1. This is the code to evaluate simulated genome assembly results based on kmer (include CR, SCR, DCR, APLC, ADF)
-*- coding: UTF-8 -*-

import argparse
import time
from pandas import *
from random import *
import os

def ArgParse():
 group = argparse.ArgumentParser(description='A python script for genome assessment.')
 group.add_argument('-i', '--input', help='assemble result with fasta format.', required=True)
 group.add_argument('-r', '--reference', help='reference sequence with fasta format.', required=True)
 group.add_argument('-k', '--kmer-length', type=int, help='the kmer length used in assessment, default=21.',default=21)
 group.add_argument('-o', '--out-prefix',help='prefix of output files.',required=True)
 group.add_argument('-s', '--sample', help='the number of ref unique kmer sampled, default=all.', default="all")

 return group.parse_args()

def integrateReadLine(fa, prefix):
 file_name = fa.split("/")[-1]
 fi = open(fa, "r")
 lines = fi.readlines()
 fi.close()
 fo = open(prefix + "_" + file_name, "w")
 n = "1"
 for line in lines:
 if line[0] == ">":
 if n == "1":
 fo.write(line)
 else:
 fo.write("\n" + line)
 else:
 n = "larger than 1"
 line = line.strip()
 fo.write(line)
 fo.close()
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) + ", " + "Integrate read lines in " + fa + " file done.")

def reverseCompleKmer(kmer):
 reverse_complementary_kmer_list = []
 base_dic = {"A":"T","T":"A","C":"G","G":"C","N":"N","a":"T","t":"A","c":"G","g":"C","n":"N"}
 for base in list(kmer[::-1]):
 reverse_complementary_kmer_list.append(base_dic[base])
 reverse_complementary_kmer = "".join(reverse_complementary_kmer_list)
 return min([kmer.upper(), reverse_complementary_kmer.upper()])

def refUniqueKmerSearch(ref, kmer_length):
 fi = open(ref, "r")
 lines = fi.readlines()
 fi.close()
 sumKmer_dic = {}
 for line in lines:
 line = line.strip()
 if line[0] != ">":
 for i in range(len(line) - kmer_length + 1):
 sumKmer_dic[reverseCompleKmer(line[i:i + kmer_length])] = sumKmer_dic.get(
 reverseCompleKmer(line[i:i + kmer_length]), 0) + 1
 unique_kmer = {}
 for key, value in sumKmer_dic.items():
 if value == 1:
 unique_kmer[key] = 0
 external_dic = {}
 internal_dic = {}
 chr_name = ""
 for line in lines:
 line = line.strip().split()[0]
 if line != "":
 if line[0] == ">":
 chr_name = line[1:]
 internal_dic = {}
 else:
 for i in range(len(line) - kmer_length + 1):
 kmer = line[i:i + kmer_length]
 kmer = reverseCompleKmer(kmer)
 if kmer in unique_kmer.keys():
 internal_dic[kmer] = (i + 1, i + kmer_length)
 external_dic[chr_name] = internal_dic
 refChr_uniKmer = {}
 for K, V in external_dic.items():
 mydic = {}
 for key, value in V.items():
 if key in unique_kmer:
 mydic[key] = 1
 refChr_uniKmer[K] = mydic # refChr_uniKmer = {"chr01":{"ATCG":1,...,"ATCG":1}...}
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) + ", " + "Unique kmer count in " + ref + " file done.")
 with open("refUniKmer", "w") as fi:
 fi.write("{}\t{}\t{}\t{}\n".format("Chr", "Kmer", "Start", "End"))
 for key, value in external_dic.items():
 for k, v in value.items():
 fi.write("{}\t{}\t{}\t{}\n".format(key, k, v[0], v[1]))
 fi.write("\n")
 fi.close()
 return [refChr_uniKmer, unique_kmer]

