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[bookmark: _Introduction_to_background]

[bookmark: _Simulation_algorithm_for][bookmark: _Toc153093777][bookmark: _Toc129279441]Multiscale model of transcriptional bursting 
[bookmark: _Stochastic_model_of][bookmark: _Toc129279442][bookmark: _Toc153093778]Stochastic model of upstream chromatin motion 
We model chromatin as a folded polymer chain, a collection of monomers connected by springs. We assume that a monomer represents a nucleosome, and a nucleosome represents an enhancer whereas another nucleosome represents a promoter. An enhancer can transmit its regulatory information to its cognate promchoters. This communication depends on the inherent characteristics of regulatory elements (such as enhancers) and the surrounding microenvironment (transcription factors, complexes, etc.). From a physical viewpoint, we can coarse-model the interactions between biomolecules involved in E-P communication as a force (or the potential). Also, we posit that there are only one enhancer and one promoter on the chromatin (i.e., polymer) although multiple enhancers may exist, and neglect attraction or repulsion between other monomers in the chain except for the communication between the enhancer and the promoter. Then, the chromatin motion can be described by the Langevin equation

[bookmark: ZEqnNum647801]		





where  is the total potential of the polymer chain at time . We make decomposition , where  is the potential of the successive monomers and  is that of the E-P communication. 

To simplify but without loss of generality, harmonic springs with stiffness  are used between the monomers of nearest-neighbors along the chain. Thus, the potential of the successive monomers is 

[bookmark: ZEqnNum516539]		



where  is the position of the bead in space and  is the mean distance between neighboring monomers. E-P communication can be modeled using harmonic potential or Lennard-Jones (LJ) potential. It should be pointed out that no matter which type of potential is used, it is necessary to introduce a quantity characterizing E-P communication strength, which is defined as the ratio of the force generated by the biomolecule’s interaction per unit of E-P spatial distance. Here, the E-P communication is characterized by the harmonic spring, and the corresponding potential is assumed to take the form

[bookmark: ZEqnNum806686]		





where  is the spring coefficient between the enhancer and the promoter (also called communication strength), and  represent the enhancer and the promoter with .  we introduced is a physical quantity that cannot be measured directly by experiments, but it essentially reflects the E-P contact frequency or probability, which can be estimated from conformational data such as Hi-C data. Let  represents the E-P genomic distance. 

For analysis simplicity but without loss of generality, we set  in Eq.  and . Since all the interactions we consider in the main text are represented by harmonic potentials, Eq.  can be rewritten as 

[bookmark: ZEqnNum710534]		



where  and  are  matrixes showing the connectivity between adjacent beads and the E-P interaction, given by

[bookmark: ZEqnNum259981]		
Eq.  with Eq.  characterize the movement of chromatin. 

We point out that, communication strength  depends, in general, on the inherent property of regulatory elements and the microenvironment around them. 
[bookmark: _Multi-state_model_of][bookmark: _Toc129279443][bookmark: _Toc153093779]Multi-state model of downstream transcriptional bursting
The ON-OFF model provides a simple quantitative analysis framework to explain transcriptional burst, but transcription bursting is a complex biochemical process. Some gene-expression processes, e.g., those involving complex promoter (or E-P) dynamics, TFs and cofactors (COFs) dynamics and Pol II dynamics, would not be described by simple two-state models. Recent studies have extended two-state models to multistate models. In our main text, we used a four-state model to simulate transcriptional bursting dynamics with biological details stated below for better understanding (Supplemental Table S2).
[image: ]
Figure ST1. Kinetic scheme for a four-state model of transcriptional bursting.



OFF states - In the case that chromatin is silent, the mechanism of how a suitable transcriptional state for DNA transcription is created is unclear, but constantly increasing data have shown that the non-permissive period follows a non-exponential distribution (3, 4), indicating that the process from non-permissive to permissive transcription states is memorial, and is more complex rather than a single-step Markov process that is memoryless. This memory implies that a single OFF state in the traditional telegraph model is not enough to characterize the non-permissive state of chromatin. In addition, chromatin remodeling and nucleosome unwrapping due to the accessibility of chromatin are necessary for gene transcription. Pioneer TFs have unique properties that can open closed chromatin (5) to expose the promoter motif. Subsequently, the promoter, which is in a state of primed burst, employs general TFs, Mediator and Pol II for transcription. For this purpose, a deep inactive state (, closed chromatin) and a primed burst state () are considered as the OFF state (, non-permissive period).








