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Supplemental Figures 

 

 

Supplemental Fig. S1. Schematic representation of the reciprocal cross pig model and 

summary of multi-omics data generated in this study. 
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Supplemental Fig. S2. Summary of whole-genome sequencing, in situ Hi-C, rRNA-

depleted RNA-seq and ChIP-seq data. (A) Composition of high-quality reads and valid 

contacts obtained for the in situ Hi-C dataset 1. The calculated average proportion of 

unphased intra-chromosomal (i.e., occurring within chromosomes and between homologs) 

and inter-chromosomal (i.e., between heterologs) contacts were 64.54% and 35.46% for 

the fourteen samples, respectively. (B) Summary of the whole-genome resequencing data 

for six parent-child trios. The high-quality data (upper, green bars), mapping ratio (purple 

lines) and coverage depth (~122x of the reference genome for each of the 18 individuals) 

(lower, pink bars) are shown. (C) Summary of the combined in situ Hi-C data (datasets 1 
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and 2) of twelve tissue samples. These data are described in detail in Supplemental Fig. 

S1 and used for PEI identification. Valid contacts and proportions of unphased intra- and 

inter-chromosomal contacts are shown for each sample. (D) High-quality reads and 

mapping ratios of the RNA-seq data. (E and F) Similarity of transcriptional profiles between 

samples from hybrid pigs using Spearman’s r correlation (E) and PCA (F), showing a 

tissue-dominant pattern. (G) Mapping ratios of high-quality ChIP-seq data for H3K27ac, 

H3K4me3 and CTCF. 
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Supplemental Fig. S3. Construction of chromosome-span haplotypes for hybrid pigs 

using genome-wide heterozygous single nucleotide variants (SNVs). (A) Summary of 

SNVs called based on whole-genome resequencing data. The higher number of SNVs 

identified in Asian Tibetan pigs compared to European Berkshire pigs after mapping to the 

reference European Duroc pig genome (heterozygous SNVs: 8.12 M versus 4.72 M, P = 

0.002; homozygous SNVs: 6.92 M versus 3.69 M, P = 0.002; heterozygous SNV ratio: 3.42 

versus 1.57, P = 0.002; Mann-Whitney U test), reveals the extensive genomic divergence 
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between Eurasian pig breeds. (B) In our study, the heterozygous SNV ratio calculated in 

hybrid pigs (4.54 per kb) was lower than that of hybrid mice (7.70 per kb; de Wit 2017), 

comparable to the values obtained in hybrid fruit flies (~5 per kb; AlHaj Abed et al. 2019), 

and significantly higher than humans (~1 per kb; de Wit 2017). The diploid 3D genome of 

these three species was successfully reconstructed. (C) Principal component analysis 

(PCA) of the six parent-child trios constructed using genomic SNVs. (D) Genetic structure 

of six parent-child trios using genome-wide SNVs. The length of the colored segments 

represents the proportion of the genome of each individual that originates from two 

‘ancestral populations’ (K = 2, two parental breeds of F1 hybrid pigs, i.e., Berkshire and 

Tibetan). (E) Schematic representation of heterozygous SNV phasing based on the 

genotypes of trios. Heterozygous SNVs in F1 hybrids can be phased when at least one of 

the parents is homozygote. (F) Schematic representation of haplotype construction based 

on Hi-C contacts using the HapCUT2 algorithm (Edge et al. 2017). (G) Comparisons 

between the phased heterozygous SNVs for F1 hybrid pigs using three approaches: 1) 

genome sequencing data of parent-child trios alone (top), 2) Hi-C data of F1 hybrids 

(middle), and 3) the combination data of both (bottom). (H) Illustration of SNV phasing in 

Chromosome 1 using the three different approaches described in (G). Top: tracks showing 

the number of phased heterozygous SNVs per 100-kb genomic bin. Bottom: zoom-in of 

the constructed haplotypes. Parental origin can only be determined via genotyping of 

parent-child trios. Seed haplotypes rebuilt with the Hi-C data of F1 hybrids were arbitrarily 

designated as ‘1’ and ‘2’, and contained genetic variants that were absent in the trio-phased 

haplotypes. The integration of these data can generate high-quality haplotypes spanning 

the entire chromosome, whereby employing a combination of genome sequencing data of 

parent-child trios and Hi-C data of F1 hybrids improves the efficiency of chromosome-span 

haplotype reconstruction. 
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Supplemental Fig. S4. Construction of haplotype-resolved Hi-C maps for hybrid pigs 

using SNV phasing and a local imputation method. (A) Phasing of Hi-C contacts. Paired-

end Hi-C reads can be classified into three categories based on haplotype-resolved SNVs: 

informative contacts (IC, reads containing phased SNVs at both ends, top), partially 

informative contacts (PIC, reads containing phased SNVs at one end, middle), and non-

informative contacts (NIC, reads containing no phased SNVs, bottom). (B) According to 

the proportion of contacts occurring within maternal (intra-maternal, ‘M-M’) or paternal 

(intra-paternal, ‘P-P’) alleles, and between maternal and parental alleles (inter-parental, 

‘M-P’) (top), we assigned unphased intra-chromosomal PIC and NIC to their parental 

origins using a local imputation strategy and the HaploHiC software (Lindsly et al. 2021), 

respectively (bottom). (C) Violin plots showing the correlation between the number of 

phased SNVs and the phased contact counts for phased IC (denoted as ①), IC+PIC (①+

②), and IC+PIC+NIC ①+②+③), respectively, which indicates that allele assignment of all 

categories of Hi-C contacts can efficiently eliminate the negative effects caused by 

differences in SNV density across the genome. 



10 

 

 

Supplemental Fig. S5. Summary of phased Hi-C and RNA-seq data. (A) Insert size 

distribution of haplotype-resolved intra-chromosomal Hi-C contacts for dataset 1. The 

column represents the proportion of contacts within each distance interval. The circle on 

the column indicates the proportion of each sample. The red curve shows the cumulative 

percentage. Data are represented as mean ± SD (n = 28). The intra-chromosomal contacts 

(average 75.85%, dashed lines) mainly occurred within 10 Mb. (B and C) Resolution of 

haplotype-resolved intra-chromosomal Hi-C maps at different bin sizes. The Hi-C map 

resolution was defined as the smallest bin size where 80% of bins have at least 1000 reads 

to allow for reliable discerning of local features (Rao et al. 2014). Data are shown as mean 

± SD (n = 28). The mean number of contacts at resolution of 20 kb and 100 kb are shown 

in (C). (D) The different percentages of Hi-C contacts within 1 Mb genomic distance for the 
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resolution of 1 kb, 2 kb, 5 kb and 20 kb. (E) The number of autosomal genes with phased 

transcription in haplotypes (n = 28). (F) PCA of allelic transcription for haplotypes (n = 28), 

showing a tissue dominant pattern. (G) Similarity of allelic transcriptional profiles between 

haplotypes (n = 28) from hybrid pigs using Spearman’s r correlation, showing a tissue-

dominant pattern. (H) Evaluation of reference bias using RNA-seq from a liver sample of 

TB1. The x-axis represents the fold-change between breeds (Berkshire / Tibetan) obtained 

from the alignment against reference genome using Allelome.PRO (Andergassen et al. 

2015) and the y-axis represents the fold-change obtained from the alignment against the 

N-masked genome using SNPsplit (Krueger and Andrews 2016). (I–K) Insert size 

distribution (I) and resolution estimation (J and K) of phased intra-chromosomal Hi-C 

contacts for datasets 1 and 2. Data are shown as mean ± SD (n = 24). The mean number 

of contacts at resolution of 5 kb, 20 kb and 100 kb are shown in (K). 
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Supplemental Fig. S6. Assessment of BNBC quantile normalization. (A) Distance-

dependent decay of all Hi-C maps before (top) and after (bottom) BNBC normalization. 

From left to right: 100-kb, 20-kb and 5-kb resolution. (B) Boxplots showing the distribution 

of contact frequency at 100 kb bridging distance using 20-kb resolution Hi-C maps before 
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(top) and after (bottom) BNBC normalization. (C) Difference between haplotypes in contact 

frequency across different genomic ranges within each tissue and between tissues before 

(top) and after (bottom) BNBC normalization. The red lines represent the median values at 

variable bridging distances.  
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Supplemental Fig. S7. Assessment of Hi-C normalization using multiHiCcompare. (A) 

Distance-dependent decay of Hi-C maps before (top) and after (bottom) normalization. 

From left to right: 100-kb and 20-kb resolution for Chromosome 18. (B) Boxplots showing 

the distribution of contact frequencies at 100 kb bridging distance using 20-kb resolution 

Hi-C maps before (top) and after (bottom) normalization of Chromosome 18. (C) Difference 

in contact frequencies across different genomic ranges between haplotypes within each 

tissue before (top) and after (bottom) normalization of Chromosome 18. Red lines 

represent the median value for each genomic distance. 
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Supplemental Fig. S8. Initial characteristics of 3D nuclear organization in the diploid pig 

genome. (A) The pig genome contains full sets of functional condensin II subunits, 

including SMC2 (ENSSSCG00000005403), SMC4 (ENSSSCG00000011731), CAP-H2 

(ENSSSCG00 000000965), CAP-G2 (ENSSSCG00000028169), and CAP-D3 

(ENSSSCG0 0000022192). The topological relationships of each of the five condensin II 

subunits (Hoencamp et al. 2021) across mammals were constructed based on protein 

sequences using the multiple sequence alignment program Clustal Omega tool (v.1.2.1). 

