at 

overlapping genomic positions to the SVs identified using assembly comparison, after filtering 

out very large calls (SVs larger than 10 Mb) from assembly comparison (see Supplemental Fig 

S3). Due to the limitation of the SV detection algorithms based on next-generation sequencing 

reads, the sequence details of INVs and TRAs cannot be inferred accurately based on their two 



breakpoints (Pawel Stankiewicz and James R. Lupski, 2010). To evaluate the accuracy of TRAs 

and INVs, we developed a custom python script to capture the consistency of breakpoints of our 

identified TRAs and INVs with the spanning of the presence/absence type variants identified by 

assembly comparisons of the three chromosome-scale de novo assemblies and the two public 

whole genome sequence assemblies included in the BAP. An average of 76.64% INVs (PI 

329545, 86.45%; PI 337680, 92.78%; PI 651495, 80.70%; Rio, 37.12%; RTx430, 86.15%) and 

91.51% TRAs (PI 329545, 94.67%; PI 337680, 99.26%; PI 651495, 89.36%; Rio, 81.53%; 

RTx430, 92.74%) were consistent with the presence/absence variant pairs. Even though only 

59.16% DUPs and 37.12% INVs were covered in Rio, the concordance ratio of DEL/INS and 

TRA in Rio, and SVs in other accessions were consistently more than 80%. It is important to 

note that the deviation between the SV datasets could attribute to the high-complexity genome, 

potential errors in genome assembly, the whole genome alignment algorithm, or any other 

intractable factors. These results manifests that the footprints of most our identified TRAs and 

INVs were traceable from the corresponding presence/absence variants alleles located in two 

breakpoints of TRAs/INVs. 

Songsomboon et al. identified 22,359 deletions and 2,009 duplications in 347 diverse sorghum 

genotypes included in the BAP and characterized their genomic patterns in diversity and 

potential role in local adaptation (Songsomboon et al. 2021). In order to further verify the 

reliability of our SV calling workflow, we also compared the published deletions and 

duplications with the DELs and DUPs identified in our study. Over 90% and 91% of their 

published deletions and duplications were present in our DEL and DUP datasets, respectively. 

These high concordances with reference-based variant calling demonstrate that our fusion 

pipeline accurately identifies genome-wide SVs. 



Structural variant data allows detection of new GWAS associations 

GWAS based on SV for “Pericarp_pigmentation” trait found three significant association signals 

for seed pericarp pigmentation, including an SV underlying the Y1 gene (Sobic.001G397900) as 

expected (Figure 6A), while SNP analysis did not detect association at this locus (Figure 6B). 

The SV (1.5 kb downstream of Y1) underlying the Y1 locus was called as a translocation from 

68,368,772 bp on Chromosome 1 to 67,961,157 bp on Chromosome 4. After checking the 

adjacent SVs, we found there were three additional TRAs called from 68,368,773 bp on 

Chromosome 1 to 67,950,235 bp on Chromosome 4 by different algorithms. We also identified 

two TRAs called in the opposite direction: one from at 67,950,235 bp on Chromosome 4 to 

68,368,773 bp on Chromosome 1, the other from 67,961,154 bp on Chromosome 4 to 

68,368,775 bp on Chromosome 1. These reciprocal breakpoints called by software at this locus 

are most likely transposon hotspots spanning at least 10.9 kb (67,950,235 – 67,961,157 bp on 

Chromosome 4) moved between Chromosome 4 and Chromosome 1 completely or partially 

(Figure 6D). Importantly, a significant pericarp-pigmentation associated TRA with the start 

breakpoint at 67,961,154 bp on Chromosome 4 was also detected, which is within the putative 

transposon hotspot above. These findings are likely to indicate novel causative alleles of the seed 

pericarp pigmentation trait. 

In order to validate the putative transposon hotspots at the detected loci between Chromosome 1 

and Chromosome 4, we examined the sequence composition of the putative transposon regions 

in five sorghum lines with available genome assemblies (RTx430, Rio, PI 329545, PI 337680 

and PI 651495). Based on our called SV set, the breakpoints of the TRA at 68,368,772 bp on 

Chromosome 1 and 67,961,154 bp on Chromosome 4 were only detected in RTx430, PI 329545, 

PI 337680 and PI 651495. Therefore, we scanned the potential transposon insertions covering the 



breakpoint at 68,368,772 bp on Chromosome 1 and the 10.9 kb region from 67,950,235 to 

67,961,157 bp on Chromosome 4 in the five genomes compared with BTx623 using a whole 

genome alignment approach. As expected, there were not any potential insertions encompassing 

the breakpoint and the 10.9 kb region in Rio. In RTx430, there was a 37.8 kb genomic fragment 

detected covering the breakpoint at 68,368,772 bp on Chromosome 1 (Supplemental Table S8). 