ON states - Besides the non-permissive period (inactive state ), two most important processes in the transcription cycle are Pol II recruitment to the promoter and Pol II pause release from promoter-proximal (6, 7). Pol II is necessary for transcribing DNA into mRNA and paused Pol II is a common step in gene transcription and regulation (8, 9). Recent studies have indicated that paused Pol II is more stable than Pol II in the PIC stage (10, 11), and promoters with Pol II are more sensitive in response to stresses than those lacking Pol II (12). Meanwhile, paused Pol II can prevent new Pol II initiation to reduce transcriptional noise (10). After the release of paused Pol II, the next Pol II recruitment can be carried out. Since Pol II recruitment occurs after burst initiation (13), we employ Pol II recruitment state () and Pol II pause release state () as state ON (, permissive period) in the bursting stage. These two states,  and , can be switched to each other. And we assume that the process from  back to  generates an mRNA.











[bookmark: _Hlk129342430][bookmark: _Hlk129342884]The bursting system to be studied is described by a set of biochemical reactions on a slow timescale in contrast to the introduced-above system of chromatin motion on a fast timescale (Figure ST1). Note that rates ,  are effective rates that summarize a series of sub-processes. Since burst termination is relatively dynamic (14), we hypothesize that both  and  states can return to . Also, because  is a deep inactive state, it is unlikely for  and  states to return directly to  state in one step. Thus, we posit that only  can be switched to . 

Based on the above description, the state transition matrix  is expressed as

		

where all the type parameters are dependent on the E-P spatial distance and will be discussed at later.






In addition, we point out that strictly speaking, the reaction  is not correct since this reaction’s output is nascent mRNA () rather than mature mRNA (). Therefore, in reality the model should be  followed by . The lifetime of nascent mRNA is not exponential but rather closer to deterministic and that is because it is determined by the elongation time plus the termination time. Hence, the time between successive nascent mRNA production events is exactly the same as the time between successive mature mRNA production events (15). This justifies the use of . 


[bookmark: _Hlk147533206]Note that although our model is a multi-state one, it is different from multi-state models in previous studies (16, 17). Previous models assumed that gene state does not change when mRNA is produced (i.e., ), implying that the detailed processes of transcriptional bursting are ignored. In contrast, our model assumes, based on biological phenomena, that mRNA is produced in the process of switching from one state to another (i.e., ). This is crucial for capturing the feature that only one Pol II is permitted to bind to promoter and the second Pol II recruitment must occur after the first Pol II pause release. Also, our model can capture some characteristics (such as traveling ratio, the effect of altering Pol II pause release rate) that cannot be obtained by the previous models.

[bookmark: _Information_flow_from][bookmark: _Toc129279444][bookmark: _Toc153093780]Information flow from chromatin conformation to transcriptional bursting




E-P communication, which plays a vital role in regulating stochastic gene expression, should be taken into account in transcriptional bursting. First, transcription activators binding to enhancers recruit TFs to alter chromatin structure and make it more accessible to active transcription (18). Second, E-P interaction co-regulates the recruitment of TFs and Pol II and the assembly of PIC (19, 20). Besides, enhancers recruit Mediator complex or histone acetyltransferase p300 to help the Pol II on promoters initiate transcription (21). Third, enhancers promote dissociation of NELF by recruiting COFs to affect Pol II pause-release on promoter-proximity (22). Correspondingly, gene state transition rates  of the biochemical reactions govern transcriptional bursting. According to the above experimental observations or evidences, we assume that the state transition rates are related to the E-P spatial distance denoted by . However, biological experiments did not tell us how these rates quantitatively depend on . In fact, this dependence relationship would be complex and in particular, it would be organism-specific. To simplify our analysis, we will, by making assumptions, set a special but common form of  to link the downstream transcription to the upstream chromatin configuration.










[bookmark: _Hlk105699983]Note that the opening chromatin (from  to ) would be mainly associated with pioneer TFs. Thus, we assume  is a constant independent of E-P spatial distance. Additionally, since the relationship between the ,  and E-P distance may be opposite to that between ,  and the distance, we set rates ,  and  as constants for simplicity. 