The phylogenetic relationships across species of emphasized condensin II subunits follow 

the evolutionary distance to the pig lineage (red). (B) Uneven distribution of mass in the 

3D nucleus. The nucleus is divided into 100 shells of equal radius from the center to the 

periphery in order to determine the distribution of 20-kb genomic bins. Colored lines 

represent mean values across tissues, and shading around the mean shows dispersion 

calculated using the standard deviation divided by the cumulative sum of all means. (C) 

Inter-chromosomal interaction profiles (18×18 matrix consisting of the homologs of each 

autosome) show chromosome territories (dotted boxes indicate the two clusters of 

chromosomes) and preferential interactions between homologs compared to that between 

heterologs (Wilcoxon rank-sum test, n.s., P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001). (D) 

Quantification of centromere and telomere organization. 3D genome structure and its 

intersecting regions in a representative liver sample. Most centromeres had a larger radius 

in the nucleus than telomeres (i.e., centromeres were localized to outer nuclear regions 

relative to telomeres). Only autosomes with recognizable centromeres (Chromosomes 1-

9, 11 and 15) were compared. Data are presented as mean values ± SD (n = 14). Wilcoxon 

rank-sum test, n.s., P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. (E) The radial distances 

of chromosomes to the nuclear center (calculated as the median radial distance of all bins 

in a chromosome) negatively correlates with their GC content (mean Spearman’s r = –0.52 

for 14 diploid genomes, P < 0.01; left). Examples of preferential localization in the nucleus 

for two chromosomes (right). GC-rich Chromosome 17 (GC content = 44.56%) 

preferentially localized to the nuclear interior, whereas GC-poor Chromosome 1 (GC 

content = 40.20%) was consistently observed on the nuclear periphery. The 3D genome 

structure of the representative liver sample is shown. (F) Sequence-dependent spatial 

organization of the chromatin. The nucleus is divided into five shells with equal nucleotides 

from the center to the periphery (indexed as 1 to 5), respectively. Generally, GC-rich, gene 

rich, transcript-abundant chromatins were more likely to inhabit the interior of the nucleus, 

whereas GC-poor, transcript-sparse chromatins, were preferentially located in the nuclear 

periphery. (G) Compartments A/B were aggregated in the 3D space of the pig genome of 

the representative liver. The plot was visualized in quintuplicate, with five intersecting 

sections plotted from the interior regions of the nucleus (left) to the periphery (right) based 

on the distance (schematically depicted in the upper-left inset). Color bars indicate the 



17 

 

value of the A-B index. (H) Highly similar multi-chromosome intermingling (mean 

Spearman’s r = 0.66 for 14 diploid genomes, P < 2.2×10–16) between maternal (red) and 

paternal (blue) alleles at 20-kb resolution. (I) Ratio of inter-chromosomal contacts are 

negatively correlated with chromosome length (mean Spearman’s r = –0.67 for 14 diploid 

genomes, P < 0.004). (J) Homologs exhibited highly similar distances to the center of 3D 

nucleus (Pearson’s r = 0.87, P < 2.2×10−16). The center of the 3D nucleus was calculated 

as the mean coordinate of all autosomes. (K) PCA analysis of autosomal interactions in a 

representative liver sample in which homologs that are closer in the plot have more similar 

interaction patterns. (L) Distance between homologs is almost always shortest between 

potential pairs in the 2D PCA projection. Homo, homologs; Nearest, an autosome and its 

nearest heterolog; Mean, a chromosome and all the other autosomes; Random, two 

randomly picked autosomes. Data are presented as means ± SD (n = 14). P values are 

from paired Student’s t-test. (M) Spatial distance between bin pairs of homologs and 

heterologs. Coordinated bin pairs of homologs (purple) were spatially closer than non-

coordinated bin pairs of homologs (pink) or heterologs (yellow). Lines indicate means and 

shadows show ± SD. (N–P) The correlation between haplotype-resolved Hi-C maps using 

HiCRep (N), GenomeDISCO (O) and QuASAR (P). (Q–U) Haplotype-resolved 

interrogation of similarities in chromatin architecture, gene expression and histone 

modifications among 14 diploid genomes. The correlations of chromatin architecture were 

separately determined using GenomeDISCO (Q), HiCRep (R), and QuASAR (S) for the 

Hi-C maps; The correlations of gene expression (T) and the combined differences in 

chromatin architecture (i.e., form) and gene expression (i.e., function) (U) among 

haplotypes are also shown. These correlation rates were grouped into the following five 

categories: between homologs, among biological replicates, between parent-of-origins, 

between parental breeds, among tissues. Data are shown as mean ± SD.  



18 

 

 

Supplemental Fig. S9. Genomic features of compartments and TADs in the haplotype-

resolved pig genome. (A) Length proportions of A/B compartments among 28 haploid 

genomes. On average, 45.71% of the genome (~1035.7 Mb) could be recognized as 

accessible A compartments, while the remaining of the genome was categorized as less 

accessible B compartments (52.59% of the genome or ~1191.56 Mb). (B–E) GC content 

(B), CpG density (C), gene density (D), and gene expression (E) of A/B compartments with 

different activities. According to the A-B index, A and B compartments were separately 

divided into 50 equal parts across each of the three tissues (x-axis). Compared to 

compartment B, compartment A regions contain a higher GC content (45.19% vs. 39.08%), 

are more gene-rich (13.62 vs. 4.38 genes per Mb), and have relatively higher 

transcriptional activity (median TPM 8.18 vs. 0.20). Spearman’s correlation between A-B 

index and the genomic features in each tissue are shown. (F) Numbers and genome 
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coverage of TADs across 28 haploid genomes. TADs occupy ~85.91% of the genome. (G) 

Size distribution of TADs. TAD median size was estimated at ~440 kb. (H–L) Genomic 

features around TAD boundaries (1 Mb centered on the TAD). Compared to other regions, 

TAD boundaries exhibited relatively higher densities of CpG (H) and transcription start site 

(TSS) (I), an increased ratio of house-keeping genes (J), larger proportion of short 

interspersed element-transposable RNA (SINE/tRNA) (K), and higher local boundary 

scores (LBS; low LBS means high density of local interactions) (L). These features were 

consistent with previous reports in mammals (Dixon et al. 2012), confirming the robustness 

of the TADs in the pig genome.   
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Supplemental Fig. S10. Allelically compartmental rearrangement between tissues. (A) 

Summary of A/B switches. (B and C) Comparision of A/B switches identified between 

tissues using the method described in (Rowley et al. 2017) and HOMER (Lin et al. 2012) 

for the whole genome (B) and Chromosome 18 (C). (D) A typical example of A/B switches 

between tissues containing AP3B1, a functional gene participating in inflammatory 

response. (E) Expression changes in genes that were located in compartment-switching 

regions between tissues. Compared to randomly selected genes, the genes located in 

tissue-specific A compartments showed significantly increased expression. The P-values 

shown are from the Wilcoxon rank-sum test. (F) Top ten significantly enriched GO-BP terms 

or KEGG pathways for genes located in tissue-restricted compartment A regions from 

pairwise comparisons of the three tissues. Gene enrichment analysis was performed using 

the software Metascape (Zhou et al. 2019).  
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Supplemental Fig. S11. Allelically compartment rearrangement and shifted TAD 

boundaries. (A) Summary of A/B variables between parents-of-origin and between breeds. 

(B) An example of A/B switches between parent-of-origins containing a paternally imprinted 
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gene PEG3. (C) Known imprinted genes were statistically enriched in regions that show 

allelically differential compartmentalization (including A/B switch and A/B variable) between 

parent-of-origins across the three tissues. The P values were calculated using a χ2 test. (D) 

Regions with known imprinted genes have more variable compartment scores between 

alleles. Median |∆A-B index| = 0.13, P < 0.003, Wilcoxon rank-sum test. (E) Regions 

showing allelically differential compartmentalization (including A/B switch and A/B variable) 

exhibited the lowest pairwise haplotype similarities between the two parental breeds 

measured using the identity score (IDS; see Supplemental Methods). The P values were 

calculated using a Wilcoxon rank sum test. (F) Significantly enriched GO-BP terms or 

KEGG pathways (performed using Metascape) for genes located in regions with differential 

compartmentalization (i.e., A/B switches and A/B variables) between the two parental 

alleles across the three tissues. (G–J) Parental-restricted TAD boundaries are adjacent to 

imprinted genes. A paternal-specific boundary in the muscle (G) influencing three imprinted 

genes (NDN, MAGEL2 and MKRN3); a paternal-specific boundary in the liver (H) and brain 

(I) influencing two imprinted genes (CASD1 and SGCE); a maternal-specific boundary in 

the muscle (J) influencing seven imprinted genes (H19, IGF2, INS, TH, ASCL2, CD81 and 

TSSC4). Changes in TAD scores which were calculated using the TADCompare 

(https://github.com/dozmorovlab/TADCompare) further validated these TAD boundary 

shifts between parents-of-origin.  
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Supplemental Fig. S12. Collection of known imprinted genes. (A) Chromosomal 

organization of the 126 known imprinted genes in the reference pig genome, among which, 

36 were previously identified in pigs (labeled with ‘*’) and 90 were retrieved from the 

orthologs in another 11 mammal species. Members in each imprinted gene cluster are 

labelled in red, and numbers of genes in each cluster are indicated in blue in the 

parentheses. (B) Number of known imprinted genes located in each chromosome of the 

pig genome. (C) Number of collected imprinted genes shared by different mammal species. 
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Supplemental Fig. S13. Allelically shifted TAD boundaries between tissues. (A) Tissue-

restricted TAD boundaries have significantly higher differences in compartmentalization 

compared to tissue-shared TAD boundaries. P values were calculated using a Wilcoxon 

rank-sum test. (B) Tissue-restricted TAD boundaries are enriched in A/B switched regions 

compared to tissue-shared TAD boundaries. P values were calculated using a 2 test. (C) 

Compared to genes located close to tissue-shared TAD bounaries (± 60 kb from the anchor 

bin of TAD boundary), genes nearby tissue-restricted TAD boundaries exhibit a subtle but 

statistically significant increase in expression. P values were calculated using a Wilcoxon 
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rank-sum test. (D–H) Examples of tissue-restricted TAD boundaries being adjacent to 

typical marker genes of relative tissues, including ALDOB (D) in liver, HOXC9 (E), -10 (E) 

and TTN (F) in muscle, and AMER2 (G) and DPP6 (H) in brain tissues. From top to bottom 

are shown the Hi-C maps, TAD boundaries, local boundary scores (LBS), the A-B index, 

structures, and expression (TPM) of the different genes. Black dashed boxes indicate the 

shifted TAD boundaries.  
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Supplemental Fig. S14. Haplotype-resolved interrogation of PEIs in gene expression 

control. (A) The number of average PEIs per gene using different FDR threshold. (B and 

C) Number (B) and bridging size distribution (C) of PEIs in 24 haploid genomes. (D) 

Summary of genes (n = 19,328 in autosomes) interacting with different numbers of 

enhancers. (E) Proportion of PEIs within or across TADs. Expected frequencies were 

calculated using shuffling TAD linear positions for 1,000 times. Data are presented as mean 

± SD. The P values were calculated using a paired Student’s t-test. (F) Proportion of 

promoters interacting with the nearest enhancer or skipping at least one enhancer 

(scenarios are illustrated in the upper left). (G) Genes with higher expression generally 

contact with more enhancers. The dots on the bar represent the mean number of 

enhancers of a given gene across eight haplotypes for each of the three tissues. The P 

values were obtained using a paired Student’s t-test. (H) Genes with higher expression 

generally had larger RPS. The P values were calculated using the Wilcoxon rank-sum test. 

