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Supplemental Methods

Parameter estimation using expectation—-maximization algorithm

In FLCNA, the parameter set @ = {u,, %X, m;}5_, are estimated using an expectation—
maximization (EM) algorithm. let A;, be an indicator function of the hidden cluster information
for x;, A; = 1if x; is from the k-th cluster, and A; , = 0 otherwise. Assuming 4; ;. is unobserved,
the penalized log-likelihood function for the complete data will be given by
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With Eq. (1), the parameter set @ = {u,, £, m,}X_, can be estimated with the EM algorithm by
the following iterative procedure. The EM algorithm iterates between E-step and M-step, and

produces a sequence of estimates 8, t = 0,1, 2, ....

1) Initialization: We first estimate the starting values 8© = {@{”,£©, #{1K_ using model
without penalty (1=0).

2) lteration:

E-step:

We start with the E-step given the current parameter estimates ®(®. In this step, we calculate the

probability for sample j belongs to k -th cluster with

2O f(x; A0, EO©)
pRE eI 0)

A(t+1) E(A

= Pr(4;,=1|X,09) = (2)

where the numerator is the density for j-th sample to be clustered into k-th cluster, and the

denominator is the sum of densities for j-th sample to be clustered into K different clusters. Then



Eq. (2) will be plugged it into the Eq. (1) about Q» (@) to estimate other parameters, including the
cluster “weight” m, the variance for i-th marker o7 and cluster mean p.

M-Step:

Given E](’tk“) and ®® | the goal of M-step is to update parameter set ®¢*1) by maximizing the log-
likelihood function QP(@,@(“). Specifically, the estimate of “weights” m;,'s can be easily

updated by taking the first derivative of Qp(@,0®) w.r.t. m; with

0 .
&=O A](Ct+1) Nz (t+1). 3)
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Given E}fkﬂ) 7D angd ufﬁ? we can update the estimate of variance for i-th marker a7 by

taking the first derivative of Qp(0,8®) w.rt. 7 with
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Given E}fkﬂ), A and 6*, according to Eq. (1), after some transformation, we can

update the estimates of mean values ¢+ with
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op k=11
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Eq. (5) cannot be solved directly with close form, but i®*?) can be estimated using a local

quadratic approximation (LQA) algorithm, which will be discussed in detail next.

Estimation of a**1 using local quadratic approximation

According to LQA, we can approximate
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where s is the iteration index used to denote iterations of the LQA within the M-step (different
from iteration index t in the EM algorithm), and i) are the estimates from the previous iteration.
Thus, the minimization problem in Eg. (5) has been converted into a generalized quadratic problem
which has close form solution. Notably, Eq. (5) can be decomposed into K separate minimization

problems. For example, for each k, we can solve (iteratively over s)

N p (. A(s+1) (s+1) (s+1))?
minl A+ (Xl,] nulk + AZ a  \Hik i+1k) %
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with close form. To solve Eqg. (7), we need to transfer it into matrix form first. Let

-~ T - -
o AUV- (Agtzl), . ,A,(\f_*;cl)) be the estimated latent variable for the k-cluster from E-step

in the EM algorithm.

o Jux1 = (1,..,1)7 is a matrix with all elements to be 1.

o i, = (ﬁl,k' ...,ﬁP,k)T is the pre-defined mean vector for the k-th cluster where fi; ;, is
estimated from the model without any penalization (1 = 0).

. ﬁ,(j) (uf)k, : ,ﬁz(,s)k) is the estimate of mean vector for the k-th cluster from previous

iteration in the EM algorithm.

T
o AUV = (yf";l), ygf +k1)) is the estimate of our interest which is the mean vector for

the k-th cluster.
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difference of mean values for each pair of consecutive markers in a cluster.

Then Eq. (1) can also be given with
G(ﬂg{s+1)) — (A;{t+1))T(X _ ”ECS+1)]T)2£—1] + ADT(dlag(C))ZD(MI((S-Fl))Z, (8)

where € = [abs(Dilk) O] abs(DIif))]_l/Z.