def getRefUniKmerPos(ref, kmer_length):
 eachchr_unikmer = refUniqueKmerSearch(ref, kmer_length)[0]
 data = open(ref, "r")
 lines = data.readlines()
 data.close()
 kmerpos_dic = {}
 chr_name = ""
 for line in lines:
 line = line.strip().split()[0]
 if line[0] == ">":
 chr_name = line[1:]
 kmerpos_dic[chr_name] = {}
 for line in lines:
 line = line.strip().split()[0]
 if line[0] == ">":
 chr_name = line[1:]
 else:
 for i in range(len(line) - kmer_length + 1):
 if reverseCompleKmer(line[i:i + kmer_length]) in eachchr_unikmer[chr_name].keys():
 kmerpos_dic[chr_name][(i + 1, i + kmer_length)] = 0
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) + ", " + "Get reference unique kmer position done.")
 return kmerpos_dic # kmerpos_dic={"chr1":{(1,21):0,...,(41,51):0},...}

def removeOverlapKmer(classed_kmer_dic):
 set_option('display.max_columns', None)
 set_option('display.max_rows', None)
 external_dic = {}
 internal_dic = {}
 for key, value in classed_kmer_dic.items():
 internal_dic = {}
 value_list = list(value.items())
 value_list.sort(key=lambda x: x[0][0], reverse=False)
 mydic = {}
 mydic["start_pos"] = [value_list[0][0][0]]
 mydic["end_pos"] = [value_list[0][0][1]]
 mydic["front_end_pos"] = [0]
 last_end_pos = value_list[0][0][1]
 for i in range(1,len(value_list)):
 mydic["start_pos"].append(value_list[i][0][0])
 mydic["end_pos"].append(value_list[i][0][1])
 mydic["front_end_pos"].append(last_end_pos)
 last_end_pos = value_list[i][0][1]
 mydataframe = DataFrame(mydic)
 mydataframe = mydataframe[(mydataframe["front_end_pos"] - mydataframe["start_pos"]) < 0]
 for i in mydataframe.index:
 internal_dic[(mydataframe["start_pos"][i],mydataframe["end_pos"][i])] = 0
 external_dic[key] = internal_dic
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ", " + "Remove overlaps between kmers done.")
 return external_dic #external_dic{"chr/ctg":{(1,21):0,...,(31,51):0},...}

def getHeaderKmer(fasta, headerkmerpos_dic, kmer_length):
 data = open(fasta, "r")
 lines = data.readlines()
 data.close()
 kmer_pos_dic = {}
 seqname_kmer_dic = {}
 sequence_name = ""
 for line in lines:
 line = line.strip().split()[0]
 if line[0] == ">":
 sequence_name = line[1:]
 kmer_pos_dic = {}
 else:
 for key, value in headerkmerpos_dic.items():
 if sequence_name == key:
 for pos in value.keys():
 kmer_pos_dic[reverseCompleKmer(line[pos[0] - 1:pos[0] + kmer_length - 1])] = []
 seqname_kmer_dic[sequence_name] = kmer_pos_dic
 for line in lines:
 line = line.strip().split()[0]
 if line[0] == ">":
 sequence_name = line[1:]
 else:
 for key, value in headerkmerpos_dic.items():
 if sequence_name == key:
 for pos in value:
 seqname_kmer_dic[sequence_name][reverseCompleKmer(line[pos[0] - 1: pos[0] + kmer_length - 1])].append(pos)
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ", " + "Get header kmer done.")
 return seqname_kmer_dic # seqname_kmer_dic={"chr/ctg":{"ATCG":[(1,21),...,(31,51)]},...}

def randomselectkmer(refkmerdic,sample_num):
 kmerdic = {}
 for key,value in refkmerdic.items():
 for k,v in value.items():
 kmerdic[k] = 0
 seed(111)
 mylist = sample(list(kmerdic.items()),sample_num)
 newkmerdic = {}
 for i in mylist:
 newkmerdic[i[0]] = 0
 external_dic = {}
 for key,value in refkmerdic.items():
 internal_dic = {}
 for k,v in value.items():
 if k in newkmerdic.keys():
 internal_dic[k] = v
 external_dic[key] = internal_dic
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ", random select 200000 reference kmer done.")
 return external_dic # external_dic={"chr/ctg":{"ATCG":[(1,21),...,(31,51)]},...}