(I) Saturation curves of H3K27ac density (see Supplemental Methods). The number of 

ranked moderately active enhancers and super enhancers of high activity by H3K27ac 

density (x-axis) and their respective densities (y-axis) are plotted. Horizontal dotted lines 

represent density cutoffs used for the classification of super enhancers and vertical dotted 

lines demarcate super enhancers from moderately active enhancers. (J) The proportion of 

genes interacting with enhancers have high activity (i.e., super-enhancer), moderate 

activity, and lesser activity. (K and L) Expression (K) and RPS (L) values of genes 

interacting with enhancers have different activities. The P values were calculated using the 

Wilcoxon rank-sum test. (M) Expression of genes with active (enriched by H3K4me3 peaks) 

or inactive (depleted in H3K4me3 peaks) promoters. The P values were calculated using 

the Wilcoxon rank-sum test. (N) Active promoters containing a higher proportion of genes 

interacted with more active enhancers. (O and P) Genes with an active promoter interacted 

more often with enhancers with increased activity. Genes with higher RPS tended to 

interact with enhancers (O) and promoters (P) and have increased activities. (Q–S) 

Haplotype-resolved interrogation of similarities in the regulatory potential score (RPS) for 

genes (Q), and genome-wide distribution of ChIP-seq signals of H3K27ac (R) and 

H3K4me3 (S). The correlation rates were grouped into the following five categories: 

between homologs, among biological replicates, between parent-of-origins, between 

parental breeds, among tissues. Data are shown as mean ± SD. 
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Supplemental Fig. S15. Reorganized haplotype-resolved PEIs between tissues. (A) 

Volcano plots of genes that showed statistically different RPS (|ΔRPS| > 3 and P < 0.05, 

paired Student’s t-test) between liver and brain (left), liver and muscle (middle), and muscle 

and brain (right). (B) Co-variation between RPS and gene expression. Genes having 

higher RPS values (|ΔRPS| > 3 and P < 0.05, paired Student’s t-test) between tissues are 

generally up-regulated compared to randomly selected genes. P-values were calculated 

using the Wilcoxon rank-sum test. (C) Top ten significantly enriched GO-BP terms and 

KEGG pathways (performed using the software Metascape) for genes with increased RPS 

in pairwise tissue comparisons. (D) Heatmaps showing RPS (top) and expression (bottom) 

of marker genes for the definitive germ layers. Out of 4428 germ layer markers in the pig 

genome (Jin et al. 2021), 2945 marker genes (720 for endoderm, 598 for mesoderm, and 

1627 for ectoderm) are in contact with enhancers and thus have RPS values in at least 

one tissue. Each gene’s RPS values and their respective expression levels are 

standardized in order to range between 0 and 1. Typical genes are indicated below. (E) 

Comparison between RPS values of germ layer markers across tissues. P values were 

calculated using a Wilcoxon rank-sum test. (F) A scatter plot and trend line (Pearson’s r) 

showed correlation between changes in RPS and gene expression for germ layer makers 

of endoderm (512 and 574 markers with RPS and evident expression, i.e., TPM > 0.5, in 

at least one tissue for liver vs. muscle and liver vs. brain, respectively; left), mesoderm (511 

and 488 markers with RPS and evident expression in at least one tissue for muscle vs. 

liver and muscle vs. brain, respectively; middle), and ectoderm (1380 and 1356 markers 

with RPS and evident expression in at least one tissue for brain vs. liver and brain vs. 

muscle, respectively; right) across the three tissues. The blue line represents the linear 

regression. Red and teal dots represent genes with coordinate and incoordinate changes 

in RPS and expression, respectively. The number of genes in each quadrant showing a 

specific relationship between RPS and expression differences is provided (upper left: 

genes with lower PRS that are upregulated; bottom left: genes with lower RPS that are 

downregulated; upper right: genes with higher RPS that are upregulated; bottom right: 

genes with higher RPS that are downregulated). As expected, the makers of the three germ 

layers generally exhibited higher RPS and upregulated expression in the tissue that 

originates from the respective germ layer (the endoderm-derived liver, mesoderm-derived 

muscle, and ectoderm-derived brain), as indicated by the significant enrichment (P < 0.05, 

χ2 test) of genes in the upper right quadrant (in colored shadow) of the scatter plots. 
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Supplemental Fig. S16. Representative examples of tissue-specific PEIs for ABCG5 (A) 

and FMO1 (B) in the liver, MYL1 (C) and MYOT (D) in the muscle, and NRGN (E) and 

TBR1 (F) in the brain. Top to bottom: Hi-C maps (upper left) and their allelic differences 

(upper right), ChIP-seq signals of H3K27ac and H3K4me3, and gene expression levels 

(lower left) and 3D structural models (lower right) of the corresponding genomic regions. 

Promoter (grey square), enhancers (green squares), and PEIs (connecting lines) are 

displayed beside the Hi-C maps.  
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Supplemental Fig. S17. Representative examples of specific PEIs for germ layer markers 

in the tissues originated from their respective germ layers. Specifiers of (A and B) 

endoderm (AFP and FGA) in endoderm-derived liver; (C and D) mesoderm (ACTC1 and 

ADAMTS9) in mesoderm-derived muscle; and (E and F) ectoderm (MAP2 and SEMA5B) 

in ectoderm-derived brain. The schematics are similar to those shown in Supplemental 

Fig. S16. 
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Supplemental Fig. S18. Imprinting-specific PEI organizations. A total of 12 allelic-

expression testable imprinted genes (with informative SNVs and interacting with enhancers 

in at least one tissue) that exhibited strong evidence of parent-of-origin-specific PEI 

organization in at least two of the three tissues are shown. Paternally imprinted IGF2/INS 

and maternally imprinted H19 in the liver (A), muscle (B), and brain (C); maternally 
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imprinted IGF2R in the liver (D), muscle (E), and brain (F); paternally imprinted NDN, 

MAGEL2 and MKRN3 in the liver (G), muscle (H), and brain (I); paternally imprinted PEG10 

and SGCE in the liver (J), muscle (K), and brain (L); paternally imprinted gene CASD1 in 

the liver (M) and brain (N); paternally imprinted MEST in the muscle (O) and the brain (P); 

and paternally imprinted PLAGL1 in the muscle (Q) and brain (R). The schematics are 

similar to those shown in Supplemental Fig. S16. 
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Supplemental Fig. S19. Characteristics of allelic structural variants (SVs). (A) Allele 

assignment of high-quality ONT reads of four F1 hybrids (see Supplemental Methods). (B) 

Length distribution of the indels identified in F1 hybrids. We detected ~734.78 k (~8.42 Mb 

in length) insertions and ~340.13 k (~9.44 Mb in length) deletions in Berkshire haplotypes 

mapped against the pig reference genome, and ~1.009 M (~12.51 Mb in length) insertions 

and ~633.92 k (~15.15 Mb in length) deletions in Tibetan haplotypes mapped against the 

pig reference genome. More than 91% of the indels spanned 1–10 bp in length. (C) 

Distribution of indels between 100 bp and 500 bp, and 5 kb and 10 kb in length. The peaks 

at ~300bp and ~8kb in length (top) are probably associated with the enrichment of indels 
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of tRNAGlu-derived short interspersed elements (SINE/tRNAGlu) and LINE/L1-derived long 

interspersed elements, respectively (bottom). (D) Indels overlapping with repeat elements 

in pig genomes. Length composition of repeat elements in the pig reference genome is 

displayed (top). Number composition of indels across 8 haploid genomes in repeat 

elements and non-repeat regions are shown (bottom). Repetitive elements constitute 

~46.21% of the genome, of which ~48.08% were indels, which suggests they are an 

important source of SVs in the pig genome. Moreover, the SINE/ tRNAGlu (294.47 Mb 

containing ~13.15% of all indels) showed a higher incidence of indels than the predominant 

long interspersed elements (LINE/L1) (446.51 Mb containing ~17.45% of all indels). (E) 

Percent distribution (measured by length of indels, top) and probability of occurrence 

(measured by number of indels, bottom) of indels across different genomic elements. The 

indels appear to be constrained by selection: more than 50% of indels (~58.95% in length) 

were located in intergenic regions, and the indel ratio was lower in the coding sequences 

than in introns. (F) Conservation levels of indel-containing genes, which were categorized 

following dN/dS ratios compared to gene sets of human (top) and mouse (bottom) 

genomes (downloaded from Ensembl using the biomart online tool). The black horizontal 

lines represent the overall percentage of indel-containing genes against all the orthologs 

between the pig and human/mouse genomes for 8 haplotypes. By counting the number of 

orthologs and indel-containing genes against the genome-wide background, we 

determined the statistical significance of enrichment of indel-containing genes for each 

group that was categorized by the dN/dS ratio using a 2 test (*0.01 < P < 0.05; **0.001 < 

P < 0.01). This analysis showed that more conserved genes contained fewer indels. (G) 

Length distribution of short indels (1–15 bp in length) in the whole genome (left) and coding 

sequence (CDS) regions (right). We observed an enrichment of short indels (1–15 bp in 

length) in coding sequences (~28.97%) that were multiples of 3 bp, which is expected to 

preserve the reading frame. (H) Analysis of the phylogenetic relationship among 8 

haplotypes using indel numbers in 1 Mb non-overlapping genomic bins. Hierarchical 

clustering based on Pearson’s r of indel occurrence was used as distance metrics. As in 

the case of SNVs (Supplemental Fig. S3C), the distribution of short indels across the 

genome also reflected a deep phylogenetic split between European (i.e., Berkshire) and 

Asian pigs (Tibetan).  
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Supplemental Fig. S20. Effects of sequence variation and histone modification on allelic 

PEI rewiring in F1 hybrids. (A) Among distinct PEIs within each of the 24 haploid genomes, 

we found that those with increased intensity (x-axis) generally have elevated interaction 

probabilities (y-axis). Data are shown as mean ± SD (eight haploid genomes for each of 

the three tissues). The probability of long-range interactions for each allelic PEI were 

estimated by considering their variation using the PEP algorithm that only employs 

sequence-based features (see Supplemental Methods; Yang et al. 2017b). The intensity 

distribution of PEIs in each tissue are also shown in the top. (B) For the comparison of 

particular PEIs between two parental alleles in F1 hybrids in a specific tissue, those with 

greater changes in intensity (especially those in the highest top 1% allelic intensity changes; 

see Supplemental Methods) generally have elevated allelic differences of estimated 

interaction probabilities. The P-values were calculated using the Wilcoxon rank-sum test. 