Repeat annotation indicated that the 37.8 kb fragment contained a transposon cluster spanning 

about 37.7 kb (Supplemental Table S9). A 19.8 kb genomic fragment covering the breakpoint at 

68,368,772 bp on Chromosome 1 was identified in PI 329545, which overlapped with a 19.7 kb 

transposon rich area (Supplemental Table S8, S9). In PI 337680, we also found a 19.8 kb 

insertion covering the breakpoint at 68,368,772 bp on Chromosome 1, which overlapped with an 

annotated transposon enrichment region spanning 19.7 kb (Supplemental Table S8, S9). 

Meanwhile, PI 337680 also contains an 8.3 kb transposon-rich insertion in the putative 

transposon hotspot region on Chromosome 4 (Supplemental Table S8, S9). In PI 651495, a 16.6 

kb transposon enrichment insertion covering the breakpoint at 68,368,772 bp on Chromosome 1 

was detected (Supplemental Table S8). These results suggested that the regions underlying the 

reciprocal breakpoints between Chromosome 4 and Chromosome 1 are transposon hotspots. 

In order to validate the significance of the TRA allele underlying the Y1 locus on Chromosome 

1, we performed haplotype analyses. There were three main haplotypes (each haplotype 

contained at least five sorghum lines) identified, and H002 (with the TRA allele haplotype) 

showed significant phenotypic difference with H001 (without the TRA allele haplotype, p = 6.4-

8) and H003 (without the TRA allele haplotype, p = 0.022) (Supplemental Fig S9A, B). Allele 

effect estimation analysis indicated that the TRA allele has the second highest effect of all 

included alleles, and the highest -log10 (p-value) for “Pericarp_pigmentation” (Supplemental Fig 



S9C). Haplotype network analysis indicated that the translocation event likely predated the 

variety type differentiation (Supplemental Fig S9D). These data illustrate the power boost and 

increased interpretability, details and complexity brought forth by inclusion of SVs in GWAS 

analysis. 

Another substantial SV association signal for seed pericarp pigmentation was detected on 

Chromosome 8. The polymorphism associated at this locus is a 2.6 kb DEL/INS located 3.2 kb 

upstream of TIM22-2 (Sobic.008G111800), a mitochondrial import inner membrane translocase 

and a homolog of a protein involved in seed development in Arabidopsis (Zhang et al. 2023b). 

To validate the significance of the DEL variation, we again conducted haplotype effect analyses. 

Seven primary haplotypes (each haplotype contained at least five sorghum lines) were identified, 

and only one haplotype, H002, did not contain the DEL allele (Supplemental Fig S10A). 

Phenotypic comparison of “Pericarp_pigmentation” between different haplotypes (each 

haplotype contained at least five sorghum lines with available phenotypic data for statistically 

comparisons) showed that H002 displayed a significant phenotypic difference with all other 

haplotypes (Supplemental Fig S10B). Furthermore, this DEL showed the highest -log10(p-value) 

and third highest allelic effect (Supplemental Fig S10C). Haplotype network analysis indicated 

that this deletion may have occurred before the variety type differentiation (Supplemental Fig 

S10D). Importantly, the significant locus was only found when SV GWAS alone was conducted; 

there was no signal exceeding the Bonferroni corrected threshold in our GWAS for the 

“pericarp_pigmentation” trait based on either the SNP and SNP+SV analyses, even though the 

same SVs on Chromosome 1 and Chromosome 4 detected in SV-based GWAS were still within 

the top 10 loci associated with “pericarp pigmentation” in GWAS based on SNP+SV (Figure 6B, 

6C). The addition of SNPs to SV GWAS analysis gives only slightly increased heritability 



estimation of the “pericarp_pigmentation” trait, from 24.1% (SV only) to 26.2% (SNP+SV). 

This small increase from the addition of SNPs is likely insufficient to overcome the statistical 

power penalty in GWAS of the increased multiple testing correction. The Bonferroni corrected 

threshold (a = 0.05) is based on 589,579 polymorphisms for SV analysis, but 7,735,403 for 

SNP+SV analysis. Our GWAS results for seed pericarp pigmentation based on SVs thus not only 

found a significant SV association for the well-studied Y1 locus, which was not detected in SNP 

GWAS, but also identified a potential translocation involved in the genesis of this locus and a 

compelling new candidate gene for the control of seed pericarp pigmentation. 

