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Supplemental Methods 

Parameter estimation using expectation–maximization algorithm 

In FLCNA, the parameter set 𝜣 = {𝝁𝑘, 𝜮, 𝜋𝑘}𝑘=1
𝐾  are estimated using an expectation–

maximization (EM) algorithm. let  ∆𝑗,𝑘 be an indicator function of the hidden cluster information 

for 𝒙𝑗, ∆𝑗,𝑘= 1 if 𝒙𝑗 is from the 𝑘-th cluster, and ∆𝑗,𝑘= 0 otherwise. Assuming ∆𝑗,𝑘 is unobserved, 

the penalized log-likelihood function for the complete data will be given by  

         𝑄𝑃(𝜣) = ∑ ∑ ∆𝑗, 𝑘{log(𝜋𝑘) + log𝑓𝑘(𝒙𝑗;  𝝁𝑘 , 𝜮)}

𝐾

𝑘=1

𝑁

𝑗=1

− 𝜆 ∑ ∑ 𝜏𝑖, 𝑖+1
(𝑘)

|𝜇𝑖,𝑘 − 𝜇𝑖+1,𝑘|

𝑃−1

𝑖=1

𝐾

𝑘=1

.     (1) 

With Eq. (1), the parameter set 𝜣 = {𝝁𝑘, 𝜮, 𝜋𝑘}𝑘=1
𝐾  can be estimated with the EM algorithm by 

the following iterative procedure. The EM algorithm iterates between E-step and M-step, and 

produces a sequence of estimates 𝜣̂(𝑡), 𝑡 = 0, 1, 2, ….  

1) Initialization: We first estimate the starting values 𝜣̂(0) = {𝝁̂𝑘
(0)

, 𝚺̂(0), 𝜋̂𝑘
(0)

}𝑘=1
𝐾  using model 

without penalty (𝜆=0).  

2) Iteration: 

E-step: 

We start with the E-step given the current parameter estimates 𝜣̂(𝑡). In this step, we calculate the 

probability for sample 𝑗 belongs to 𝑘 -th cluster with  

      ∆̂𝑗,𝑘
(𝑡+1)

= 𝐸(∆𝑗,𝑘|𝑿, 𝜣̂(𝑡)) = Pr(∆𝑗,𝑘= 1|𝑿, 𝜣̂(𝑡)) =
𝜋̂𝑘

(𝑡)
𝑓𝑘(𝒙𝑗; 𝝁̂𝑘

(𝑡)
, 𝚺̂(𝑡))

∑ 𝜋̂
𝑘′
(𝑡)

𝑓𝑘(𝒙𝑗; 𝝁̂
𝑘′
(𝑡)

, 𝚺̂(𝑡))𝐾
𝑘′=1

 ,          (2) 

where the numerator is the density for 𝑗-th sample to be clustered into 𝑘-th cluster, and the 

denominator is the sum of densities for 𝑗-th sample to be clustered into 𝐾 different clusters. Then 
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Eq. (2) will be plugged it into the Eq. (1) about 𝑄𝑃(𝜣) to estimate other parameters, including the 

cluster “weight” 𝜋𝑘, the variance for 𝑖-th marker 𝜎𝑖
2 and cluster mean 𝝁. 

M-Step: 

Given ∆̂𝑗,𝑘
(𝑡+1)

 and 𝜣̂(𝑡), the goal of M-step is to update parameter set 𝜣̂(𝑡+1) by maximizing the log-

likelihood function 𝑄𝑃(𝜣, 𝜣̂(𝑡)) . Specifically, the estimate of “weights” 𝜋𝑘′𝑠   can be easily 

updated by taking the first derivative of  𝑄𝑃(𝜣, 𝜣̂(𝑡)) w.r.t. 𝜋𝑘 with 

                                         
𝜕𝑄𝑃

𝜕𝜋𝑘
= 0 → 𝜋̂𝑘

(𝑡+1)
=

1

𝑁
∑ ∆̂𝑗,𝑘

(𝑡+1)

𝑁

𝑗=1

.                                                     (3) 