Thus, we can easily find the solution for the quadratic equation of G(u§f+1)) with respect to ugfﬂ),

R T R T -1
ii,(fﬂ) = argmin(G) = (Ag“)) X'z [(A,((Hl)) JX 1+ ADT(diag(C))zD] :

Model selection

There are two hyperparameters to be pre-defined in the FLCNA method, including the number of
clusters K and the tuning parameter A. To find the optimal values of K and A, we use a Bayesian
information criterion (BIC), defined by

N K
BIC(K, 1) = —2 z log {Z AT ﬁk,f)} + d logN. 9)

j=1 k=1
The degrees of freedomd = K — 1 + P + e(ft), where e(ft) is the number of distinct nonzero
elements in @I, and was used to adjust the number of breakpoints in degree of freedom. For each

pair of parameter values (K, A), the clustering model with smallest BIC value is selected as the

optimal model and the corresponding parameters are estimated.



Supplemental Figures

Supplemental Figure S1. Accuracy of clustering in simulated data with three clusters and
mixed CNA states. Clustering results from FLCNA were compared to existing methods (i.e.,
SCOPE and HMMocopy) coupled with different clustering methods. For each of three clusters, we
added signals of 50 CNA segments to the background signals with varied lengths (super short: 2~5
markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) and varied CNA
proportions (20%, 40%, 60%, 80%, 100%), respectively. Signals of mixed CNA states (i.e., Del.d,
Del.s, Norm, Dup.s and Dup.d) were spiked in. ARI: Adjusted Rand Index; SCOPE_H:
SCOPE_Hierarchical; SCOPE_K: SCOPE_K-means; HMMcopy_H: HMMcopy_Hierarchical;
HMMcopy_K: HMMcopy_K-means.

super short short medium long
1.00 1.00

1.00

0.75 0.75 0.75 0.75

4 x [ x ﬂ
<(0.50 <(0.50 <(0.50 <0.50 /\
0.25 0.25 0.25 0.25 / \\
N
0.00 0.00 0.00 0.00{ B B
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Percent Percent Percent Percent

Methods ® FLCNA ® SCOPE_H m SCOPE_K 4 HMMcopy H 4 HMMcopy_K



Supplemental Figure S2. Accuracy of clustering in simulated data with five clusters, varied
numbers of CNAs and mixed CNA states. Clustering results from FLCNA were compared to
existing methods (i.e., SCOPE and HMMcopy) coupled with different clustering methods. For
each of five clusters, we added signals of varied numbers of CNA segments (20~80) to the
background signals with varied lengths (super short: 2~5 markers, short: 5~10 markers, medium:
10~20 markers, and long: 20~35 markers) and varied CNA proportions (20%, 40%, 60%, 80%,
100%), respectively. Signals of mixed CNA states (i.e., Del.d, Del.s, Norm, Dup.s and Dup.d)
were spiked in. ARI: Adjusted Rand Index; SCOPE_H: SCOPE_Hierarchical; SCOPE_K:
SCOPE_K-means; HMMcopy_ H: HMMcopy_Hierarchical; HMMcopy K: HMMcopy_K-means.
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Supplemental Figure S3. Accuracy of clustering in simulated data with five clusters and a
single type of CNA state. Clustering results from FLCNA were compared to existing methods
(i.e., SCOPE and HMMcopy) coupled with different clustering methods. For each of five clusters,
we added signals of 50 CNA segments to the background signals with varied lengths (super short:
2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) and varied
CNA proportions (20%, 40%, 60%, 80%, 100%), respectively. Signals of Del.d (A), Del.s (B),
Dup.s (C) and Dup.d (D) were spiked in separately. ARI: Adjusted Rand Index; Del.d: Deletion
of double copies; Del.s: Deletion of a single copy; Dup.s: Duplication of a single copy; Dup.d:
Duplication of double copies; SCOPE_H: SCOPE_Hierarchical; SCOPE_K: SCOPE_K-means;
HMMcopy_H: HMMcopy_Hierarchical; HMMcopy_K: HMMcopy_K-means.
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Supplemental Figure S4. Accuracy of clustering in simulated data with three clusters and a
single type of CNA state. Clustering results from FLCNA were compared to existing methods
(i.e., SCOPE and HMMcopy) coupled with different clustering methods. For each of three clusters,
we added signals of 50 CNA segments to the background signals with varied lengths (super short:
2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) and varied
CNA proportions (20%, 40%, 60%, 80%, 100%), respectively. Signals of Del.d (A), Del.s (B),
Dup.s (C) and Dup.d (D) were spiked in separately. ARI: Adjusted Rand Index; Del.d: Deletion
of double copies; Del.s: Deletion of a single copy; Dup.s: Duplication of a single copy; Dup.d:
Duplication of double copies; SCOPE_H: SCOPE_Hierarchical; SCOPE_K: SCOPE_K-means;
HMMcopy_H: HMMcopy_Hierarchical; HMMcopy_K: HMMcopy_K-means.
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Supplemental Figure S5. Accuracy of clustering in simulated data with five clusters, varied
numbers of CNAs and a single type of CNA state. Clustering results from FLCNA were
compared to existing methods (i.e., SCOPE and HMMocopy) coupled with different clustering
methods. For each of five clusters, we added signals of varied numbers of CNA segments (20~80)
to the background signals with varied lengths (super short: 2~5 markers, short: 5~10 markers,
medium: 10~20 markers, and long: 20~35 markers) and varied CNA proportions (20%, 40%, 60%,
80%, 100%), respectively. Signals of Del.d (A), Del.s (B), Dup.s (C) and Dup.d (D) were spiked
in separately. ARI: Adjusted Rand Index; Del.d: Deletion of double copies; Del.s: Deletion of a
single copy; Dup.s: Duplication of a single copy; Dup.d: Duplication of double copies; SCOPE_H:
SCOPE_Hierarchical; SCOPE_K: SCOPE_K-means; HMMcopy_H: HMMcopy_Hierarchical;
HMMcopy_K: HMMcopy_K-means.
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Supplemental Figure S6. Accuracy of CNA detection in simulated data with five clusters and
aberration of double copies. CNA calls were generated by FLCNA, SCOPE and HMMcopy,
respectively. For each of five clusters, we added signals of 50 CNA segments to the background
signals with varied lengths (super short: 2~5 markers, short: 5~10 markers, medium: 10~20
markers, and long: 20~35 markers) and varied CNA proportions (20%, 40%, 60%, 80%, 100%),
respectively. Deletion of double copies (Del.d) and duplication of double copies (Dup.d) were
spiked in separately. F1 score was utilized to evaluate the performance of CNA detection for each