def getAsbkmer(ctgfile,reffile,refkmer_dic,kmer_length):
 refkmer = {}
 for key,value in refkmer_dic.items():
 for k,v in value.items():
 refkmer[k] = 0
 file = open(ctgfile,"r")
 lines = file.readlines()
 file.close()
 external_dic = {}
 internal_dic = {}
 ctgname = ""
 for line in lines:
 line = line.strip().split()[0]
 if line[0] == ">":
 ctgname = line[1:]
 internal_dic = {}
 else:
 for i in range(len(line) - kmer_length + 1):
 if reverseCompleKmer(line[i:i + kmer_length]) in refkmer.keys():
 internal_dic[reverseCompleKmer(line[i:i + kmer_length])] = internal_dic.get(reverseCompleKmer(line[i:i + kmer_length]),[]) + [(i + 1, i + kmer_length)]
 external_dic[ctgname] = internal_dic
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) + ", " + "Unique kmer from " + reffile + " file count in " + ctgfile + " file done.")
 return external_dic # external_dic={"chr/ctg":{"ATCG":[(1,21),...,(31,51)]},...}

def assembleAssessment(ref_fa, asb_fa, kmer_length, sample_num, prefix):
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ", Begin.")
 integrateReadLine(ref_fa, prefix)
 integrateReadLine(asb_fa, prefix)
 refUniKmerPos = getRefUniKmerPos(prefix + "_" + ref_fa.split("/")[-1], kmer_length)
 refHeaderKmerPos = removeOverlapKmer(refUniKmerPos)
 refUniKmerPos = None
 if sample_num == "all":
 refHeaderKmer = getHeaderKmer(prefix + "_" + ref_fa.split("/")[-1], refHeaderKmerPos, kmer_length)
 else:
 refheaderKmer = getHeaderKmer(prefix + "_" + ref_fa.split("/")[-1], refHeaderKmerPos, kmer_length)
 refHeaderKmer = randomselectkmer(refheaderKmer,int(sample_num))
 refheaderkmer = None
 refHeaderKmerPos = None
 asbHeaderKmer = getAsbkmer(prefix + "_" + asb_fa.split("/")[-1],prefix + "_" + ref_fa.split("/")[-1],refHeaderKmer,kmer_length)
 with open("random_refHeaderkmer.dic","w") as file:
 file.write(str(refHeaderKmer))
 file.close()
 with open("refHeaderkmer.out", "w") as file:
 file.write("Chr\tKmer\tStart\tEnd\n")
 for key, value in refHeaderKmer.items():
 for k, v in value.items():
 file.write("{}\t{}\t{}\t{}\n".format(key, k, v[0][0], v[0][1]))
 file.write("\n")
 file.close()
 with open("asbHeaderkmer.out", "w") as file:
 file.write("Contig\tKmer\tStart\tEnd\n")
 for key, value in asbHeaderKmer.items():
 for k, v in value.items():
 for i in v:
 file.write("{}\t{}\t{}\t{}\n".format(key, k, i[0], i[1]))
 file.write("\n")
 file.close()
 asbKmerCount = {}
 for Key, Value in asbHeaderKmer.items():
 for k, v in Value.items():
 asbKmerCount[k] = asbKmerCount.get(k, 0) + len(v)
 singleCopyKmerNum = 0
 duplicateKmerNum = 0
 colKmerNum = 0
 for key, value in refHeaderKmer.items():
 for k, v in value.items():
 colKmerNum += 1
 for key, value in asbKmerCount.items():
 if value == 1:
 singleCopyKmerNum += 1
 else:
 duplicateKmerNum += 1
 singleCopy = singleCopyKmerNum / colKmerNum
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ", " + "Compute single copy rate done.")
 duplicateRate = duplicateKmerNum / colKmerNum
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ", " + "Compute duplicate rate done.")
 ctgkmer_dic = {}
 for key, value in asbHeaderKmer.items():
 ctgkmer_dic[key] = {}
 for key, value in asbHeaderKmer.items():
 for k, v in value.items():
 if k not in ctgkmer_dic[key].keys():
 ctgkmer_dic[key][k] = 0 # ctgkmer_dic = {"ctg00001":{"ATCG":0,...,"ATCG":0},...}
 chrkmer_dic = {}
 for key, value in refHeaderKmer.items():
 chrkmer_dic[key] = {}
 for key, value in refHeaderKmer.items():
 for k, v in value.items():
 if k not in chrkmer_dic[key].keys():
 chrkmer_dic[key][k] = 0 # chrkmer_dic = {"Chr01":{"ATCG":0,...,"ATCG":0},...}
 chr_to_kmerlist = {}
 contig_to_chr = {}
 for ctg, ctgkmer in asbHeaderKmer.items():
 chr_to_kmerlist = {}
 for chr, chrkmer in refHeaderKmer.items():
 chr_to_kmerlist[chr] = {}
 contig_to_chr[ctg] = chr_to_kmerlist
 for asb_key, asb_value in ctgkmer_dic.items():
 for i in asb_value.keys():