      Given ∆̂𝑗,𝑘
(𝑡+1)

, 𝜋̂𝑘
(𝑡+1)

 and 𝜇̂𝑖,𝑘
(𝑡)

, we can update the estimate of variance for 𝑖-th marker 𝜎𝑖
2 by 

taking the first derivative of 𝑄𝑃(𝜣, 𝜣̂(𝑡)) w.r.t. 𝜎𝑖
2 with 

            
𝜕𝑄𝑃

𝜕𝜎𝑖
2 = 0 → (𝜎̂𝑖

(𝑡+1)
)

2

=
1

𝑁
∑ ∑ ∆̂𝑗,𝑘

(𝑡+1)
(𝑥𝑖,𝑗 − 𝜇̂𝑖,𝑘

(𝑡)
)

2
𝐾

𝑘=1

𝑁

𝑗=1

, 1 ≤ 𝑗 ≤ 𝑝.                      (4) 

      Given ∆̂𝑗,𝑘
(𝑡+1)

, 𝜋̂𝑘
(𝑡+1)

 and 𝜎̂𝑖
(𝑡+1)

, according to Eq. (1), after some transformation, we can 

update the estimates of mean values  𝝁̂(𝑡+1) with  

 𝝁̂(𝑡+1) = argmin
𝝁

1

2
∑ ∑ {∆̂𝑗, 𝑘

(𝑡+1)
∑

(𝑥𝑖, 𝑗 − 𝜇𝑖,𝑘)
2

(𝜎̂𝑖
(𝑡)

)
2

𝑝

𝑖=1

}

𝐾

𝑘=1

𝑁

𝑗=1

+ 𝜆 ∑ ∑ 𝜏𝑖, 𝑖+1
(𝑘)

|𝜇𝑖,𝑘 − 𝜇𝑖+1,𝑘|.

𝑃−1

𝑖

𝐾

𝑘=1

  (5) 

Eq. (5) cannot be solved directly with close form, but 𝝁̂(𝑡+1)  can be estimated using a local 

quadratic approximation (LQA) algorithm, which will be discussed in detail next. 

 

Estimation of  𝝁̂(𝑡+1) using local quadratic approximation 

According to LQA, we can approximate 
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                                 |𝜇𝑖,𝑘
(𝑠+1)

− 𝜇𝑖+1,𝑘
(𝑠+1)

| ≈
(𝜇𝑖,𝑘

(𝑠+1)
− 𝜇𝑖+1,𝑘

(𝑠+1)
)

2

2|𝜇̂𝑖,𝑘
(𝑠)

− 𝜇̂𝑖+1,𝑘
(𝑠)

|
+

1

2
|𝜇̂𝑖,𝑘

(𝑠)
− 𝜇̂𝑖+1,𝑘

(𝑠)
|,                        (6) 

where 𝑠 is the iteration index used to denote iterations of the LQA within the M-step (different 

from iteration index 𝑡 in the EM algorithm), and 𝝁̂(𝑠) are the estimates from the previous iteration. 

Thus, the minimization problem in Eq. (5) has been converted into a generalized quadratic problem 

which has close form solution. Notably, Eq. (5) can be decomposed into 𝐾 separate minimization 

problems. For example, for each 𝑘, we can solve (iteratively over 𝑠) 

               min
𝝁𝑘

(𝑠+1)

1

2
∑ {∆̂𝑗, 𝑘

(𝑡+1)
∑

(𝑥𝑖, 𝑗 − 𝜇̂𝑖,𝑘
(𝑠+1)

)
2

(𝜎̂𝑖
(𝑡)

)
2

𝑝

𝑖=1

}

𝑁

𝑗=1

+ 𝜆 ∑ 𝜏𝑖, 𝑖+1
(𝑘)

(𝜇𝑖,𝑘
(𝑠+1)

− 𝜇𝑖+1,𝑘
(𝑠+1)

)
2

2|𝜇̂𝑖,𝑘
(𝑠)

− 𝜇̂𝑖+1,𝑘
(𝑠)

|

𝑃−1

𝑖=1

,             (7) 

with close form. To solve Eq. (7), we need to transfer it into matrix form first. Let  

• ∆̂𝑘
(𝑡+1)

= (∆̂1, 𝑘
(𝑡+1)

, … , ∆̂𝑁, 𝑘
(𝑡+1)

)
𝑇

 be the estimated latent variable for the 𝑘-cluster from E-step 

in the EM algorithm.  