(C–E) The example PEI in SMAD4 was potentially disrupted by sequence variations 

between the two parental alleles. (C) Hi-C maps (upper left) and their allelic differences 

(upper right); ChIP-seq signals of H3K27ac (enhancer) and H3K4me3 (promoter) (bottom 

left), and a statistical comparison of the example PEI between breeds (bottom right). (D) 

Allelic differences in promoter-centered interaction patterns (200 kb up- and downstream 

regions from the promoter) (left); confirmation of allelic rewiring of the example PEI by 

predicted sequence-based PEI probabilities (see Supplemental Methods; right). P-values 

are from paired Student’s t-test. (E) Pairwise comparison of the degree of haplotype 

similarity (measured by IDS) in promoters and enhancers among eight haplotypes; note 

that Berkshire pigs appear to carry a single allele. Summary of sequence variants (SNVs 

and indels) as well as changes in PEI interval length are shown. (F and G) Among the 

distinct PEIs within each haploid genome (F), or for a given PEI between two parental 

alleles (G), the simulated PEI intensities based on the variable bridging distances of the 

PEI using Huynh’s algorithm (see Supplemental Methods) suggest that promoter and 

enhancers neighbor each other in the linear genome, and generally have an elevated 

interaction intensity. The P-values were calculated using the Wilcoxon rank-sum test. (H–

K) Among the distinct PEIs within each haploid genome (H and J), or for a given PEI 

between two parental alleles (I and K), the increased activities for H3K4me3-marker 

promoters (H and I) and H3K27ac-marked enhancers (J and K) generally have an elevated 

PEI intensity. The P-values were calculated using the Wilcoxon rank-sum test.  
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Supplemental Fig. S21. Breed-specific mutations induced allele-specific abolition of two 

CTCF-mediated loops. (A) Identification of breed-specific CTCF loops in the liver. Briefly, 

we applied Juicer HiCCUPS to identify loops in 8 haplotypes using their Hi-C contact 

matrices. Only loops with anchor distances between 40-kb and 1-Mb were kept and then 

ranked by detection significance, with the top 8000 loops retained. Loops with neighboring 

anchors were collapsed into a non-redundant set, and those without convergent CTCF 

motifs or CTCF ChIP-seq peaks at both anchors were removed. Loops detected in at least 

one of the 8 haplotypes were combined into a single non-redundant union set. For each 

loop set, the distance-normalized interaction intensity was retrieved from the Hi-C contact 

matrices for the 8 haplotypes. We identified loops with differential intensity between 

Berkshire and Tibetan haplotypes (P < 0.05, paired Student’s t-test), and those with 

consistent intensity change and CTCF motif occurrence were considered as breed-specific 

CTCF loops. (B) Proportion of CTCF loops within and across TADs. (C) Evolutionary 

conservation (inferred by Phastcons) of consensus CTCF motifs at CTCF loop boundaries 

with or without genes, and non-boundary regions. The motif region (19 bp in length) is 

indicated by the dashed box. Data are presented as mean ± SD. The shaded area indicates 

the standard deviation. P-values were calculated using a paired Student’s t-test. (D–H) A 

1-bp deletion (‘G’, Chromosome 2: 57822013; the 10th position of the core CTCF binding 

motif at the 5’ loop anchor) in Tibetan alleles most likely resulted in allele-specific abolition 

of the CTCF loop. (D) Hi-C maps and their allelic differences. Linear positions of the CTCF 

loop anchors (magenta squares) and sequences of the core CTCF binding site of Tibetan 
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and Berkshire alleles are shown (top). ChIP-seq signals of CTCF, H3K27ac and H3K4me3, 

and expression of two genes located within loop are also exhibited (bottom). (E) Sequence 

logos of the consensus CTCF binding motif (downloaded from https://jaspar.genereg.net/) 

indicate that the 10th position is highly conserved in vertebrates (top). The frequency of a 

1-bp deletion (‘G’, Chromosome 2: 57822013) in populations of Berkshire (n = 21) and 

Tibetan pigs (n = 61) (bottom). Of the 82 pigs, six Berkshire and six Tibetan pigs were from 

six parent-child trios used in our study. The publicly available SNVs of other 60 pigs 

(including 15 Berkshire and 55 Tibetan pigs) were retrieved from the ISwine database (Fu 

et al., 2020). (F) 4C-seq signals confirmed the CTCF loop existing in Berkshire pigs were 

not present in Tibetan pigs. Histogram showing the genomic interactions across the 150 

kb up- and down-stream the CTCF loop anchor. Red vertical arrows indicate the viewpoint. 

The grey shadow shows the differential interaction intensity between Tibetan and Berkshire 

pigs at the genomic loci where Berkshire had enriched chromatin interactions due to a 

breed-specific CTCF loop. (G and H) Hi-C maps around the Tibetan-specific 1-bp deletion 

(‘G’, Chromosome 2: 57822013) and their allelic differences in the muscle (G) and brain 

(H). Hi-C maps showing substantial differences in loop intensity between the two parental 

alleles (similar as shown in E). (I–L) A SNV (‘G’ > ’T’, Chromosome 8: 53792054; the 13th 

position of the core CTCF binding motif of the 3’ loop anchor) in Tibetan alleles mostly like 

resulted in allele-specific abolition of the CTCF loop. The schematics of I–L are similar to 

those shown in panels D–G. 
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Supplemental Fig. S22. Representative examples of genes showing differential RPS 

between Berkshire and Tibetan alleles across the different tissues. (A–D) Allelically 

differential RPS of C12ORF29 in the liver. (A) Hi-C maps (upper left) and their allelic 

differences (upper right). ChIP-seq signals of H3K27ac and H3K4me3, gene expression 

(lower left), and 3D structural models (lower right). Promoter (grey square), enhancers 

(green squares), and PEIs (connecting lines) are displayed. (B) Allelic differences of PEI 

intensity (mean ±SD, n = 4, top) and sequence-based PEI probability (middle and bottom). 

n.s., P ≥ 0.05; *P < 0.05; **P < 0.01. (C) Allelic differences of histone modification (H3K27ac 

in enhancers and H3K4me3 in promoter). Mean ±SD (n = 4). n.s., P ≥ 0.05; *P < 0.05; **P 

< 0.01. (D) Degree of haplotype similarities (measured by IDS) of promoter and enhancer 

in pairwise comparisons among 8 haplotypes. The allelic changes in the PEI interval length 

are also provided. Allelically differential RPS of CAV2 (E–H), ABI3 (I–L), and ITGA6 (M–

P) in the liver, and PFKL (Q–T) in the brain are similar to those shown in (A–D).  
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Supplemental Fig. S23. Differential RPS between Berkshire and Tibetan alleles in the 

skeletal muscle. (A) Comparison of myofiber cross-sectional area in representative 

longissimus dorsi muscle (hematoxylin-and-eosin staining) between adult purebred 
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Berkshire and Tibetan pigs (see Supplemental Methods). P-value is from paired Student’s 

t-test. (B and C) Spatial transcriptomic profiles of type I myofiber marker MYH7 expression 

in succinate dehydrogenase (SDH)-stained histological sections in Tibetan (B) and 

Berkshire pigs (C). The proportions of type I myofibers (dark color) were estimated using 

SDH-stained sections (top). Insets show three typical regions/images magnified for 

comparison (middle). Differential MYH7 expression between type I and type II myofibers 

(masked from SDH-stained sections) was quantified using a ’pseudo-bulk’ approach (see 

Supplemental Methods; bottom). (D–F) Allelic differences in PEIs and sequence 

divergence in promoter and enhancer regions of DDIT4L in muscle. (D) Hi-C maps (upper 

left) and a heatmap of corresponding allelic differences in PEI intensity (upper right). ChIP-

seq signals of H3K27ac, H3K4me3, and gene expression levels (lower left), and 3D 

structural models of PEIs (lower right). Promoter (grey square), enhancers (green squares), 

and PEIs (connecting lines) are displayed beside the Hi-C maps. (E) Statistical analysis of 

allelic differences in PEI intensity (mean ± SD, n = 4, top) and sequence-based PEI 

probability (middle), and H3K27ac and H3K4me3 signals in enhancers and promoter 

(mean ± SD, n = 4; bottom). Paired Student’s t-test, n.s., P > 0.05; *P < 0.05; **P < 0.01. 

(F) Degree of sequence divergence in promoter and enhancer regions among eight 

haplotypes (measured by IDS; top) and among 82 diploids (measured by IBS), as well as 

the frequency distribution of SNVs in 82 diploids (middle). 
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Supplemental Fig. S24. Characteristics of homolog pairing in the pig genome at 20-kb 

resolution. (A) Similar distance-dependent decay of intra-chromosomal (red) and inter-

homologous (blue) contacts (Spearman’s r = 0.97, P < 2.2×10–16). The interactions 

between homologs are statistically weaker than within chromosomes (inter-homolog vs. 

intra-chromosome: average 0.01-fold between 20-kb to 500-kb, P < 0.01; and 0.036-fold 

between 500-kb to 10-Mb, P < 2.2×10–16), but statistically stronger than between 

heterologs (dashed line; inter-homolog vs. inter-heterolog: average 35.31-fold between 20-
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kb to 500-kb, P < 9.73× 10–16; and 2.41-fold between 500-kb to 10-Mb, P < 2.2×10–16) in 

12 samples. The P-values were obtained using a paired Student’s t-test. Data of a 

representative liver sample is shown. (B) Homolog pairing score (HPS) is positively 

correlated with the intrachromosomal score (ICS; Spearman’s r = 0.43, P < 2.2×10–16). 

Data of a representative liver sample is shown. (C) Correlation between HPS and ICS for 

each of the 18 autosomes. (D) Homology pairing is correlated with compartmentalization. 