SVs detected within the BAP are also important determinants of gene expression in other 

lines 

Knowing that SVs affect gene expression within the BAP, we investigated whether the 

differentially expressed genes between cellulosic and sweet sorghum lines beyond the BAP 

could be identified by SVs identified between our representative cellulosic and sweet sorghum 

lines. To explore the broad influence, we additionally performed RNA-seq on 4 typical cellulosic 

(TAM08001, TAM17500, TAM17600, TAM17800) and 6 typical sweet sorghum lines 

(Brawley, GBR, M81E, R9188, Topper, Tracy) which are not included in the 363 lines except 

for Brawley, Topper and Tracy. For each development stage and tissue, DEGs were identified 

between the cellulosic group (TAM08001, TAM17500, TAM17600, TAM17800 in same tissue 

and stage) and sweet group (Brawley, GBR, M81E, R9188, Topper, Tracy in same tissue and 

stage) and relative levels of SV-associated DEGs and non-SV-associated DEGs evaluated. Only 

CNV type variations were considered and the CNVs that were present in both cellulosic group 

and sweet group were excluded. The proportions of SV-associated DEGs are still much higher 

than non-SV-associated DEGs in all stages and tissues (Supplemental Fig S13). The SVs 



identified between representative cellulosic or sweet sorghums in BAP also showed an effect on 

genes expression in a cellulosic-sweet sorghum comparison beyond BAP (Supplemental Fig 

S14). These findings suggest that our identified SVs between our curated cellulosic and sweet 

sorghum lines are also important in other cellulosic-sweet comparisons. 

To further validate the feasibility of prediction from our identified SVs to differential gene 

expression between cellulosic and sweet sorghum lines beyond the BAP, we formulated the 

prediction model based on Block Hilbert Schmidt Independence Criterion Lasso (Block HSIC 

Lasso) method (Climente-González et al. 2019). CNV type variations were used as independent 

variable in prediction models. Genes with adjusted p value < 0.05 and log2FoldChange > 2 were 

defined as DEGs. Area under the receiver operating characteristics (AUROC) score was used to 

assess the fitness of the prediction models. The prediction model showed promising precision, 

recall, F1, accuracy and AUROC scores among across all stages and tissues (Supplemental Fig 

S15, Supplemental Table S17). These results indicate that DEGs between other cellulosic-sweet 

comparisons can be predicted by the SVs identified from the BAP across all stages and tissues 

(Supplemental Fig S15, Supplemental Table S17). 

 

Supplemental Methods 

Re-sequencing dataset and phenotypes 

The Illumina short-read sequence dataset and phenotypes of the sorghum lines used in this study 
were collected by the TERRA-REF project http://terraref.org (Brenton et al. 2016), which 
consists of 390 sorghum lines that represent a wide range of molecular and phenotypic diversity. 
Sequence data was available for 363 sorghum lines. Only 339 sorghum lines with population 
information were considered for population genetic analysis. Sorghum information for each line 
is included in Supplemental Table S1. 

Variant calling 

http://terraref.org/


The raw FASTQ files were cleaned by fastp (version 0.20.0) software (Chen et al. 2018) using 
the default parameters. Cleaned reads were mapped to the latest sorghum BTx623 (v3.1.1) from 
phytozome (https://phytozome.jgi.doe.gov/). Single-nucleotide polymorphisms (SNPs) were 
called using the Sentieon (version 202010.01) (Kendig et al. 2019) DNA-seq pipeline. There 
were 38,325,772 were detected in total across all 10 chromosomes initially. Only bi-allelic SNPs 
were kept following quality filtering criteria: QD < 2.0, MQ < 40.0, MQRankSum < -12.5,  
ReadPosRankSum < -8.0,  FS > 60.0, SOR > 3.0 by GATK (v4.1.4.0) (DePristo et al. 2011). 
Genotype value filtering and allele filtering were executed by VCFtools(v0.1.15) (Danecek et al. 
2011) using --minQ 30 --minDP 30 and --maf 0.05 –max-missing 0.95. The imputation process 
was conducted by Beagle (v5.1) (Browning et al. 2018). The SNPs data set was pruned by plink 
(v1.90) (Purcell et al. 2007) using --indep-pairwise 20 5 0.8, which means the windows size is 
20kb, which is based on the established linkage disequilibrium range for sorghum published in 
the previous study (Hamblin et al. 2004; Mace et al. 2013), shifting step size was 5 SNPs, one of 
a pair of SNPs will be removed if the LD is greater than 0.8 (by r2). A final total of 7,162,000 
SNP was kept for the subsequent analyses. Five independent tools based on different algorithms 
were used to call structural variations (SVs): Sention (version 202010.01) DNAscope algorithm 
(Kendig et al. 2019), DELLY (v0.0.1, -q 20) (Rausch et al. 2012), Smoove (v0.2.7), manta 
(v1.6.0) (Chen et al. 2016) and CNVnator (v0.3.3) (Abyzov et al. 2011). SVs per individual from 
each caller were fused by SURVIVOR (Jeffares et al. 2017) considering consistency of SVs type 
and SVs strands. The SVs called from the different platforms with breakpoints within 1kb were 
fused. Fusion SVs datasets per individual were genotyped maximizing the yield of merged 
variants with a purpose-written python script, which avoids the bias genotyped by only one 
caller. Fusion SVs from each individual were merged by Jasmine (version 1.1.4) 
(https://github.com/mkirsche/Jasmine). SVs with consistent type and strands, and start positions, 
end positions within 1kb were merged into a single SV call. Population SVs raw dataset was 
created by merging SVs from 363 individuals. Only SVs meeting the SV length within 30bp-
1Mb and MAF > 0.001 were kept. To further refine the SVs, we also removed the ungenotyped 
SVs, SVs from BTx623 and all their adjacent SVs within 2.5Kb extended flank region. There 
were 622,236 SVs kept on 10 chromosomes for the downstream analyses. Circle plot was drawn 
by circus (Krzywinski et al. 2009). 