• 𝑱𝑁×1 = (1, … ,1)𝑇 is a matrix with all elements to be 1. 

• 𝝁̃𝑘 = (𝜇1, 𝑘, … , 𝜇𝑃, 𝑘)
𝑇

 is the pre-defined mean vector for the 𝑘-th cluster where 𝜇𝑖,𝑘  is 

estimated from the model without any penalization (𝜆 = 0).   

• 𝝁̂𝑘
(𝑠)

= (𝜇̂1,  𝑘
(𝑠)

, … , 𝜇̂𝑃,  𝑘
(𝑠)

)
𝑇

 is the estimate of mean vector for the 𝑘-th cluster from previous 

iteration in the EM algorithm.  

• 𝝁̂𝑘
(𝑠+1)

= (𝜇1,  𝑘
(𝑠+1)

, … , 𝜇𝑃,  𝑘
(𝑠+1)

)
𝑇

 is the estimate of our interest which is the mean vector for 

the 𝑘-th cluster. 
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• 𝑫 = (

−1 1 0 ⋯ 0 0
0 −1 1 … 0 0
⋮      
0 0 0 … −1 1

)

(𝑃−1)×𝑃

 is a matrix introduced to calculate the 

difference of mean values for each pair of consecutive markers in a cluster.  

Then Eq. (1) can also be given with 

        𝑮(𝝁𝑘
(𝑠+1)

) = (∆̂𝑘
(𝑡+1)

)
𝑇

(𝑿 − 𝝁𝑘
(𝑠+1)

𝑱𝑇)
2

𝜮−1𝑱 + 𝜆𝑫T(diag(𝑪))
𝟐

𝑫(𝝁𝑘
(𝑠+1)

)
𝟐

,           (8) 

where 𝑪 = [abs(𝑫𝝁̃𝑘) ⊙ abs(𝑫𝝁̂𝒌
(𝒔)

)]
−1 2⁄

. 

Thus, we can easily find the solution for the quadratic equation of 𝑮(𝝁𝑘
(𝑠+1)

) with respect to 𝝁𝑘
(𝑠+1)

, 

𝝁̂𝑘
(𝑠+1)

= argmin(𝑮) = (∆̂𝑘
(𝑡+1)

)
𝑇

𝑿T𝜮−1 [(∆̂𝑘
(𝑡+1)

)
𝑇

𝑱𝜮−1 + 𝜆𝑫T(diag(𝑪))𝟐𝑫]
−1

. 

 

Model selection 

There are two hyperparameters to be pre-defined in the FLCNA method, including the number of 

clusters 𝐾 and the tuning parameter 𝜆. To find the optimal values of 𝐾 and 𝜆, we use a Bayesian 

information criterion (BIC), defined by  

                           BIC(𝐾, 𝜆) = −2 ∑ log {∑ 𝜋̂𝑘

𝐾

𝑘=1

𝑓𝑘(𝒙𝑗; 𝝁̂𝑘, 𝜮̂)}

𝑁

𝑗=1

+ 𝑑 log𝑁.                       (9) 

The degrees of freedom 𝑑 = 𝐾 − 1 + 𝑃 + 𝑒(𝝁̂), where 𝑒(𝝁̂) is the number of distinct nonzero 

elements in 𝝁̂, and was used to adjust the number of breakpoints in degree of freedom. For each 

pair of parameter values (𝐾, 𝜆), the clustering model with smallest BIC value is selected as the 

optimal model and the corresponding parameters are estimated.  
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Supplemental Figures 
Supplemental Figure S1. Accuracy of clustering in simulated data with three clusters and 

mixed CNA states. Clustering results from FLCNA were compared to existing methods (i.e., 