 for ref_key, ref_value in chrkmer_dic.items():
 if i in ref_value.keys() and i not in contig_to_chr[asb_key][ref_key].keys():
 contig_to_chr[asb_key][ref_key][i] = 0 # contig_to_chr={"ctg0001":{"chr01":{"ATCG":0,...,"ATCG":0},...},...}chr和ctg共有kmer
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) + ", " + "Get collective header kmer from reference and assemble file done.")
 contig_to_kmer = {}
 for key, value in contig_to_chr.items():
 kmerlist = {}
 for k, v in value.items():
 for kmer, it in v.items():
 kmerlist[kmer] = 0
 contig_to_kmer[key] = kmerlist # contig_to_kmer = {"ctg0001":{"ATCG":0,...,"ATCG":0},...}
 ctgkmer_dic = None
 chrkmer_dic = None
 proportion_of_the_largest_categories = 0
 largest_categories_ex = {}
 largest_categories_in = {}
 numerator = 0
 denominator = 0
[bookmark: _GoBack] for key, value in contig_to_chr.items():
 largest_categories_num = 0
 largest_categories_in = {}
 for k, v in value.items():
 if len(v) > largest_categories_num:
 largest_categories_num = len(v)
 for k, v in value.items():
 if len(v) == largest_categories_num:
 largest_categories_in[k] = v
 largest_categories_ex[key] = largest_categories_in # largest_categories_ex={"ctg0001":{"chr01":{"ATCG":0,...,"ATCG":0}},...}
 numerator += largest_categories_num
 denominator += len(contig_to_kmer[key])
 proportion_of_the_largest_categories += float(numerator) / float(denominator)
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) + ", " + "Compute proportion of the largest categories done.")
 aveEachCtgDistance_sum = 0
 contig_to_chr = None
 with open("largest_categories.dic","w") as fi:
 fi.write(str(largest_categories_ex))
 fi.close()
 with open("refKmer.dic","w") as fi:
 fi.write(str(refHeaderKmer))
 fi.close()
 with open("asbKmer.dic","w") as fi:
 fi.write(str(asbHeaderKmer))
 fi.close()
 contig_nums = 0
 for key, value in largest_categories_ex.items(): # largest_categories_ex={"ctg0001":{"chr01":{"ATCG":0,...,"ATCG":0}},...}
 ref_base_pos_dic = {}
 asb_base_pos_dic = {}
 t = 0
 eachCtgDistance_sum = 0
 for k, v in value.items():
 if len(v) > 1:
 contig_nums += 1
 for i in range(len(v)):
 ref_base_pos_dic[list(v.items())[i][0]] = refHeaderKmer[k][list(v.items())[i][0]] # ref_base_pos_dic={"ATCG":[(1,21),...,(31,51)]}
 asb_base_pos_dic[list(v.items())[i][0]] = asbHeaderKmer[key][list(v.items())[i][0]]
 ref_base_list = list(ref_base_pos_dic.items())
 ref_base_list.sort(key=lambda x: x[1][0][0], reverse=False)
 for i in range(len(ref_base_list) - 1):
 refKmerDistance = abs(ref_base_list[i + 1][1][0][0] - ref_base_list[i][1][0][0])
 asbKmerDistance = {}
 for j in range(len(asb_base_pos_dic[ref_base_list[i][0]])):
 for m in range(len(asb_base_pos_dic[ref_base_list[i + 1][0]])):
 distance = abs(asb_base_pos_dic[ref_base_list[i][0]][j][0] - asb_base_pos_dic[ref_base_list[i + 1][0]][m][0])
 asbKmerDistance[distance] = 0
 for j in asbKmerDistance.keys():
 eachCtgDistance_sum += abs(j - refKmerDistance)
 t += 1
 aveEachCtgDistance_sum += eachCtgDistance_sum / t
 else:
 continue
 ave_distance_diff = aveEachCtgDistance_sum / contig_nums
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) + ", " + "Compute average distance difference done." + "\n")
 print("{:<12.7f}Complete\n"
 "{:<12.7f}Complete and single-copy\n"
 "{:<12.7f}Complete and duplicated\n"
 "{:<12.7f}Proportion of the largest categories\n"
 "{:<12.7f}ave distance diff\n".format(singleCopy + duplicateRate, singleCopy, duplicateRate,proportion_of_the_largest_categories, ave_distance_diff))
 with open("result.report", "w") as fi:
 fi.write("{:<12.7f}Complete\n"
 "{:<12.7f}Complete and single-copy\n"
 "{:<12.7f}Complete and duplicated\n"
 "{:<12.7f}Proportion of the largest categories\n"
 "{:<12.7f}ave distance diff\n".format(singleCopy + duplicateRate, singleCopy, duplicateRate,proportion_of_the_largest_categories, ave_distance_diff))
 fi.close()