de novo assembly 

Leaves from the seedlings of sorghum in greenhouse were sampled. At least 10g of leaf tissue 
for each sorghum accession was sent to Roy J. Carver Biotechnology Center at the University of 
Illinois at Urbana-Champaign. Raw HIFI sequence data in BAM format was generated by 
PacBio Sequel IIe platform. Generated sequencing BAM files were converted to FASTQ files by 
SAMtools (Li et al. 2009). Reads less than 1 kb were identified and filtered by SeqKit tools 
(Shen et al. 2016).  Genome de novo assembly were performed by hifiasm (Cheng et al. 2021). 
Genome assembly quality was evaluated by quast (Gurevich et al. 2013), and BUSCO (Simao et 
al. 2015).  

Evaluation of SV calling 

https://phytozome.jgi.doe.gov/
https://github.com/mkirsche/Jasmine


Comparison between the Sorghum reference genome (BTx623, Sorghum bicolor V3.1.1, 
https://phytozome-next.jgi.doe.gov/) and two other assembled sorghum genomes, Rio (Sorghum 
bicolor Rio v2.1) and RTx430 (Sorghum bicolor RTx430 v2.1) downloaded from Phytozome 
(https://phytozome-next.jgi.doe.gov/) was used to evaluate the SV calling. MUM&Co(v3.7) 
(O'Donnell and Fischer 2020) was used to detect the SVs from Rio-BTx623 and RTx430- 
BTx623 through whole genome alignment information provided by MUMmer (v4) (Marcais et 
al. 2018). The SVs called from the MUM&Co were then compared to SVs from the fusion 
pipeline (See Variant calling in Methods) to calculate the overlapped number of SVs using the 
custom-written python script cnv_overlapped_calculation.py.  

Mobile elements annotation 

BTx623 Repeatmask annotation file 
Sbicolor_454_v3.1.1.repeatmasked_assembly_v3.0.1.gff3.gz was downloaded from 
https://phytozome-next.jgi.doe.gov/. For rearrangement-type variations, both the start and end 
positions were considered for calculation of the overlap between the SV breakpoints and 
annotated mobile elements boundaries, by using a custom python script. For CNV type 
variations, we only considered whether the start position was located within the boundaries of 
annotated mobile elements. 

Heritability estimation 

LDAK (v5.1) (Zhang et al. 2021) was used to estimate the trait heritability explained by the SNP 
and SV polymorphisms. SNP data was pruned by plink 1.9 before LDAK was applied. First, 
variations were weighted by chromosomes by using --cut-weights; step 2, then a weighted 
kinship matrix generated by using --calc-kins-direct; finally, variance components were 
estimated by using --reml quant for quantitative traits and --reml binary for the binary trait. Plots 
were drawn in R 4.2.2 (R Core Team, 2022) by using the ggplot2 package (Villanueva and Chen 
2019).  

Population genetics analysis 

Principal component analysis was performed using the R function prcomp() (R Core Team, 
2022). A minimum spanning tree was created using the R package Poppr (Kamvar et al. 2014). 
SNPhylo (Lee et al. 2014) was used to create maximum likelihood phylogenetic trees using 
following parameters: -l (LD threshold) 0.1, -m (MAF threshold): 0.1 for SNP dataset, 0 for SV 
dataset, -M (Missing rate): 0.1 for SNP dataset, 1 for SV dataset, -B (The number of bootstrap 
samples): 100, -b (Perform (non-parametric) bootstrap analysis and generate a tree), -A (Perform 
multiple alignment by MUSCLE), -r (Skip the step removing low quality data): only for SV 
dataset, the remaining parameters were default, after converting VCF to GDS format using R 
package SNPRelate (Zheng et al. 2012). SVs were converted to present-absent binary 
representation before conducting PCA. FST was calculated by using VCFtools (v0.1.16) 
(Danecek et al. 2011). 

GWAS 

https://phytozome-next.jgi.doe.gov/


GWAS was performed by GAPIT3 using the compressed mixed linear model (CMLM) model 
(Zhang et al. 2010; Wang and Zhang 2021). The first three principal components and a group 
kinship matrix calculated from clustered individuals were used for population structure 
correction. The gff3 file Sbicolor_454_v3.1.1.gene.gff3 was downloaded from phytozome 
(https://phytozome-next.jgi.doe.gov/). 