SCOPE and HMMcopy) coupled with different clustering methods. For each of three clusters, we 

added signals of 50 CNA segments to the background signals with varied lengths (super short: 2~5 

markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) and varied CNA 

proportions (20%, 40%, 60%, 80%, 100%), respectively. Signals of mixed CNA states (i.e., Del.d, 

Del.s, Norm, Dup.s and Dup.d) were spiked in. ARI: Adjusted Rand Index; SCOPE_H: 

SCOPE_Hierarchical; SCOPE_K: SCOPE_K-means; HMMcopy_H: HMMcopy_Hierarchical; 

HMMcopy_K: HMMcopy_K-means. 
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Supplemental Figure S2. Accuracy of clustering in simulated data with five clusters, varied 

numbers of CNAs and mixed CNA states. Clustering results from FLCNA were compared to 

existing methods (i.e., SCOPE and HMMcopy) coupled with different clustering methods. For 

each of five clusters, we added signals of varied numbers of CNA segments (20~80) to the 

background signals with varied lengths (super short: 2~5 markers, short: 5~10 markers, medium: 

10~20 markers, and long: 20~35 markers) and varied CNA proportions (20%, 40%, 60%, 80%, 

100%), respectively. Signals of mixed CNA states (i.e., Del.d, Del.s, Norm, Dup.s and Dup.d) 

were spiked in. ARI: Adjusted Rand Index; SCOPE_H: SCOPE_Hierarchical; SCOPE_K: 

SCOPE_K-means; HMMcopy_H: HMMcopy_Hierarchical; HMMcopy_K: HMMcopy_K-means. 
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Supplemental Figure S3. Accuracy of clustering in simulated data with five clusters and a 

single type of CNA state. Clustering results from FLCNA were compared to existing methods 

(i.e., SCOPE and HMMcopy) coupled with different clustering methods. For each of five clusters, 

we added signals of 50 CNA segments to the background signals with varied lengths (super short: 

2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) and varied 

CNA proportions (20%, 40%, 60%, 80%, 100%), respectively. Signals of Del.d (A), Del.s (B), 

Dup.s (C) and Dup.d (D) were spiked in separately. ARI: Adjusted Rand Index; Del.d: Deletion 

of double copies; Del.s: Deletion of a single copy; Dup.s: Duplication of a single copy; Dup.d: 

Duplication of double copies; SCOPE_H: SCOPE_Hierarchical; SCOPE_K: SCOPE_K-means; 

HMMcopy_H: HMMcopy_Hierarchical; HMMcopy_K: HMMcopy_K-means. 
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Supplemental Figure S4. Accuracy of clustering in simulated data with three clusters and a 

single type of CNA state. Clustering results from FLCNA were compared to existing methods 

(i.e., SCOPE and HMMcopy) coupled with different clustering methods. For each of three clusters, 

we added signals of 50 CNA segments to the background signals with varied lengths (super short: 

2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) and varied 

CNA proportions (20%, 40%, 60%, 80%, 100%), respectively. Signals of Del.d (A), Del.s (B), 

Dup.s (C) and Dup.d (D) were spiked in separately. ARI: Adjusted Rand Index; Del.d: Deletion 

of double copies; Del.s: Deletion of a single copy; Dup.s: Duplication of a single copy; Dup.d: 

Duplication of double copies; SCOPE_H: SCOPE_Hierarchical; SCOPE_K: SCOPE_K-means; 

HMMcopy_H: HMMcopy_Hierarchical; HMMcopy_K: HMMcopy_K-means. 
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Supplemental Figure S5. Accuracy of clustering in simulated data with five clusters, varied 

numbers of CNAs and a single type of CNA state. Clustering results from FLCNA were 

compared to existing methods (i.e., SCOPE and HMMcopy) coupled with different clustering 

methods. For each of five clusters, we added signals of varied numbers of CNA segments (20~80) 

to the background signals with varied lengths (super short: 2~5 markers, short: 5~10 markers, 

medium: 10~20 markers, and long: 20~35 markers) and varied CNA proportions (20%, 40%, 60%, 