if __name__ == "__main__":
 opt = ArgParse()
 path = os.getcwd()
 asb_seq = opt.input
 ref_seq = opt.reference
 kmer_len = opt.kmer_length
 prefix = opt.out_prefix
 if opt.sample != "all":
 sample_num = int(opt.sample)
 else:
 sample_num = opt.sample
 asb_seq_path = os.path.join(path,asb_seq)
 ref_seq_path = os.path.join(path,ref_seq)
 assembleAssessment(ref_seq_path, asb_seq_path, kmer_len, sample_num, prefix)

2. custom script (QV)
import argparse
import time
import os
import math
import numpy as np

def ArgParse():
 group = argparse.ArgumentParser(description='A python script for genome assessment of QV value.')
 group.add_argument('-s', '--seq', help='raw reads file for genome assessment(fastq)', required=True)
 group.add_argument('-a', '--asb', help='genome assembly file for genome assessment(fasta)', required=True)
 group.add_argument('-k', '--kmer-length', type=int, help='the kmer length used in assessment, default=21.',default=21)
 group.add_argument('-t', '--threats', type=int, help='the threats used to process kmer in Jellyfish, default=10.',default=10)
 group.add_argument('-hs', '--harsh-size', type=str, help='estimated harsh size to store kmer, and this value must up to genome size, default=1G.',default="1G")

 return group.parse_args()

def integrateReadLine(fa):
 file_name = fa.split("/")[-1]
 fi = open(fa, "r")
 lines = fi.readlines()
 fi.close()
 fo = open(file_name.split(".")[0] + "_integrate.fasta", "w")
 n = "1"
 for line in lines:
 if line[0] == ">":
 if n == "1":
 fo.write(line)
 else:
 fo.write("\n" + line)
 else:
 n = "larger than 1"
 line = line.strip()
 fo.write(line)
 fo.close()
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",
 time.localtime()) + ", " + "Integrate read lines in " + fa + " file done.")