Haplotype analyses 

For the TRA underlying the Y1 on Chromosome 1, the variations including SNP and SVs 
surrounding the breakpoint at 68,368,772 from 68,360,756 to 68,369,370 were used to identify 
the haplotype. For the 2.6 kb DEL on Chromosome 8, the variations including SNP and SVs 
surrounding the DEL from 51,753,931 to 51,758,539 were used to identify the haplotype. The R 
package geneHapR (Zhang et al. 2023a) was used to perform analyses. 

RNA-seq analysis 

Tissues samples for RNA were collected from plants grown in the field at the Energy Farm at the 
University of Illinois at Urbana-Champaign in 2018. Collected samples were ground in a pestle 
and mortar (for leaves) or a 6970 EFM Freezer/Mill (for stems, 
www.spexsampleprep.com/freezermill). RNA was extracted by using the Trizol and Chloroform 
methods (Simms et al. 1993) and precipitated using isopropanol. The primary quality control and 
concentration measurement of RNA was by using TURBO DNA-free™ Kit from Invitrogen, 
Qubit™ RNA BR Assay Kit from Thermo Fisher Scientific and Bioanalyzer from Agilent. 
Prepared RNA samples were sent to JGI (https://jgi.doe.gov/). There were three biological 
replicates. Samples with less than three successful biological replicates were discarded in the 
downstream analysis. RNA-seq data were analyzed by DESeq2 package (Love et al. 2014), and 
plot was drawn by ggplot2 (Villanueva and Chen 2019). 

Analysis of association between SVs and gene expression 

Analysis was performed in each line, each tissue, and each stage: 
Step1, Calculate the significance level of genes expression difference against BTx623 samples in 
same tissue and developmental stage using DESeq2 package (Love et al. 2014). Create the gene 
expression matrixI, including 4 columns: “gene_id”, “log2FoldChange”, “p_value” and 
“Significance_level”. “Significance_level” was assigned to “1” if meeting the criteria: 
|log2FoldChange| > 2 and adjusted “p_value” <0.05. Otherwise, the “Significance_level” was 
assigned to “0”. “p_value” were adjusted using the Bonferroni correction. Only protein-coding 
genes on chromosomes were kept.  
Step2, Predict the SV effects on sorghum genome using SnpEff (v5.0) (Cingolani et al. 2012) 
and BTx623 reference (Sorghum bicolor V3.1.1, https://phytozome-next.jgi.doe.gov/). Create the 
impact prediction matrixII based on the output files, including the following columns: “gene_id”, 
“impact_HIGH”,  “impact_LOW”, “impact_MODERATE”, “impact_MODIFIER” and 
effect prediction details such as “3_prime_UTR_truncation”, “disruptive_inframe_deletion” etc. 
which are pre-defined by the SnpEff software and varying depending on the effects of SV 
dataset. Only CNV type structural variations (DEL, DUP, INS) were taken into consideration in 
impact prediction because of the difficulty of associating other types of SV with specific genes. 
Only protein-coding genes on chromosomes were kept. 

https://phytozome-next.jgi.doe.gov/
http://www.spexsampleprep.com/freezermill
https://jgi.doe.gov/


Step3, Combine the gene expression matrixI and the impact prediction matrixII according to the 
“gene_id” column, getting matrixIII. Genes that were not present in matrixII were filled with “0” 
in the effect annotation columns. 
Step4, Create the discriminant matrixIV for all genes based on the combined matrixIII: 

a) Add “Association” column, which was used to store the summary data to judge whether 
the DEG is associated with SV or not directly. 

b) Create two sub-columns: “SV-associated” and “non-SV-associated” for “Association” 
column and all effect annotation columns as in matrixIII to store the data to judge 
whether the DEG is associated with SV or not in its corresponding predicted impact field. 

c) Fill the matrixIV:  
In “Association”: “SV-associated” if sum of the number of all effect annotation fields is  
not equal to zero, which means the gene is associated by SV, and 1): if 
“Significance_level” is “1”,  the cell will be assigned “1”, which means the DEG is 
associated by SV; 2): if “Significance_level” is “0”,  the cell will be assigned “0”, which 
means the gene is associated by SV, but it is not a DEG. Otherwise, the cell will be 
assigned “NA”, which means the gene can’t be analyzed (lack of expression data or 
impact prediction data). 
In “Association”: “Non-SV-associated”, if sum of the number of all effect annotation 
fields is equal to zero, which means the gene is not associated by SV, and 1): if 
“Significance_level” is “1”,  the cell will be assigned “1”, which means the DEG is not 
associated by SV; 2): if “Significance_level” is “0”,  the cell will be assigned “0”, which 
means the gene is not associated by SV, and it is not a DEG neither. Otherwise, the cell 
will be assigned “NA”. 
In predicted impacts columns, let’s take “impact_HIGH” as an example. In 
“impact_HIGH”: “SV-associated”, if the cell in the corresponding column 
“impact_HIGH” in matrixIII is not “0”, and 1): if “Significance_level” is “1”,  the cell 
will be assigned “1”, which means the DEG is associated by SV and SV have a high 
impact on this DEG; 2): if “Significance_level” is “0”,  the cell will be assigned “0”, 
which means the gene is associated by SV, and SV have a high impact on this gene, but it 
is not a DEG. Otherwise, the cell will be assigned “NA”. 
In “impact_HIGH”: “Non-SV-associated”, if the cell in the corresponding column in 
matrixIII is “0”, and 1): if “Significance_level” is “1”,  the cell will be assigned “1”, 
which means the DEG is not associated by SV in the “high impact” aspect; 2): if 
“Significance_level” is “0”,  the cell will be assigned “0”, which means the gene is not 
associated by SV in the “high impact” aspect, and it is not a DEG neither. Otherwise, the 
cell will be assigned “NA”. 
The following effect annotation columns were filled as “impact_HIGH” column above. 