80%, 100%), respectively. Signals of Del.d (A), Del.s (B), Dup.s (C) and Dup.d (D) were spiked 

in separately. ARI: Adjusted Rand Index; Del.d: Deletion of double copies; Del.s: Deletion of a 

single copy; Dup.s: Duplication of a single copy; Dup.d: Duplication of double copies; SCOPE_H: 

SCOPE_Hierarchical; SCOPE_K: SCOPE_K-means; HMMcopy_H: HMMcopy_Hierarchical; 

HMMcopy_K: HMMcopy_K-means. 
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Supplemental Figure S6. Accuracy of CNA detection in simulated data with five clusters and 

aberration of double copies. CNA calls were generated by FLCNA, SCOPE and HMMcopy, 

respectively. For each of five clusters, we added signals of 50 CNA segments to the background 

signals with varied lengths (super short: 2~5 markers, short: 5~10 markers, medium: 10~20 

markers, and long: 20~35 markers) and varied CNA proportions (20%, 40%, 60%, 80%, 100%), 

respectively. Deletion of double copies (Del.d) and duplication of double copies (Dup.d) were 

spiked in separately. F1 score was utilized to evaluate the performance of CNA detection for each 

method. 
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Supplemental Figure S7. Accuracy of CNA detection in simulated data with three clusters. 

CNA calls were generated by FLCNA, SCOPE and HMMcopy, respectively. For each of three 

clusters, we added signals of 50 CNA segments to the background signals with varied lengths 

(super short: 2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) 

and varied CNA proportions (20%, 40%, 60%, 80%, 100%), respectively. Deletion of a single 

copy (Del.s), mixed CNA states (mix) and duplication of a single copy (Dup.s) were spiked in 

separately. F1 score was utilized to evaluate the performance of CNA detection for each method.  
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Supplemental Figure S8. Accuracy of CNA detection in simulated data with three clusters 

and aberration of double copies. CNA calls were generated by FLCNA, SCOPE and HMMcopy, 

respectively. For each of three clusters, we added signals of 50 CNA segments to the background 

signals with varied lengths (super short: 2~5 markers, short: 5~10 markers, medium: 10~20 

markers, and long: 20~35 markers) and varied CNA proportions (20%, 40%, 60%, 80%, 100%), 

respectively. Deletion of double copies (Del.d) and duplication of double copies (Dup.d) were 

spiked in separately. F1 score was utilized to evaluate the performance of CNA detection for each 

method. 
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Supplemental Figure S9. Accuracy of CNA detection in simulated data with five clusters and 

varied numbers of CNAs. CNA calls were generated by FLCNA, SCOPE and HMMcopy, 

respectively. For each of five clusters, we added signals of varied numbers of CNA segments 

(20~80) to the background signals with varied lengths (super short: 2~5 markers, short: 5~10 

markers, medium: 10~20 markers, and long: 20~35 markers) and varied CNA proportions (20%, 

40%, 60%, 80%, 100%), respectively. Deletion of a single copy (Del.s), mixed CNA states (mix) 

and duplication of a single copy (Dup.s) were spiked in separately. F1 score was utilized to 

evaluate the performance of CNA detection for each method.  
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Supplemental Figure S10. Accuracy of CNA detection in simulated data with five clusters, 

varied numbers of CNAs and aberration of double copies. CNA calls were generated by 

FLCNA, SCOPE and HMMcopy, respectively. For each of five clusters, we added signals of 

varied numbers of CNA segments (20~80) to the background signals with varied lengths (super 

short: 2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) and 

varied CNA proportions (20%, 40%, 60%, 80%, 100%), respectively. Deletion of double copies 

