

Supplemental Table S10. Transition probability parameters used by the Viterbi algorithm implemented in HaploQA for the genotype imputation approach. Code provided in haplohmm.py available at <https://github.com/TheJacksonLaboratory/GenomeMUSter> and in **Supplemental Code**.

Transition probability parameters	Description
trans_prob = 0.001	the probability of transitioning from one haplotype to another in the space of a single SNP
hom_obs_probs = [0.97, 0.01, 0.01, 0.01]	$P(\text{obs} \text{homozygous read from hidden state})$ a numerical array with 4 entries <ul style="list-style-type: none"> 0) Probability the observation is homozygous and it matches the hidden state, (A \rightarrow A or B \rightarrow B) 1) Probability the observation is homozygous and the hidden state is homozygous but it does not match the observation, (A \rightarrow B or B \rightarrow A) 2) Probability the observation is homozygous but the hidden state is heterozygous, (A \rightarrow H or B \rightarrow H) 3) Probability the observation is homozygous but the hidden state is missing, e.g. (A \rightarrow N or B \rightarrow N)
het_obs_probs = [0.98, 0.01, 0.01]	$P(\text{obs} \text{heterozygous read from hidden state})$ a numerical array with 3 entries <ul style="list-style-type: none"> 0) Probability the observation is heterozygous and hidden state is heterozygous, (H \rightarrow H) 1) Probability the observation is heterozygous and the hidden state is homozygous, (H \rightarrow A or H \rightarrow B) 2) Probability the observation is heterozygous observation but the hidden state is missing, (H \rightarrow N)
n_obs_probs = [1/3, 1/3, 1/3]	$P(\text{obs} \text{missing data from hidden state})$ a numerical array with 3 entries <ul style="list-style-type: none"> 0) Probability the observation is missing and the hidden state is missing, (N \rightarrow N) 1) Probability the observation is missing but the hidden state is homozygous, (N \rightarrow A or N \rightarrow B) 2) Probability the observation is missing but the hidden state is heterozygous, (N \rightarrow H)