method.
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Supplemental Figure S7. Accuracy of CNA detection in simulated data with three clusters.
CNA calls were generated by FLCNA, SCOPE and HMMcopy, respectively. For each of three
clusters, we added signals of 50 CNA segments to the background signals with varied lengths
(super short: 2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers)
and varied CNA proportions (20%, 40%, 60%, 80%, 100%), respectively. Deletion of a single
copy (Del.s), mixed CNA states (mix) and duplication of a single copy (Dup.s) were spiked in

separately. F1 score was utilized to evaluate the performance of CNA detection for each method.
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Supplemental Figure S8. Accuracy of CNA detection in simulated data with three clusters
and aberration of double copies. CNA calls were generated by FLCNA, SCOPE and HMMcopy,
respectively. For each of three clusters, we added signals of 50 CNA segments to the background
signals with varied lengths (super short: 2~5 markers, short: 5~10 markers, medium: 10~20
markers, and long: 20~35 markers) and varied CNA proportions (20%, 40%, 60%, 80%, 100%),
respectively. Deletion of double copies (Del.d) and duplication of double copies (Dup.d) were
spiked in separately. F1 score was utilized to evaluate the performance of CNA detection for each

method.
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Supplemental Figure S9. Accuracy of CNA detection in simulated data with five clusters and
varied numbers of CNAs. CNA calls were generated by FLCNA, SCOPE and HMMcopy,
respectively. For each of five clusters, we added signals of varied numbers of CNA segments
(20~80) to the background signals with varied lengths (super short: 2~5 markers, short: 5~10
markers, medium: 10~20 markers, and long: 20~35 markers) and varied CNA proportions (20%,
40%, 60%, 80%, 100%), respectively. Deletion of a single copy (Del.s), mixed CNA states (mix)
and duplication of a single copy (Dup.s) were spiked in separately. F1 score was utilized to

evaluate the performance of CNA detection for each method.
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Supplemental Figure S10. Accuracy of CNA detection in simulated data with five clusters,
varied numbers of CNAs and aberration of double copies. CNA calls were generated by
FLCNA, SCOPE and HMMcopy, respectively. For each of five clusters, we added signals of
varied numbers of CNA segments (20~80) to the background signals with varied lengths (super
short: 2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) and
varied CNA proportions (20%, 40%, 60%, 80%, 100%), respectively. Deletion of double copies
(Del.d) and duplication of double copies (Dup.d) were spiked in separately. F1 score was utilized