[bookmark: _Hlk105761151]First, chromatin structure generally does not act as a binary switch but acts as a modulator of gene function (non-binary) (23). Second, cooperative and synergistic binding to DNA is a common way in organisms. For example, in transcription processes, the binding of TFs may affect the binding rate of other TFs, Mediators or Pol II. Thus, it seems more reasonable to assume that the E-P spatial distance affects transcriptional burst rates in a nonlinear manner. Here we use Hill functions, which are very successful in modeling biological phenomena (24), to describe the transcription rates. To sum up, we assume that rate-vector  is a Hill-like function vector  of , i.e. . The piecewise continuous nonlinear rate function ,  depending on the E-P spatial distance is

[bookmark: ZEqnNum991998]		











[bookmark: _Hlk129343171]where  and  are the minimum (basic) and maximum reaction rates for reactions ,  is the spatial distance when  is equal to ,  is a Hill coefficient that controls how steep the rate curve is, and  is a distance threshold. When the E-P distance is less than , the  is also used to describe the encounter of E-P. Therefore, it is reasonable to assume that the state transition rates are maximum when the distance is less than  in Eq. . Besides, encounter, which is merely an assumption in physical statistics, does not mean direct contact. As the distance increases, state transition rates can reduce to the minimum. Eq.  can illustrate how the transition rates vary with E-P topologies, and further indicate that transcription is regulated at any time. 








In our numerical simulation and theoretical analysis, we sufficiently use the relationship described by Eq. . However, it is needed to point out that parameters ,  may take other forms except for form . In general,  may be set nonlinear decreasing functions of . Also,  can be set increasing functions to explain the special case that the enhancer activation of increasing E-P spatial distance  (25). Finally, ,  may take a form of functions that are not constants.
[bookmark: _Simulation_and_statistical][bookmark: _Theoretical_analysis_of][bookmark: _Toc129279446][bookmark: _Toc153093781]Theoretical analysis of transcriptional bursting
[bookmark: _Analytical_results_for][bookmark: _Toc79334455][bookmark: _Toc129279448][bookmark: _Toc153093782]Analytical results for upstream chromatin dynamics


In this subsection, we derive the expression of the E-P spatial distance distribution. Term  in Eq.  is a singular matrix. To eliminate the degrees of freedom, the position of the first monomer in the chain can be set as  based on the methods in (26). Thus, the Fokker-Planck equation corresponding to Eq.  can be rewritten as 

[bookmark: ZEqnNum520278]		

where , and 

		

where .

Owing to the fact that every monomer moves independently in each dimension, the PDF for chromatin conformation  can be expressed as 

		


In fact, the monomer motion in Eq.  is an Ornstein-Uhlenbeck process and the general solution to this equation is a Gaussian distribution. If we consider one-dimensional PDF , the  can be analytically expressed as (27) 

		

where  is a normalization constant and

[bookmark: ZEqnNum176460]		


The  is a multivariate normal distribution with the zero mean and the covariance matrix being . The marginal distributions for the enhancer and promoter are calculated according to

[bookmark: ZEqnNum883734]		
Based on the properties of Gaussian distribution, the marginal PDFs in Eq.  are also Gaussian distributions.

By calculating, we find that the analytical expression of the PDF  of the E-P spatial distance takes the form 

[bookmark: ZEqnNum563767]		
where 

[bookmark: ZEqnNum482794]		




In Eq. ,  is the E-P genomic distance, i.e., , which is different from the E-P spatial distance . Note that Eq.  is a Maxwell-Boltzmann (MB) distribution (referring to Figure S1A), which can be regarded as the positive square root of the sum of squares of three independent random variables with each following the same normal distribution. Equivalently, each normal distribution represents the E-P distance in a certain dimension. Thus, Eq.  is the distribution of the E-P Euclidean distance in 3D. More precisely, Eq.  is equivalent to the chi distribution with three degrees of freedom and a scale parameter . 














Except for the harmonic spring  between the enhancer and the promoter in Eq. , which accounts for the E-P communication, the enhancer and the promoter are also connected in series by  springs with the same elastic coefficient . These connected springs are in effect equivalent to a spring with an elastic coefficient . Thus, the connection between the enhancer and the promoter can be viewed as two paralleling springs, which are further equivalent to a spring with an elastic coefficient . Due to the Einstein relation , the distribution is determined by the temperature  (or the product of  and , rather than  or  alone) and the equivalent spring. Furthermore, the scale parameter  in Eq.  measures the spatial distance in units proportional to the square root of the ratio of temperature  and spring coefficient . 