Top: HPS values are positively correlated with compartment scores (A-B index; 

Spearman’s r = 0.19, P < 2.2×10–16). A representative liver sample is shown. Bottom: in 

comparison to compartment B regions, compartment A regions exhibited enhanced allelic 

pairing (reflected by statistically increased HPS values), which supports findings uncovered 

in flies (AlHaj Abed et al. 2019). (E) Correlation between HPS and compartment scores (A-

B index) for each of the 18 autosomes. (F) Comparison of HPS between compartment A 

and B regions for each of the 18 autosomes. (G) Hi-C maps of Chromosome 12 in the pig 

genome (61.80 Mb in length) (top). The intra-chromosomal contacts (measured by ICS) of 

two parental alleles, and inter-homolog contacts (measured by HPS) are also shown 

(bottom). (H) Correlation between HPS and LBS. (I and J) Compared to other genes (J), 

those located in tightly paired regions (I) exhibited decreased covariations between allelic 

expression and RPS. Genes present in eight haplotypes within each tissue were classified 

into four classes based on their respective expression levels. This suggests a complicated 

transcriptional regulation program besides the intra-chromosomal PEI exists. In C, E, and 

F, the data are presented as mean ± SD (n = 12), and the dots represent the Spearman’s 

correlation coefficients for each sample. The P values were calculated using a Wilcoxon 

rank-sum test. *P < 0.05; **P < 0.01; *** P < 0.001. 
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Supplemental Fig. S25. Characteristics of homolog pairing in the pig genome at 100-kb 

resolution, which recapitulates the findings obtained at 20-kb resolution. (A) Similar 

distance-dependent decay of intra-chromosomal (red) and inter-homologous (blue) 

contacts (mean Spearman’s r = 0.99, P < 2.2×10–16). Although the interactions between 

homologs are statistically weaker than within chromosomes (inter-homolog versus 

intrachromosome: average 0.01-fold between 20-kb to 500-kb, P < 0.12; and 0.028-fold 

between 500-kb to 10-Mb, P < 1.06×10–8), they are still statistically stronger than between 

heterologs (dashed line; inter-homolog versus inter-heterolog: average 37.48-fold between 

20-kb to 500-kb, P < 0.007; and 2.32-fold between 500-kb to 10-Mb, P < 2.2×10–16). P 

values were calculated using a paired Student’s t-test. Data of a representative liver 

sample is shown. (B) Homolog pairing score (HPS) is positively correlated with the intra-

chromosomal score (ICS) (Spearman’s r = 0.57, P < 2.2×10–16). A representative liver 

sample is shown. (C) Correlations between HPS and ICS for each of the 18 autosomes. 

(D) Homology pairing is correlated with compartmentalization. Top: HPS values are 

positively correlated with A-B index (Spearman’s r = 0.28, P < 2.2×10–16). A representative 

liver sample is shown. Bottom: In comparison to compartment B regions, compartment A 

regions exhibited enhanced allelic pairing (reflected by statistically increased HPS values). 

(E) Correlation between HPS and compartment scores (A-B index) for each of the 18 

autosomes. (F) Comparison of HPS between compartments A and B regions for each of 

the 18 autosomes. In C, E, and F, the data are presented as mean ± SD (n = 12), and the 

dots represent the Spearman’s correlation coefficients for every sample. P values were 

calculated using the Wilcoxon rank-sum test. *P < 0.05; **P < 0.01; *** P < 0.001. 
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Supplemental Fig. S26. Detection of homolog pairing with heterozygous SNVs at different 

confidence levels to assign parental origins of chromatin interactions. (A) The ratio of 

parental alleles for each heterozygous SNV. All heterozygous SNVs were divided into 20 

intervals. Top: distribution of sequencing depths for SNVs within each interval. Bottom: 

proportion of SNVs within each interval. (B–J) Hi-C maps showing signals of genome-wide 

homolog pairing (arrows) in a representative somatic tissue (liver) of a hybrid pig sample 

based on heterozygous SNVs at different confidence levels. 
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Supplemental Fig. S27. Human GWAS and pig QTLs associated with specific traits or 

diseases were enriched in enhancers. (A) Comparison of enrichment for human trait-

associated, noncoding SNPs (nucleotides that can be liftover from the human to the pig 

genome) in enhancers and other regions of the pig genome. (B) Bubble plot showing the 

enrichment of noncoding SNPs in enhancers that were separately identified in the liver, 

muscle, and brain. The traits or diseases shown were merged from the ten terms with the 

highest enrichment scores in each tissue (P < 0.05, χ2 test), and can be empirically 

classified into four categories, including metabolism, oxygen supply, mental diseases, and 

others. (C) Comparison of enrichment for pig QTLs (~5 bp in length; Release 50; Apr 25, 

2023; https://www.animalgenome.org/cgi-bin/QTLdb/SS/index) in enhancers and other 

regions of the pig genome. (D) Bubble plot showing the enrichment of pig QTLs in 

enhancers that were separately identified in the liver, muscle, and brain. The traits shown 

were merged from the terms with the highest enrichment scores in each tissue (P < 0.05, 

χ2 test), and can be empirically classified into three categories, including meat, hormone 

and others. 
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Supplemental Methods 

1. Generation of trio-based genomic and Hi-C data from F1 hybrids 

1.1 Whole-genome sequencing and data processing 

Genomic DNA was exacted from ear (F0, n = 12) and liver tissues (F1, n = 6) using the 

TIANamp Genomic DNA Kit (TIANGEN, DP304). Sequencing libraries were generated and 

sequenced on the Illumina HiSeq X ten platform with 150-bp paired-end reads, or on the 

BGISEQ-500 platform with 100-bp paired-end reads. High-quality whole-genome 

sequencing data were aligned to the pig reference genome (Sscrofa 11.1) using the 

Burrows-Wheeler Aligner (BWA, v 0.7.8; Li and Durbin 2009). Optical and PCR duplicates 

were removed using Picard MarkDuplicates (v 2.0.1, http://broadinstitute.github.io/picard). 

SNVs and indels were called using the Genome Analysis Toolkit (GATK, v 3.8; McKenna 

et al. 2010) HaplotypeCaller and stored in genomic variant call format (gVCF). For each 

trio, variant data from single sample gVCF files were aggregated into a multi-sample VCF 

file using GVCFGenotyper. Low-quality variants or genotypes were excluded using GATK, 

with the arguments ‘QD < 10.0 || FS > 60.0 || MQ < 40.0 || MQRankSum < –12.5 || 

ReadPosRankSum < –8.0 || GQ < 30’. Unplaced scaffolds, sex chromosomes and the 

mitochondrial genome were removed from further analyses. For each trio, we discarded 

variants with the lowest (bottom ~1%) and highest (top ~1%) coverage depth (depth-based 

Z-score < –2.58 and > 2.58, respectively). We merged the SNV data for all individuals, and 

performed PCA using the GCTA software (v 1.93.2; Yang et al. 2011), and genetic structure 

inference using Structure (v 2.3.4; Pritchard et al. 2000). 

1.2 In situ Hi-C library preparation and sequencing 

We constructed 8–15 in situ Hi-C libraries (technical replicates) for each of the 14 samples, 

with minor modifications from previously described method (Rao et al. 2014). 

Compromising sample size and sequencing cost, we obtained a higher volume of Hi-C 

data (~7.29 billion contacts per sample, dataset 1 and 2) for each of the four skeletal 

muscle and four brain tissue samples compared to the six liver tissue samples (~3.15 billion 

contacts per sample, dataset 1) (Fig. 1B; Supplemental Fig. S2B). Briefly, the tissues 

were homogenized and fixed with a 4% formaldehyde solution at room temperature for 

30 min. The chromatin was digested with 200 U of DpnII enzyme (R0543S, NEB, USA) at 

37°C for 90 min, 65°C for 20 min and 25°C for 5 min. Nucleotide fill-in was conducted with 

0.4 mM Biotin-14-dATP (19524-016, Invitrogen), 10 mM dCTP, 10 mM dGTP, 10 mM dTTP 

and 5 U·μL−1 Klenow Fragment (M0210L, NEB) at 37°C for 45 min. Ligation was performed 

by a T4 DNA ligase (L6030-HC-L, Enzymatics, USA) at 20°C for 30 min. DNA was sheared 

to the length of 300 to 500 bp and washed using M280 beads at 20°C for 20 min. The Hi-

C libraries were amplified with 10 PCR cycles and sequenced with 150-bp paired-end 
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reads on the Illumina HiSeq X ten platform or 100-bp paired-end reads on the BGISEQ-

500 platform. Compromising sample size and sequencing cost, we obtained a higher 

volume of Hi-C data (~7.29 billion contacts per sample, dataset 1 and 2) for each of the 

four skeletal muscle and four brain tissue samples compared to the six liver tissue samples 

(~3.15 billion contacts per sample, dataset 1) (Fig. 1B; Supplemental Fig. S2B) 

2. Reconstruction and analysis of haplotype-resolved Hi-C maps 

2.1 Reconstruction of haplotype-resolved Hi-C maps 

We reconstructed haploid maternal and paternal Hi-C maps at a maximum resolution of 2-

kb resolution for a total of 14 F1 samples (Hi-C dataset 1) and 1-kb resolution for 12 F1 

samples (Hi-C datasets 1 and 2). Hi-C matrices are two-dimensional and thus the number 

of lattices increase exponentially with increasing resolution. For instance, the number of 

lattices increases 6.25-fold from 5-kb (n = 2.12 × 1011) to 2-kb (n = 5.29 × 1012), although 

the resolution only increases by 2.5-fold (see Supplemental Fig. S5D). Therefore, as 

resolution increases in Hi-C analysis, the resulting matrix will be sparser due to a higher 

percentage of bin pairs with low counts (see Supplemental Fig. S5D), potentially 

amplifying background noise in the data and reducing statistical power. Hence, for 

subsequent Hi-C analyses, we used a lower, more appropriate resolution (20-kb for A/B 

compartments and TADs, and 5-kb for PEIs) to ensure both sufficient statistical power and 

precision. Data from X Chromosomes were excluded from further analyses to avoid 

confounding factors related to the ‘mosaic’ 3D structural features of active and inactive X 

Chromosomes in tissues with highly heterogeneous cell populations (i.e., different cell 

populations have different, random, X Chromosome inactivation; Deng et al. 2014). 

For a diploid sample, we employed the SNPsplit (v 0.3.4; Krueger and Andrews 2016) 

to classify Hi-C contacts into three categories, which were termed informative (both reads 

containing haplotype-resolved SNVs), partial-informative (either read containing 

haplotype-resolved SNVs) and non-informative (neither read containing haplotype-

resolved SNVs). The informative contacts provide the most accurate information to 

reconstruct a haplotype-resolved Hi-C map, but their application is limited by their relatively 

low proportion (8.19–12.03%; Supplemental Fig. S4A). According to their parental origins, 

the informative contacts can be classified into six categories (Supplemental Fig. S4B). 