def getJellyfishKmer(seq_fq,asb_fa,kmer_length,harsh_size,threats):
 os.system("jellyfish count -C -c 7 -m " + str(kmer_length) + " -s " + harsh_size + " -t " + str(threats) + " -o " + "seq_kmer" + str(kmer_length) + ".out " + seq_fq)
 os.system("jellyfish dump -c -t seq_kmer" + str(kmer_length) + ".out > seq_kmer" + str(kmer_length) + ".freq")
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ", " + "kmer frequency counting in sequence has done!")

 os.system("jellyfish count -C -c 7 -m " + str(kmer_length) + " -s " + harsh_size + " -t " + str(threats) + " -o " + "asb_kmer" + str(kmer_length) + ".out " + asb_fa)
 os.system("jellyfish dump -c -t asb_kmer" + str(kmer_length) + ".out > asb_kmer" + str(kmer_length) + ".freq")
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) + ", " + "kmer frequency counting in assembly has done!")

def calcuQV(kmer_length):
 seqkmer_dict = {}
 with open("seq_kmer" + str(kmer_length) + ".freq","r") as fi:
 lines = fi.readlines()
 for line in lines:
 kmer = line.strip().split()[0]
 seqkmer_dict[kmer] = 0
 fi.close()

 asbkmer_dict = {}
 with open("asb_kmer" + str(kmer_length) + ".freq","r") as fi:
 lines = fi.readlines()
 for line in lines:
 kmer = line.strip().split()[0]
 asbkmer_dict[kmer] = 0
 fi.close()

 sharekmer_dict = {}
 for key in seqkmer_dict.keys():
 if key in asbkmer_dict.keys():
 sharekmer_dict[key] = 0
 del seqkmer_dict
 QV = -10 * np.log10(1 - math.pow(len(sharekmer_dict)/len(asbkmer_dict),1/kmer_length))
 with open("QV.value","w") as fi:
 fi.write("{:<12.3f}".format(QV))
 fi.close()
 print("[INFO] " + time.strftime("%Y-%m-%d %H:%M:%S",time.localtime()) + ", " + "the QV value is {:<12.3f}!".format(QV))

if __name__ == "__main__":
 opt = ArgParse()
 seq_fa = opt.seq
 asb_fa = opt.asb
 kmer_length = opt.kmer_length
 harsh_size = opt.harsh_size
 threats = opt.threats

 path = os.getcwd()
 raw_asb_fa_path = os.path.join(path, asb_fa)
 integrateReadLine(raw_asb_fa_path)
 seq_fa_path = os.path.join(path, seq_fa)
 asb_fa_path = os.path.join(path,raw_asb_fa_path.split("/")[-1].split(".")[0] + "_integrate.fasta")

 getJellyfishKmer(seq_fa_path,asb_fa_path,kmer_length,harsh_size,threats)
calcuQV(kmer_length)

3. custom script (for assembly, include Hicanu, hifiasm, HiFlye, MECAT2, Miniasm, NextDenovo, Shasta, Peregrine, Verkko, LJA, rust-mdbg)
HiCanu：
\time -v canu -p rice -d /home/jiangheling/Luohh/Assemble/Truedata/Rice/Hicanu genomeSize=392m useGrid=false merylThreads=30 hapThreads=30 cormhapThreads=30 obtovlThreads=30 utgovlThreads=30 corThreads=30 ovbThreads=30 ovsThreads=30 redThreads=30 oeaThreads=30 batThreads=30 cnsThreads=30 -pacbio-hifi ../../Data/rice.fastq