Step5, Count the number of DEGs (labeled as “1”) and “non-DEGs” (labeled as “0”) in “SV-
associated” and “Non-SV-associated” categories in “Association” and all effect prediction fields. 
Calculated the DEGs as percentage of all genes (for normalization of the total genes in “SV-
associated” and “non-SV-associated” categories, ie, DEGs as Percentage of all genes in SV-
associated category = (DEG count in SV-associated category / ((DEG count + non-significant 
genes count) in SV-associated category). DEGs as Percentage of all genes in Non-SV-associated 
category = (DEG count in non-SV-associated category / ((DEG count + non-significant genes 
count) in Non-SV-associated category)) in “SV-associated” and “Non-SV-associated” categories 
in “Association” and all effect prediction fields.  



Step6, Hypergeometric testing for enrichment of DEGs in SV-associated genes. The number of 
SV-associated DEGs (SVD) follows the hypergeometric distribution: 

SVD ~ H(n, N, M) 

where n is the number of DEGs; N is the total number of the expressed genes; M is the number 
of SV-associated genes, with the following probability distribution: 

𝑓(𝑘;𝑁,𝑀, 𝑛) =
+!",+

#$!
%$" ,

+#%,
 

where k is the number of SV-associated DEGs. 

Statistical analysis is performed using phyper() function of stats package in R (R Core Team, 
2022). “p-value” were under Bonferroni correction. 

 
Step7, Statistical analysis of the significance level of the difference between SV-associated DEG 
counts (used as arrays composed by “0” and “1”) in “Impact_HIGH”, “Impact_MODERATE” 
and “Impact_LOW”  fields using unpaired two-tailed T-test.  
 
 

Supplemental Discussion 

We were intrigued by the observation that the SVs are more abundant in gene-rich regions, and 
did not share the distribution of the SNPs. This result was indicated by the SV density calculated 
in 500 kb bins, showing that the SVs detected were primarily towards the gene-dense telomeres 
(main Figure 4). While this is an interesting observation, there are various methodological 
difficulties that most likely account for it. In particular, the repetitive nature of the centromeres 
and gene-poor repetitive regions surrounding them limits mapping quality of reads or the quality 
of alignments. Thus, the ability to call any variants in these regions is affected, but because mate 
pair mapping is needed for larger SV detection, this may be disproportionately affected. It is 
quite probable that one or more methodological reasons, rather than a genuine difference in 
polymorphism frequency, accounts for this observation; however, we do also expect to see more 
chromosome breakage towards telomeres, so the difference in distribution could be a genuine 
phenomenon. More research is needed to address this question. 
 

Since the high abundance of SVs in the gene-rich regions appears to violate the principle of gene 
conservation, we investigated the proportion of SVs which directly affect exon regions. We 
found that, even though the density of called SVs is higher in gene-rich regions, only 0.2% of 
these SVs affected exons directly. Thus, this principle is still very much in force. 
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Supplemental Table Legends 

Supplemental Table S1 363 sorghum accessions 

Supplemental Table S2 Summary statistics of the 3 assembled sorghum genomes 

Supplemental Table S3 43 representative cellulosic accessions 

Supplemental Table S4 33 representative sweet accessions 

Supplemental Table S5 1250 highly differentiated SNPs were adjacent to at least one SV 

Supplemental Table S6 SV frequency difference between representative cellulosic and sweet sorghum 
lines 

Supplemental Table S7 Phenotypes used in analysis 

Supplemental Table S8 Summary of insertions in putative transposon hotspots in the five genomes 

Supplemental Table S9 Repeats annotation of the detected insertions in the putative transposon hotspots 

Supplemental Table S10 Number of significant signals detected in GWAS based on SNP, SV and 
SNP+SV datasets 

Supplemental Table S11 GWAS for 23 sorghum type related traits and 6 photoperiod related traits based 
on SNP,  SV and SNP+SV datasets 