Notably, we observed that only a small fraction (1.65–2.82%) of unphased intra-

chromosomal contacts (including actual intra- and inter-homologous contacts) is inter-

homologous. This indicates that for any given intra- or inter-homologous contact, the 

probability of it originating from intra-maternal or intra-paternal category ranged from 97.18% 

to 98.35%. This allowed us to directly classify the partial-informative intra- or inter-

homologous contacts to either the intra-maternal or intra-paternal category with acceptable 

misclassification rates (1.65–2.82%). Nonetheless, these haplotype-resolved intra-
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chromosomal contacts were highly correlated with SNV density (Spearman’s r = 0.93, P < 

2.2×10–16) due to non-uniform SNV distribution. To address this, we employed HaploHiC 

(v 0.32; Lindsly et al. 2021) to phase the parental origin of non-informative intra- or inter-

homologous contacts with local imputation based on the distribution of informative and 

partial-informative intra-chromosomal contacts. This allowed us to generate 28 nearly 

complete haplotype-resolved intra-chromosomal Hi-C maps (comprising ~99.37% intra- or 

inter-homologous contacts for each sample). In contrast, inter-heterologs contacts occupy 

~50.20% of nonhomologous contacts. Accordingly, the partial-informative and non-

informative nonhomologous contacts cannot be assigned due to a high misclassification 

rate, with only ~9.63% of nonhomologous contacts were successfully assigned to their 

parental origins.  

To make the Hi-C data sets comparable, we normalized the Hi-C matrixes at 5-kb, 20-

kb and 100-kb resolutions using a BNBC (band-wise normalization and batch correction) 

quantile normalization strategy (Fletez-Brant et al. 2021). In addition, we validated the 

normalization efficiency using the multiHiCcompare (Stansfield et al. 2019) for Hi-C 

matrixes of Chromosome 18.  

2.2 Correlations between intra-chromosomal matrices 

We used HiCRep (Yang et al. 2017a), GenomeDISCO (Ursu et al. 2018), and QuASR-Rep 

(Yardımcı et al. 2019) with default parameters to assess the reproducibility of normalized 

intra-chromosomal contact matrices (at 20-kb resolution) across all haplotypes (n = 28). 

2.3 3D modelling of diploid pig genomes 

We reconstructed 3D genome organization for each sample based on the normalized intra- 

(at 20-kb resolution) and inter-chromosomal (at 1-Mb resolution) contact matrices for 18 

pairs of homologous autosomes using an approximation of multidimensional scaling (MDS) 

method implemented in the miniMDS (Rieber and Mahony 2017) program. The software 

PYMOL (The PyMOL Molecular Graphics System, v 2.5.2 Schrödinger, LLC.) was used for 

visualization. This analysis was applied to the Hi-C dataset 1 (see Supplemental Fig. S1). 

2.4 Allelically compartmental rearrangements 

2.4.1 Identification of A/B compartments 

Haplotype-resolved A/B compartments at 20-kb resolution were identified using both 

principal component analysis (PCA) and A-B index, as previously described (Rowley et al. 

2017). Briefly, PCA was performed to generate PC1 vectors for each autosome per sample 

at 100-kb resolution. Spearman’s r between PC1 and genomic characteristics including 

gene density and GC content were then calculated. Bins with positive Spearman’s r were 
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defined as compartments A, and the remainder as compartments B. The A-B index was 

then calculated as previously described (Rowley et al. 2017) at 20-kb resolution, which 

represents the likelihood of a genomic segment interacting with the A or B compartments 

defined at 100-kb resolution, as described above. Bins of 20-kb length with positive or 

negative A-B index were considered as either A or B compartments, respectively. The 

reproducibility of A/B compartments between the two alleles was assessed using Pearson’ 

r correlation based on the A-B index values. This analysis was applied to the Hi-C dataset 

1 (see Supplemental Fig. S1). 

2.4.2 A/B compartment switches and variables 

To identify the distinct compartment status (i.e., A/B switches) between haplotypes in 

different categories (i.e., tissues, parental-of-origins, and parental breeds), we defined a 

set of common A/B compartments (with more than 75% of haplotypes exhibiting the same 

chromatin status) for each category. Considering the number of biological replicates 

differed among categories (i.e., n = 12 for liver and n = 8 for skeletal muscle and brain in 

analyses identifying A/B switches between pairwise tissues; or n = 6 for liver and n = 4 for 

skeletal muscle and brain in analyses of A/B switches between parents-of-origin and 

parental breeds), we therefore used 75% as a strict threshold, rather than absolute number 

of replicates, to define the chromatin state for each biological category. For each tissue, 

the common A/B compartments were defined if the same chromatin status was presented 

in more than 9 haplotypes for liver, and more than 6 haplotypes for skeletal muscle and 

brain. For categories of parental-of-origin and paternal breeds, the common A/B 

compartments were defined if the same chromatin status was present in more than 5 

haplotypes for liver, and at least 3 haplotypes for both skeletal muscle and brain tissues. 

Thus, A/B switches referred to the genomic regions with different common compartment 

status between haplotypes in different categories. We also identified A/B compartment 

switches using HOMER (http://homer.ucsd.edu/homer/; Lin et al. 2012) to validate the 

reliability of the switched compartments detected using the above-mentioned method. 

In addition, we recognized regions with the same compartment status between 

haplotypes but have statistically significant differences in compartment scores (i.e., the A-

B index values) (|ΔA-B index| > 0.5 and P < 0.05, paired Students’ t-test) between parent-

of-origins and paternal breeds (termed as A/B variables). Both analyses were applied to 

the Hi-C dataset 1 (Supplemental Fig. S1). 

2.5 Allelically variable topologically associated domains (TADs) 

2.5.1 TAD calling 

Haplotype-resolved TADs were identified at 20-kb resolution using the Directionality Index 

(DI; Rowley et al. 2017) and the Insulation Index (IS; Crane et al. 2015) as previously 

http://homer.ucsd.edu/homer/
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described. Briefly, the DI value of each 20-kb bin was calculated using the number of reads 

that map from a given bin to the upstream and downstream 2-Mb regions (Dixon et al. 

2012). A hidden Markov model (HMM) was then applied to the DI values to infer domains 

and anchors. In addition, the IS value was calculated and normalized for each 20-kb bin 

(Crane et al. 2015). Bins with minimal IS along the normalized IS vector were interpreted 

as the TAD anchors. Finally, large TADs identified by DI were further split into small TADs 

based on IS, and then the two sets of TADs were merged for further analyses. This analysis 

was applied to the Hi-C dataset 1 (see Supplemental Fig. S1). 

2.5.2 Measurement of TAD concordance 

MoC (assessment of the overlap between each pair of TADs by measuring in number of 

base pairs and considering the overall size of both TADs; Zufferey et al. 2018) and VI 

(measurement of the similarity of all subsets of the two TAD structures using a dynamic 

programming algorithm to compute the VI metrics; Sauerwald and Kingsford 2018) were 

calculated to access the reproducibility of TADs between haplotypes. 

2.5.3 Identification of TAD boundary shifts 

TAD boundary was defined as the anchor bin along with its 60-kb flanking segments and 

two boundaries were merged as a larger boundary if they were overlapped. We identified 

the shifts of haplotype-resolved TAD boundaries between tissues, parent-of-origin and 

parental breeds as the bins containing changed boundary positions that exhibited 

significantly different local boundary scores (LBS; Han et al. 2020); quantitatively reflecting 

the strength of TAD boundary).  

Specifically, 15 continuous 20-kb bins formed a locus (locus = 300 kb). For a given bin, 

the interactions within its up- and downstream loci (represented as 300 kb × 300 kb 

triangles in the contact matrix) and right loci were defined as its intra-loci interactions. The 

interactions between these two loci (300 kb × 300 kb diamonds in the contact matrix) are 

inter-loci iterations. The log2-transformed ratio of intra- to inter-loci interactions was 

calculated as LBS of the bin. 

We further used a custom method modified from our previous work (Li et al. 2012) to 

identify regions with statistically differential LBS (D-LBS). Briefly, we scanned the genome 

from 5’ to 3’ and, if the difference between the two haplotype groups for a 20-kb bin was 

significant (P < 0.05, paired Students’ t-test), then that bin was considered as the seed site 

of a candidate D-LBS region. After this, a 3’ downstream adjacent 20-kb bin was 

concatenated to this seed site, and the average LBS of these two sites was subjected to 

another round of paired Students’ t-test. The same process was repeated for the next 20-

kb bin until a low-variance 20-kb bin was identified (P > 0.05). In order to eliminate ‘trailing 

smear’ (i.e., a low variance bin being incorporated into a D-LBS region due to very high 
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variance of its preceding bins), we repeated the above test procedures from 3’ to 5’ across 

the genome. If a genomic region containing three or more bins have statistically significant 

(P < 0.05) different LBS across the haplotypes, then this region was considered as a D-

LBS region. This analysis was applied to the Hi-C dataset 1 (see Supplemental Fig. S1). 

Additionally, we used a dedicated tool for TAD boundary analysis, TADCompare 

(https://github.com/dozmorovlab/TADCompare), to calculate TAD boundary scores (in 

which high values indicate TAD boundaries) for the shifted boundaries identified between 

parents-of-origin using the above-mentioned method, to assess the reliability of our results. 

2.6 Haplotype-resolved interrogation of promoter-enhancer interactions (PEIs) 

2.6.1 Identification of PEIs 

To reliably identify haplotype-resolved PEIs, we performed additional in situ Hi-C assays 

(dataset 2) for 12 of the 14 aforementioned samples (three tissues from four F1 pigs, see 

Supplemental Fig. S1). By combining both Hi-C datasets 1 and 2, we obtained very high-

resolution diploid Hi-C maps (a maximum resolution of 1-kb). We generated KR-normalized 

intra-chromosomal contact maps at 5-kb resolution for each haplotype, and further quantile 

normalized them across 24 haplotypes. The promoter regions of genes were defined as 

the 5-kb bin covering the transcription start site (TSS). The normalized contact maps at 5-

kb resolution were split into smaller matrices (20 Mb × 20 Mb) with a step size of 10 Mb to 

accelerate the identification of PEIs using the PSYCHIC algorithm (Ron et al. 2017) with 

default parameters. PEI intensity is calculated as follows: 

PEI intensity = observed contact frequency – expected contact frequency 

in which the observed contact frequency is the number of promoter-centered interactions 

within 10 Mb genomic distance upstream and downstream, and the expected contact 

frequency is defined as the normalized contact frequency according to the domain-specific 

background model calculated by PSYCHIC software. 

We reserved high-confidence haplotype-resolved PEIs using the following parameters: 

(i) FDR ≤ 10–4; (ii) interaction distances ≥ 25-kb; (iii) for each tissue, more than two 

occurrences identified in the same parental breed or parent-of-origin; (iv) for each tissue, 

more than three occurrences identified across all haplotypes. To determine the appropriate 

FDR threshold for PEI identification, we calculated the average PEI number per gene using 

eight different FDR thresholds (Supplemental Fig. S13A), and found that the threshold of 

10–4 can ensure maximum PEI discovery with a low false positive rate. 