Hifiasm：
\time -v hifiasm -o rice -t 30 ../../Data/rice.fastq

Hiflye:
\time -v flye --pacbio-hifi ../../Data/rice.fastq -o /home/jiangheling/Luohh/Assemble/Truedata/Rice/Hiflye --genome-size 392m --threads=30

Miniasm:
\time -v minimap2 -t 30 -x ava-pb ../../Data/rice.fastq ../../Data/rice.fastq | gzip -1 > rice.paf.gz
\time -v miniasm -f ../../Data/rice.fastq rice.paf.gz > rice.gfa
\time -v awk '/^S/{print ">"$2"\n"$3}' rice.gfa > rice.fasta

NextDenovo:
nextDenovo run.cfg
run.cfg：
[General]
job_type = local
job_prefix = nextDenovo
task = all
rewrite = yes
deltmp = yes
parallel_jobs = 10
input_type = raw
read_type = hifi # clr, ont, hifi
input_fofn = input.fofn
workdir = 01_rundir
[correct_option]
read_cutoff = 1k
genome_size = 392m # estimated genome size
sort_options = -m 40g -t 30
minimap2_options_raw = -t 30
pa_correction = 3
correction_options = -p 15
[assemble_option]
minimap2_options_cns = -t 30
minimap2_options_map = -t 30
nextgraph_options = -a 1

MECAT2：
\time -v mecat.pl correct config_file.txt
\time -v mecat.pl trim config_file.txt
\time -v mecat.pl assemble config_file.txt
config_file.txt：
PROJECT=Rice
RAWREADS=/home/jiangheling/Luohh/Assemble/Truedata/Data/rice.fastq
GENOME_SIZE=392000000
THREADS=30
MIN_READ_LENGTH=2000
CNS_OVLP_OPTIONS="-kmer_size 13"
CNS_PCAN_OPTIONS="-p 100000 -k 100"
CNS_OPTIONS=""
CNS_OUTPUT_COVERAGE=30
TRIM_OVLP_OPTIONS="-skip_overhang"
TRIM_PM4_OPTIONS="-p 100000 -k 100"
TRIM_LCR_OPTIONS=""
TRIM_SR_OPTIONS=""
ASM_OVLP_OPTIONS=""
FSA_OL_FILTER_OPTIONS="--max_overhang=-1 --min_identity=-1"
FSA_ASSEMBLE_OPTIONS=""
CLEANUP=0

Peregrine：
\time -v /public/home/zhaoxianjia/software/peregrine-2021-0.4.13/target/release/pg_asm ricereads.lst rice 30

shasta：
\time -v shasta --config HiFi-Oct2021 --input ../../Assemble/Truedata/Data/rice.fastq --assemblyDirectory rice --command assemble --threads 30

Verkko：
\time -v verkko -d /home/jiangheling/Luohh/True/Verkko/Hap --hifi /home/jiangheling/Luohh/True/Data/rice.fastq.gz --threads 30 --sto-run 30 100 24 --mer-run 30 100 24 --ovb-run 30 100 24 --ovs-run 30 100 24 --red-run 30 100 24 --mbg-run 30 100 24 --utg-run 30 100 24 --spl-run 30 100 24 --ali-run 30 100 24 --pop-run 30 100 24 --utp-run 30 100 24 --lay-run 30 100 24 --sub-run 30 100 24 --par-run 30 100 24 --cns-run 30 100 24

rust-mdbg:
rust_mdbg="/path/to/rust-mdbg"
output_prefix="example"
input_fastq="/path/to/test.fastq"
${rust_mdbg} -k 21 --density 0.003 -l 14 --prefix ${output_prefix} --threads 30 ${input_fastq}

LJA:
lja="/path/to/lja"
input_fastq="/path/to/test.fastq"
output_dir="/path/to/output"
${lja} -t 30 --diploid --reads ${input_fastq} -o ${output_dir}