Supplemental Table S12 Candidate genes underlying the correlated domestication of photoperiod 
sensitivity and sorghum type 

Supplemental Table S13 DEGs as percentage of all genes in SV-associated gene and non-SV-associated 
gene categories in each annotation/effect fields 

Supplemental Table S14 331 sorghum oil orthologs 

Supplemental Table S15 Sorghum oil orthologs associated with CNV type SVs 

Supplemental Table S16 Sorghum oil orthologs associated with rearrangement type SVs 

Supplemental Table S17 Precision, recall, F1, and Accuracy scores of the prediction model 

 

 

 

 

 

 

 

 

 



Supplemental Figures 

 

Supplemental Fig S1 Recall and precision values in different supporting callers. The precision rate increases while the recall rate 
decreases with the increment of the supported callers. The recall and precision trendlines cross between the “supported by at least 
1 caller” and “supported by at least 2 callers” points. 
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Supplemental Fig S2 Components of genome-wide structural variations (SVs) and evaluation. A Pie charts for the numbers of 
different SV types. There were 622,236 SVs identified on 10 chromosomes, including 158,614 deletions (DEL, 25.5%), 18,028 
duplications (DUP, 2.9%), 216 insertions (INS, 0.03%), 142,219 inversions (INV, 22.9%) and 303,159 translocations (TRA, 
48.7%). B-D mummer plots of the three assembled sorghum genomes, PI 329545 (B), PI 337680 (C), PI 651495 (D). The 
horizontal axis stands for the BTx623 reference, and the vertical axis stands for the three assembled genome. 
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Supplemental Fig S3. Cross-validation of structural variants called at overlapping positions by assembly comparison and the 
fusion workflow. The upper plot shows the overlapping sets for all SVs; the lower plot shows data for only deletions and 
insertions. As the assembly comparison method, MUM&Co, tends to call large PAV polymorphisms, but fewer of them, there are 
fewer total polymorphisms but they encompass most variants called by the fusion method. 
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Supplemental Fig S4 Length distribution of copy number variant (CNV) type structural variations (SVs). Histogram of length 
distribution for CNV-type SVs. DEL (< 2KB), top; DUP (< 2KB), middle; INS (< 300bp), bottom. Most CNV-type SVs were 
relatively small: 30-250bp: 30.3%; 250-500bp: 13.1%; 500bp-1kb: 13.9%; 1kb-2kb: 9%; > 2kb: 33.6%. 

 

 

 

 

 



 

Supplemental Fig S5 Mobile elementary identification. Enrichment of different kinds of mobile elementaries hit by identified 
SVs. CNV-type (top) and rearrangement (REA) type (bottom) categories were employed based on the properties of the SVs 
spanning to conduct transposable elements impact analysis. The top two abundant transposable elements were Gypsy and Enspm 
in both CNV-type and REA-type SVs. 

 

 



 

 