2.6.2 Calculation of regulatory potential scores 

To explore the regulatory effects of multiple enhancers on a gene, we calculated regulatory 

https://github.com/dozmorovlab/TADCompare
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potential score (RPS) for each gene as previously reported (Zhi et al. 2022). The RPS was 

calculated as, 

∑ 𝑙𝑜𝑔10

𝑁

𝑛=1

(𝐼𝑛 + 1) 

where In is the distance-normalized interaction intensity of the nth enhancer (i.e., the 

observed contacts minus the expected contacts). If a promoter does not interact with an 

enhancer, then the RPS is set to zero. This analysis was applied to aggregation of the Hi-

C datasets 1 and 2 (Supplemental Fig. S1). As we observed that pairwise haplotypes 

within each tissue shared a higher correlation than pairwise tissues (Supplemental Fig. 

S7N-P), the PEIs identified in each haplotype were merged to calculate RPS, consequently 

allowing the identification of differential RPS genes between tissues, parents-of-origin, and 

breeds using a paired Student’s t-test. 

3. Allele-specific gene expression 

3.1 rRNA-depleted RNA-seq library preparation and sequencing 

Total RNA was extracted from 14 samples used for in situ Hi-C assay using the RNeasy 

Mini Kit (Qiagen). We used an rRNA depletion protocol (Ribo-Zero kit, Epicentre) coupled 

with the Illumina TruSeq RNA-seq library protocol to construct the strand-specific RNA-seq 

libraries. All libraries were quantified using the Qubit dsDNA High Sensitivity Assay Kit 

(Invitrogen) and sequenced with 150-bp paired-end reads on the Illumina HiSeq X Ten or 

100-bp paired-end reads on the BGISEQ-500 platform. 

3.2 Quantitation of allele-specific gene expression 

We quantified the allelic expression of ~11,430 protein-coding genes that were covered by 

informative SNVs and had evidence of transcription (transcripts per million [TPM] ≥ 0.5 in 

at least one allele) using the Allelome.PRO (Andergassen et al. 2015). The Kallisto (v 

0.44.0) software (Bray et al. 2016) was used to quantify the total gene-level expression for 

both alleles of 19,328 autosomal protein-coding genes as transcripts per million (TPM). 

Briefly, high-quality RNA-seq reads were aligned to the pig reference genome (Sscrofa 

11.1) using STAR (v 2.6.0c; Dobin et al. 2013) with parameters ‘--outSAMattributes NH HI 

NM MD --alignEndsType EndToEnd’. We sought to quantify the allele-specific expression 

of 19,328 autosomal genes, ~88.35% of which contain haplotype-resolved exonic SNVs 

for each F1 hybrid. We employed the Allelome.PRO (Andergassen et al. 2015) to 

distinguish the parental origin of uniquely mapped reads that covered haplotype-resolved 

exonic SNVs. For each diploid sample, we measured the number of reads assigned to 

each haplotype of a gene, and calculated the allelic ratio for the maternal or paternal 

haplotype, when the total number of reads assigned to a gene was larger than 10. We 
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obtained allele-specific TPM by multiplying the maternal against paternal allelic ratios and 

the total TPM for both alleles. In addition, the TPM of non- and low-expressed (TPM < 0.5) 

genes was divided by 2 and assigned to each haplotype.  

Although the Western and Chinese pigs showed large genetic divergence when the 

Duroc reference genome (Sscrofa11.1) was used as a framework for analyses, no 

reference bias in allele-specific expression was detected between Berkshire and Tibetan 

haplotypes, as estimated by aligning RNA-seq reads against the reference genome and 

against the N-masked genome (Supplemental Fig. S5H). 

Similarities in gene expression were assessed by Spearman’s correlation coefficients 

among haplotypes (n = 28). The combined similarities in gene expression (‘function’) and 

chromatin architecture (‘form’) among haplotypes (n = 28) were estimated using a 

chromosome phase portrait approach (Liu et al. 2018).  

4. Histone modifications on allelic PEI rewiring 

4.1 ChIP-seq library preparation and sequencing 

We performed ChIP-seq using antibodies against H3K27ac (a canonical histone marker of 

active enhancers) and H3K4me3 (a histone marker of promoter activation) for 12 samples 

(liver, skeletal muscle, and brain from each of four F1 hybrids). The ChIP-seq experiments 

were performed as previously described (Han et al. 2019). Briefly, the chromatin was 

prepared from formaldehyde fixed tissues and fragmented with a sonicator to an average 

fragment size of 200–500 bp. Half of the soluble chromatin was stored at –20°C as input 

for DNA sequencing and the remaining was used for immunoprecipitation reaction with 

H3K27ac (ab4729, Abcam) and H3K4me3 (9751, CST) antibodies. We also carried out 

ChIP-seq using antibodies against CTCF (A13272, Abclonal) for liver samples from the 

four F1 hybrids. For both input DNA and immunoprecipitated DNA, each ChIP-seq library 

was sequenced on an Illumina HiSeq X Ten platform to generate 150-bp paired-end reads.  

4.2 ChIP-seq data processing 

High-quality ChIP-seq data were aligned to the pig reference genome (Sscrofa 11.1) using 

BWA (v 0.7.8) and the potential PCR duplicates removed using Picard’s MarkDuplicates (v 

2.0.1). The aligned single sample ChIP-seq data were aggregated into a multi-sample file 

for each tissue, and the H3K27ac, H3K4me3 and CTCF peaks identified using MACS2 (Q-

value < 0.05; Feng et al. 2012). Highly and moderately active enhancers were identified 

using the standard ROSE algorithm (Lovén et al. 2013; Whyte et al. 2013). Briefly, 

neighboring H3K27ac peak regions within 12.5-kb of one another were stitched together, 

ranked by increasing H3K27ac signal and visualized as a curve (with x-axis representing 

the rank and y-axis representing the signal); We identified the x-axis point for which a line 
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with a slope of 1 was tangent to the curve, and this inflection point split all enhancers to 

highly active enhancers (above the point) and moderately active enhancers (below the 

point). IGV (v 2.3.91; Thorvaldsdóttir et al. 2013) was used to visualize the ChIP-seq 

signals, gene expression data and gene locations. 

4.3 Allele-specific activity of promoters and enhancers  

The allele-specific activity of promoters and enhancers for each sample were qualified by 

separately assigning the parental origin of H3K4me3 and H3K27ac reads. Specifically, we 

first identified ~12,772 active promoters (5-kb bins containing TSS) for each tissue. We 

then employed the Allelome.PRO algorithm to distinguish the parental origin of the uniquely 

mapped H3K4me3 reads that covered haplotype-resolved SNVs. We measured the 

number of reads assigned to each haplotype of a promoter, and calculated the allelic ratio 

for the maternal or paternal haplotype (estimated as maternal or paternal against the total 

read count), when the total number of reads assigned to a promoter was larger than 10. 

All putative enhancers (5-kb in length) involved in PEIs were classified into three 

categories, including ~2380 highly active enhancers (covered by the H3K27ac peak), 

~7476 moderate active enhancers (covered by the H3K27ac peak) and ~26,538 lower 

active enhancers (not covered by the H3K27ac peak) for each tissue. For each highly and 

moderately active enhancer, we employed Allelome.PRO to distinguish the parental origin 

of the uniquely mapped H3K27ac reads that covered haplotype-resolved SNVs. We 

measured the number of reads assigned to each haplotype of an enhancer, and calculated 

the allelic ratio for the maternal or paternal haplotype, when the total number of reads 

assigned to an enhancer was larger than 10. 

5. Large-scale indel calling using long-read DNA sequencing 

We performed long-read sequencing (Oxford Nanopore Technologies) on four F1 hybrids. 

The PromethION platform was used for sequencing according to the effective 

concentration of the DNA library and data output requirements. High-quality long-read DNA 

sequencing data was obtained by removal of low-quality or short reads (< 1-kb). For each 

F1 hybrid, the high-quality reads were assigned to each parental haplotype using the 

parental reads of whole-genome sequencing data, based on a trio binning algorithm (Koren 

et al. 2018) as implemented in the the Canu software (v 1.8). The haplotype-resolved long 

reads were first error-corrected using the NECAT software (v 0.0.1; Chen et al. 2021) and 

then aligned to the pig reference genome using minimap2 (v 2.17; Li 2018). We used a 

local assembly strategy to identify large-scale indels. Briefly, the reference genome regions 

were split into 60-kb sliding windows with 20-kb increments. For each 60-kb bin, the aligned 

reads were retrieved and assembled using the NECAT software. The assembled contigs 

were then mapped to the reference genome using NGMLR (v 0.2.7; Sedlazeck et al. 2018) 
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and the high-confidence large-scale indels were identified using Sniffles (v 1.0.11; 

Sedlazeck et al. 2018) with at least two supporting contigs. 

6. Genetic variations on allelic PEI rewiring 

6.1 Calculation of identify score (IDS) and identity-by-state (IBS)  

To measure the degree of sequence divergence among haplotypes, we calculated the 

identify score (IDS) to assess the pairwise similarity between haplotypes. For a given 

genomic region (e.g., 20-kb or 5-kb bin), we estimated 

𝐼𝐷𝑆 = 1 − (𝐷𝑖𝑓𝑓𝑛𝑢𝑐 𝑇𝑜𝑡𝑎𝑙𝑛𝑢𝑐⁄ ) 

where the Diffnuc was defined as the number of different nucleotides (combining the number 

of SNVs and the length of indels) between the two haplotypes, and Totalnuc was defined 

as the total nucleotide number for a given region. Notably, insertions occurring in either 

haplotype increased the value of Totalnuc, whereas deletions occurring in both haplotypes 

had an opposite effect. 

Degree of sequence similarity for promoters and enhancers in pairwise comparisons 

among the Berkshire and Tibetan purebred pigs (n = 82) was measured by pairwise 

identity-by-state (IBS) distances. In this population-level analysis, 12 are from the six trios 

in this study (Berkshire [n = 6] and Tibetan [n = 6]) and 70 are publicly available (Berkshire 

[n = 15] and Tibetan [n = 55]). Publicly available SNVs were retrieved from the ISwine 

database (http://iswine.iomics.pro/pig-iqgs/iqgs/index).  