(Del.d) and duplication of double copies (Dup.d) were spiked in separately. F1 score was utilized 

to evaluate the performance of CNA detection for each method. 
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Supplemental Figure S11. Subclone clustering of KTN129 patient using FLCNA. Cell clusters 

and copy number profile with different CNA states (Del.d, Del.s, Norm, Dup.s and Dup.d) were 

generated using FLCNA. Mean log2R were provided for each cluster. Shared CNAs identified 

using FLCNA were matched to significant genes from genome-wide association studies (GWAS) 

in the NHGRI-EBI GWAS Catalog. Del.d: Deletion of double copies; Del.s: Deletion of a single 

copy; Norm: Normal/diploid; Dup.s: Duplication of a single copy; Dup.d: Duplication of double 

copies; log2R: Logarithm transformation of ratio between normalized read counts and its sample 

specific mean; Pre-TX: pre-treatment; Post-TX: post-treatment. 
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Supplemental Figure S12. Subclone clustering of KTN302 patient using FLCNA. Cell clusters 

and copy number profile with different CNA states (Del.d, Del.s, Norm, Dup.s and Dup.d) were 

generated using FLCNA. Mean log2R were provided for each cluster. Shared CNAs identified 

using FLCNA were matched to significant genes from genome-wide association studies (GWAS) 

in the NHGRI-EBI GWAS Catalog. Del.d: Deletion of double copies; Del.s: Deletion of a single 

copy; Norm: Normal/diploid; Dup.s: Duplication of a single copy; Dup.d: Duplication of double 

copies; log2R: Logarithm transformation of ratio between normalized read counts and its sample 

specific mean; Pre-TX: pre-treatment; Mid-TX: mid-treatment. 

 
 

 

 

 

 

 

 

 

 

 

 

 



19 

 

Supplemental Figure S13. Gene expression networks in the TNBC dataset. The shared CNAs 

identified using FLCNA were mapped into significant genes from the genome-wide association 

studies (GWAS) with breast cancer. These matched genes were utilized for KEGG pathway 

enrichment analysis for three patients (i.e., KTN126, KTN129, KTN302). Each node in network 

is a pie plot showing three patients. Node size corresponds to the number of genes within the 

pathway. Colors inner the node correspond to the index whether this pathway is identified in this 

patient. Edge weight corresponds to the number of genes found in both connected pathways. Venn 

diagrams show the distribution of genes from GWAS which were also detected from above three 

patients. EMT: epithelial-mesenchymal transition. 
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Supplemental Figure S14. Distribution of shared percentage for CNAs detected using 

FLCNA in the TNBC dataset. CNAs were identified from the TNBC dataset with three patients 

(KTN126, KTN129, KTN302) using the FLCNA method.  
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Supplemental Figure S15. Distribution of CNAs detected using FLCNA in the TNBC dataset. 

CNAs were identified from the TNBC dataset with three patients (KTN126, KTN129, KTN302) 

using the FLCNA method.  
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Supplemental Tables 
Supplemental Table S4. Assessment of FLCNA to cluster cells using simulation data with a 

single cluster and mixed CNA states. Clustering purity was utilized to evaluate the clustering 

performance of FLCNA by dividing the number of accurately assigned cells with the total number 

of cells. We added signals of 50 CNA segments to the background signals with varied lengths 

(super short: 2~5 markers, short: 5~10 markers, medium: 10~20 markers, and long: 20~35 markers) 

and varied CNA proportions (20%, 40%, 60%, 80%, 100%), respectively.  

Shared CNA 

proportion 

super short short medium long 

20 1.000 1.000 1.000 1.000 

40 1.000 1.000 1.000 1.000 

60 1.000 1.000 1.000 1.000 

80 1.000 1.000 1.000 0.795 

100 1.000 1.000 1.000 0.795 
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Supplemental Table S8. Proportion of CNAs with sharing percentage > 60% within clusters. 

CNAs were identified from the TNBC dataset with three patients (KTN126, KTN129, KTN302) 

using the FLCNA method. 

 Cluster A (%) Cluster B (%) Cluster C (%) 

KTN126 1.64 16.94 18.18 

KTN129 0.84 17.05  

KTN302 12.77 1.05  
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Supplemental Table S9. Computational time of different CNA detection methods with 

scDNA-seq data. A high-performance cluster with 8 cores and 12GB RAM was used for CNA 

detection with KTN126 patient in the THBC dataset. 

Methods Time (hours) 

FLCNA 1.20 

SCOPE 10.5 

HMMcopy 0.15 

 