to evaluate the performance of CNA detection for each method.
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Supplemental Figure S11. Subclone clustering of KTN129 patient using FLCNA. Cell clusters
and copy number profile with different CNA states (Del.d, Del.s, Norm, Dup.s and Dup.d) were
generated using FLCNA. Mean logz2R were provided for each cluster. Shared CNAs identified
using FLCNA were matched to significant genes from genome-wide association studies (GWAS)
in the NHGRI-EBI GWAS Catalog. Del.d: Deletion of double copies; Del.s: Deletion of a single
copy; Norm: Normal/diploid; Dup.s: Duplication of a single copy; Dup.d: Duplication of double
copies; logzR: Logarithm transformation of ratio between normalized read counts and its sample
specific mean; Pre-TX: pre-treatment; Post-TX: post-treatment.
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Supplemental Figure S12. Subclone clustering of KTN302 patient using FLCNA. Cell clusters
and copy number profile with different CNA states (Del.d, Del.s, Norm, Dup.s and Dup.d) were
generated using FLCNA. Mean logz2R were provided for each cluster. Shared CNAs identified
using FLCNA were matched to significant genes from genome-wide association studies (GWAS)
in the NHGRI-EBI GWAS Catalog. Del.d: Deletion of double copies; Del.s: Deletion of a single
copy; Norm: Normal/diploid; Dup.s: Duplication of a single copy; Dup.d: Duplication of double
copies; logzR: Logarithm transformation of ratio between normalized read counts and its sample
specific mean; Pre-TX: pre-treatment; Mid-TX: mid-treatment.
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Supplemental Figure S13. Gene expression networks in the TNBC dataset. The shared CNAS
identified using FLCNA were mapped into significant genes from the genome-wide association
studies (GWAS) with breast cancer. These matched genes were utilized for KEGG pathway
enrichment analysis for three patients (i.e., KTN126, KTN129, KTN302). Each node in network
is a pie plot showing three patients. Node size corresponds to the number of genes within the
pathway. Colors inner the node correspond to the index whether this pathway is identified in this
patient. Edge weight corresponds to the number of genes found in both connected pathways. Venn
diagrams show the distribution of genes from GWAS which were also detected from above three
patients. EMT: epithelial-mesenchymal transition.
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count

Supplemental Figure S14. Distribution of shared percentage for CNAs detected using
FLCNA in the TNBC dataset. CNAs were identified from the TNBC dataset with three patients
(KTN126, KTN129, KTN302) using the FLCNA method.
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Supplemental Figure S15. Distribution of CNAs detected using FLCNA in the TNBC dataset.
CNAs were identified from the TNBC dataset with three patients (KTN126, KTN129, KTN302)
using the FLCNA method.
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Supplemental Tables

Supplemental Table S4. Assessment of FLCNA to cluster cells using simulation data with a
single cluster and mixed CNA states. Clustering purity was utilized to evaluate the clustering
performance of FLCNA by dividing the number of accurately assigned cells with the total number
of cells. We added signals of 50 CNA segments to the background signals with varied lengths
(super short: 2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers)
and varied CNA proportions (20%, 40%, 60%, 80%, 100%), respectively.

Shared CNA  super short short medium long
proportion
20 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000
60 1.000 1.000 1.000 1.000
80 1.000 1.000 1.000 0.795
100 1.000 1.000 1.000 0.795
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Supplemental Table S8. Proportion of CNAs with sharing percentage > 60% within clusters.
CNAs were identified from the TNBC dataset with three patients (KTN126, KTN129, KTN302)
using the FLCNA method.

Cluster A (%) Cluster B (%) Cluster C (%)
KTN126 1.64 16.94 18.18
KTN129 0.84 17.05
KTN302 12.77 1.05

23



Supplemental Table S9. Computational time of different CNA detection methods with
scDNA-seq data. A high-performance cluster with 8 cores and 12GB RAM was used for CNA
detection with KTN126 patient in the THBC dataset.

Methods Time (hours)
FLCNA 1.20
SCOPE 10.5

HMMcopy 0.15
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