6.2 Prediction of PEIs based on sequence features alone 

To quantitatively measure the disruptive effects of variants embedded in enhancers and 

promoters on the formation of PEIs, we assessed the probability of allelic PEIs based solely 

on their respective sequence features using the PEP algorithm with minor modifications 

(Yang et al. 2017b).  

Specifically, we first built a supervised classification model based on gradient tree 

boosting to predict promoter-enhancer interactions using only sequences for each 

haplotype-resolved PEI dataset. We included the 24 haplotype-resolved PEI dataset of 

eight haplotypes derived from four F1 hybrids for liver, skeletal muscle, and brain. For each 

positive dataset, we generated a set of non-interacting promoter-enhancer pairs by 

randomly pairing putative promoters and enhancers, and sampled a negative set with the 

same size as the positive samples from these simulated non-interacting pairs. We also 

ensured that the selected non-interacting pairs were not detected by Hi-C and followed the 

same distance constraints between the positive pairs (Whalen et al. 2016). Supplied with 

the reference genome assembly and the relevant genetic variants (SNVs, short- and large-
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scale indels) for each haplotype, we first reconstructed a haplotype-specific genome 

(termed as ‘pseudo-genome’). We then created a map from each 5-kb enhancer or 2.7-kb 

promoter region of the reference genome to the haplotype-specific pseudo-genome. The 

haplotype-resolved interacting and non-interacting promoter-enhancer pairs with both 

ends aligned from the reference genome to the respective haplotype-specific pseudo-

genome were retained for further analyses.  

We applied FIMO (Grant et al. 2011) for scanning motifs along the pseudo-genome 

sequences of promoters and enhancers with the PWMs from HOCOMOCO Human v10 

database (Kulakovskiy et al. 2016). This allowed us to identify motif matches using a P-

value threshold of 1 × 10–4. For a certain motif, we calculated the normalized motif 

occurrences for each of the enhancer or promoter sequences, used these frequencies for 

all motifs as feature vectors, and concatenated the feature vectors of the enhancer region 

and the paired promoter region to form the feature representation of an enhancer-promoter 

pair (Yang et al. 2017b).  

We used XGBoost (Chen et al, 2016), a scalable and highly accurate implementation of 

gradient boosting, as a predicting algorithm to predict PEIs based on feature representation 

generated by motif occurrences using the R package XGBoostExplainer (v 0.1), which 

makes XGBoost as transparent as a single decision tree. We obtained the predicted 

classification represented as a 0–1 probability of samples with known labels by performing 

one-fold cross validations. Samples with unknown labels were classified based on a 

complete model built from all the samples with known labels. 

6.3 Simulation of PEI intensity based on interval lengths 

To test the hypothesis promoters and enhancers in closer proximity on the linear genome 

tend to be spatially closer (thus with the elevated PEI intensity), and vice versa, we 

simulated the PEI intensities of 24 haplotypes based on the allelically variable bridging 

distance between promoter and enhancer (consequence of incorporating short- and large-

scale indels) using the Huynh’s algorithm (Huynh and Hormozdiari 2019). Specifically, we 

used the opposite haplotype within the same individual as reference (termed ‘H matrix’), to 

predict a new Hi-C contact matrix for the haplotype of interest (termed ‘G matrix’). To this 

end, we first modeled contact frequencies of the H matrix by introducing the parameters β, 

α and r, and the following equation 

𝐻
𝑖,𝑗

′
=

𝑒(𝛼𝑖+𝛼𝑗)/2𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝛽

𝑒𝑟𝑖+1𝑒𝑟𝑖+2 … 𝑒𝑟𝑗
 

where α captures the genomic properties (e.g., GC content, mappability) of each bin; β 

models the power-law scaling of contact frequencies based on the genomic distance; r 

represents the putative existence of an insulator within the specific bin; 𝐻𝑖,𝑗
′  indicates the 
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simulated contact frequency between bini and binj; and 𝐿𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙  denotes the linear 

genomic distance between bini and binj in the pig reference genome. The unknown 

parameters were estimated through optimization. We assumed that deletions and 

insertions either decrease or increase the genomic distances, eliminate or add insulators, 

and do not alter the α, β, or r values. We thus estimated the contact frequency of the G 

matrix as follows: 

𝐺𝑖,𝑗 =
𝑒(𝛼𝑖+𝛼𝑗)/2𝐿𝑛𝑒𝑤

𝛽

𝑒𝑟𝑖+1 … 𝑒𝑟𝑥1−1𝑒𝑟𝑦1+1 … 𝑒𝑟𝑥𝑁−1𝑒𝑟𝑦𝑁+1 … 𝑒𝑟𝑗
 

where 𝑥𝑛 , 𝑦𝑛 (n = 1~N) denotes the start and end coordinates (in the unit of bin number) 

for N deletions between bini and binj in the haplotype of interest relative to the pig reference 

genome; 𝐿𝑛𝑒𝑤 represents the linear genomic distance between bini and binj considering 

the effects of all deletions and insertions in the haplotype of interest relative to the reference 

haplotype. It should be noted that insertions in the reference haplotype relative to the 

reference genome were considered as deletions in the haplotype of interest relative to the 

reference haplotype, and vice versa. Since we were not able to estimate r values for 

inserted sequences with respect to the reference genome, we set r values to zero in these 

bins. 

7. Morphological measurements and spatial transcriptomics of skeletal muscles 

7.1 H & E and SDH staining of skeletal muscles 

The longissimus dorsi muscle from purebred Berkshire and Tibetan pigs (6-month-old, n = 

2 for each breed) were collected and fixed in a 10% neutral buffered formalin solution, 

embedded in paraffin using TP1020 semi-enclosed tissue processor (Leica), sliced at a 

thickness of 6 μm using RM2135 rotary microtome (Leica), and finally stained with 

hematoxylin and eosin (H & E). The myofiber cross-sectional area was measured as an 

average of 100 fibers in randomly selected fields. 

The proportion of types I (dark staining) and II (light staining) myofibers was assessed 

using the succinate dehydrogenase (SDH) staining. Briefly, the isolated samples were 

embedded with the OCT solution (TissueTek, Japan), and then frozen in –80 °C. The 10 

μm frozen sections were made with a Leica frozen microtome, and stained with a SDH 

staining kit (Beijing Solarbio Science & Technology Co., Ltd.). 

7.2 Spatial transcriptomic assays 

To verify the classification of types I and II myofibers in longissimus dorsi muscle using the 

histochemical SDH staining approach, we dissected the transcriptional differences of 

myofiber-specific markers (MYH7 for type I) using spatial transcriptomics (ST) (10X 

Genomics) as previously described (Jin et al. 2021). Briefly, fresh muscle tissues were 

javascript:;
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sliced into roughly 6.5 mm × 6.5 mm × 1 cm pieces and snap-frozen in liquid nitrogen. 

Tissue samples were embedded using OCT media at –80°C. For the ST analysis, the 

samples were sectioned on a cryostat at a thickness of 15 μm, and each section was 

placed within a capture area on a Visium Spatial slide, which was permeabilized according 

to the protocol provided by 10X Genomics for 18 min. Fragmented and barcoded RNA was 

used as the carrier material. The spike-in constituted approximately 25% of the libraries. 

ST cDNA libraries were diluted to 4 nM and sequenced on the Illumina NovaSeq 6000 

platform with paired-end sequencing reads.  

7.3 ST data processing and analysis 

The spatial transcriptomics sequencing data of skeletal muscle were analyzed as 

previously described (Jin et al. 2021). Briefly, we first manually aligned the image to the 

slide area and removed unreliable spots using the 10X Genomics Loupe Browser (v 4.1.0). 

Sample demultiplexing and expression quantification were carried out using Space Ranger 

(v 1.1) according to the 10X Genomics spatial gene expression analysis pipeline. We 

retrieved the reference genome sequence and gene annotation file (GTF) from Ensembl 

Sscrofa 11.1 (Release 102). Read alignment and gene expression quantification was 

performed using Space Ranger. We further applied the Seurat (v 3.2; Stuart et al. 2019) 

package for removing low-quality spots or non-expressed genes, normalization 

(regularized negative binomial regression, ‘SCTransform’ function) of gene expression 

data (Hafemeister and Satija 2019), and spatial visualization of features. To avoid sparsity 

and greatly increase unique molecular index (UMI) coverage of genes, we performed a 

‘pseudo-bulk’ approach. We manually grouped spots into types I and II muscle fiber 

clusters according to the SDH staining results, summed the UMI counts for 100 randomly 

sampled spots from each myofiber cluster, and generated four replicates of ‘pseudo-bulk’ 

expression matrices for each cluster. The normalization and differential expression 

analysis of the pseudo-bulk data was performed as previously described (Maynard et al. 

2021) using scater (v 1.24.0; McCarthy et al. 2017) and limma (v 3.52.0; Ritchie et al. 2015). 

8. Collection of imprinted genes in the pig genome 

We first retrieved a total of 36 imprinted genes that were previously identified in the pig 

genome from the genomic imprinting website (https://geneimprint.com/site/home). In 

addition, we also retrieved the previously reported imprinted genes from another 11 

mammalian genomes, including cow, dog, human, laboratory opossum, mouse, opossum, 

rabbit, rat, rhesus macaque, sheep, and wallaby (see Supplemental Fig. S11). These 

imprinted genes were then assigned to a total of 90 ortholog genes in the pig genome using 

ortholog information downloaded from the Ensembl website, resulting in a total of 126 
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imprinted genes. 

9. Functional enrichment analysis 

Functional enrichment analysis was performed using the Metascape tool (Zhou et al. 2019) 

with default parameters. Genes in the pig genome were converted to human orthologs, 

which were used as inputs for the enrichment analysis. Human (Homo sapiens) was 

chosen as the target species, and enrichment analysis was performed against all genes in 

the genome as the background set, with Gene Ontology-biological processes (GO-BP) and 

KEGG as the test sets. The statistically significant terms were selected as outputs. 

10. Trait-associated SNP enrichment analysis 

We downloaded 146,690 unique human trait-associated SNPs from the NHGRI-EBI 

GWAS Catalog (https://www.ebi.ac.uk/gwas/, last access on June 1, 2021; Buniello et al. 

2019). These SNPs were assigned to 77,917 loci in the pig reference genome (Sscrofa 

11.1) using the UCSC liftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). A total of 

73,363 noncoding SNPs (or 94.16%) linked to 4,514 traits or diseases were used for 

subsequent analyses. We compared the enrichment scores (i.e., relative density) of 

noncoding SNPs between enhancers and other regions. The significance of the enrichment 

score was calculated using a 2 test for each trait or disease that contained more than 50 

SNPs. 
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