Supplemental Fig S6 Structural Variations (SVs) count distribution in different sorghum lines.  The counts of SVs were sorted 
by total number of identified SVs within cellulosic (green), grain (yellow) and sweet (red) sorghum variety types in horizontal. 
SV compositions, including deletions (DEL, pink), duplications (DUP, blue), insertions (INS, green), inversions (INV, orange) 
and translocations (TRA, lime), were stacked by different colors columns individually. DEL and TRA are the major components 
of the total SVs for each accession. The sorghum containing the largest number of SVs was cellulosic type whereas the least one 
was grain type. 
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Supplemental Fig S7 Principal component analysis (PCA) based on single nucleotide polymorphism (SNP) + structural 
variations (SV) (right). Photoperiod sensitivity characters: Photoperiod_Insensitive (circle), Photoperiod_Sensitive (triangle) and 
unknow (square), and sorghum variety type information: cellulosic (green), grain (yellow) and sweet (red) were taken into 
consideration in PCA based on SNPs + SVs. Two obvious divided groups were derived from the population in all PCA results 
based on SNP, SV (Figure 2B), and SNP+SV datasets, even though sorghum lines in different variety types and photoperiod 
sensitivity have been undergoing frequent gene flows. The divided cellulosic sorghum was clustered with photoperiod sensitive 
character meanwhile the divided sweet sorghum was clustered with photoperiod insensitive feature. 
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Supplemental Fig S8 Annotation and functional effects of single nucleotide polymorphism (SNP) and structural variations (SVs) 
in sorghum genome. Percentages of genes impacted by different variants and annotation/effect types were calculated. Effects 
were categorized by impact levels firstly: “impact_High”, “impact_Moderate”, “impact_Low”, “impact_Modifier” which were 
pre-defined categories to summary the significance of variants. The following effect types in horizontal were sequence ontology 
effects, which provided the details for assessing sequence changes and impact. Copy number variant (CNV) type SVs and 
rearrangement (REA) type SVs were annotated separately. Blue bars, jacinth bars and grey bars with lime frame represent the 
percentages of genes affected by SNPs, CNV-type SVs and REA-type SVs in different effect types and sequence ontology effects 
respectively. SVs were generally responsible for high impacts, such as duplication, exon loss, codon frame shift and transcript 
ablation, whereas SNPs usually played a role in low impacts on genome including 3’ UTR, 5’ UTR, gene upstream and 
downstream regions, and intron sequences, which indicates a higher impact from SVs to sorghum genome than SNPs. 
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Supplemental Fig S9 Haplotype analyses of the TRA allele underlying Y1 on Chromosome 1. A Haplotypes identified in BAP 
based on the variations surrounding the breakpoint of the TRA at 68,368,772 bp on Chromosome 1. Only the haplotypes with at 
least 2 sorghum lines are shown here. The red inverted triangle indicates the TRA position. B Phenotypic differences of three 
main haplotypes. Only the haplotypes containing at least five sorghum lines with available phenotype were compared. C Allele 
effect estimation analysis of the TRA allele. The red arrow indicates the TRA variant. D Haplotype network. Only the haplotypes 
with at least 2 sorghum lines are shown here. 
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Supplemental Fig S10 Haplotype analyses of the 2.6 kb DEL on Chromosome 8. A Haplotypes identified in BAP based on the 
variations surrounding the 2.6 kb DEL. Only the haplotypes with at least 3 sorghum lines are shown here. The red inverted 
triangle indicates the DEL position. B Phenotypic differences of three main haplotypes. Only the haplotypes containing at least 
five sorghum lines with available phenotype were compared. C Allele effect estimation analysis of the DEL allele. The red arrow 
indicates the DEL variant. D Haplotype network. Only the haplotypes with at least 2 sorghum lines are shown here. 
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Supplemental Fig S11 Structural variants (SVs) have a widespread impact on gene expression. A SVs have an impact on gene 
expression in sorghum stem across all developmental stages. Differentially expressed gene (DEG) analysis was performed by 
comparison of expression profiles in RTx430, Tracy and Ramada with the expression profile in Tx623 (as control) in stem and 
three development stages. Blue and pink bars represent the SV-associated and non-SV-associated DEGs as percentages of all 
genes, respectively. The p values on the top of SV-associated DEG bars indicate the hypergeometric testing results for 
enrichment of DEGs in SV-associated genes. The p values were adjusted using Bonferroni correction. DEGs were significantly 
enriched in SV-associated genes. B SV-associated DEG count changed according to different impact predictions. The vertical 
axis showed the SV-associated DEG count. Blue, pink and green bars represent the DEG counts associated by high impact SVs 
(impact_HIGH), moderate impact SVs (impact_MODERATE) and low impact SVs (impact_LOW) respectively in leaf tissue of 
different sorghum lines in three developmental stages (pre-flower, flower and milk). The p values show the significance levels 
between groups (see Methods). Differential DEG counts between “impact_HIGH” and “impact_MODERATE” were all 
statistically significant. Significant level of DEG counts between “impact_MODERATE” and “impact_LOW” varied depending 
on lines and stages. In general, higher impact SVs associated more DEGs. 

 

 



Supplemental Fig S12 Different functional effects of SVs on 331 sorghum oil orthologs. Different functional effects of CNV 
type SVs on 331 sorghum oil orthologs (upper). Different functional effects of rearrangement type SVs on 331 sorghum oil 
orthologs (lower). 
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Supplemental Fig S13 Structural variants (SVs) have an impact on gene expression in other cellulosic-sweet sorghum 
comparison beyond BAP. Differentially expressed gene (DEG) analysis was performed by comparison of expression profiles in 
cellulosic group and sweet sorghum group beyond BAP in leaf and stem tissues, and three development stages. Blue and pink 
bars represent the SV-associated and non-SV-associated DEGs as percentages of all genes, respectively. The SV-associated 
DEGs as percentage of all genes are still much higher than non-SV-associated DEGs as percentage of all genes in all stages and 
tissues. 
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Supplemental Fig S14 Different functional effects of SVs on differentially expressed genes (DEGs) in other cellulosic-sweet 
sorghum comparison beyond BAP. CNV type variations specific to the representative cellulosic or sweet sorghum lines were 
deployed to predict the gene expression in additional cellulosic and sweet accessions in 3 development stages: pre-flowering, 
flowering, and milk, and 2 tissues: leaf and stem. Blue and pink bars represent the SV-associated and non-SV-associated DEGs 
as percentages of all genes, respectively. 
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Supplemental Fig S15 AUCROC scores of prediction model based on Block Hilbert Schmidt Independence Criterion Lasso 
(Block HSIC Lasso) method across different tissues and stages. The AUCROC scores show a possibility of the prediction from 
SVs to differentiated gene expression. 
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