Finally, we would like to point out: (1) the statement that  is the E-P genomic distance is not accurate, but  is actually the number of monomers between the enhancer and the promoter in simulation. If one monomer is assumed to be a nucleosome, the E-P genomic distance should be expressed as , where  is the DNA length around the nucleosome; (2) the total genomic length is independent of the E-P spatial distance distribution . In numerical simulations, the number of simulated monomers is thus unimportant compared with that of monomers between the enhancer and the promoter, i.e., ; (3) the form of modified LJ potential between the enhancer and the promoter provides a strategy that replaces the linear harmonic spring. Although the LJ potential is more difficult to analyze, numerical simulations find that LJ potential can be also fitted with MB distribution (referring to Figure S1F). Therefore, the harmonic bond does not lose the essence of E-P communication but may bring conveniences for theoretical analysis combined with experimental data. (4) the probability of enhancer meeting promoter decreases monotonically with the increase of , which seems contrast to the conclusion that E-P encounter frequency depends non-monotonically (first increasing and then decreasing) on  (28, 29). However, the increasing trend occurs when the E-P genomic distance is very small (e.g., the distance between two nucleosomes is about 500bp). In our model, what we consider is that on a larger scale of genomic distance, the probability is monotonically decreasing with increasing . (5) The MB distribution was originally introduced in polymer theory, which held for the end-to-end distance of an ideal Rouse chain. However, our model is a generalized Rouse model with a pair of long-range E-P interaction and considers the E-P distance rather than the end-to-end distance. This means that the MB distribution of E-P spatial distance cannot be taken as a simple corollary. The characteristic parameters  of the MB distributions have different meanings in different situations, though the distance distributions are still MB distributions. 
[bookmark: _Toc129279449][bookmark: _Toc153093783]Analytical results for downstream bursting kinetics 

In this subsection, we only consider the downstream transcriptional bursting. The PDF or PMF obtained in this subsection is actually the cPDF given the E-P spatial distance .









Burst size is unrelated to the state  since only when the gene is activated () can mRNA be produced. Besides, the residence time of the state  can be calculated independently from other states due to the particularity of . Thus, we first focus on the burst stage (i.e., ) and ignore the state  in the following derivation. Let the initial time of burst stage () be set at the moment when the state  switches to the state .







Let  be the survival probability that  mRNAs are produced during a burst (i.e., ) in the state  (i.e., ) at the time  (i.e., ). Then,

[bookmark: ZEqnNum304083]		








where  is the exit time from the state . Hereafter we define . Note that the expressions of the state  in formulas and of the state ,  in the main text may be different but their meanings are the same. In the following, we rewrite the survival probability  as  for the sake of simplicity and beauty of the formulas. 


Based on Eq. , we consider an infinitesimal interval . Then,  can be expressed as

[bookmark: ZEqnNum383269]		

The master equations determining the probabilities  from Eq.  are 

[bookmark: ZEqnNum975659]		

This equation group is valid for all . 


To solve Eq. , we introduce the generating function  for 

[bookmark: ZEqnNum486250]		
Then, we have the following partial differential equations

[bookmark: ZEqnNum218296]		

Eliminating  from Eq. , we obtain the following second-order differential equation

[bookmark: ZEqnNum918346]		
This equation can be viewed as an ordinary differential equation with constant coefficients. The corresponding characteristic equation is

		
Solving this algebraic equation yields

[bookmark: ZEqnNum482612]		

and we can show . Thus, a general solution to Eq.  is 

[bookmark: ZEqnNum724824]		


where  and  are constants determined by initial conditions. Substituting Eq.  into the second equation of Eq. , we have

[bookmark: ZEqnNum545268]		








Note that  is the initial state of a burst. If taking ,  and  (, ) as the initial conditions, we have the following algebraic equation group determining two constants  and 

[bookmark: ZEqnNum642913]		
Solving Eq.  gives

[bookmark: ZEqnNum182257]		
Substituting Eq.  into Eq.  and , we know that the solution of Eq.  is

[bookmark: ZEqnNum516745]		
To that end, we have obtained the solution of the generating function corresponding to the survival probability. 
1. Burst size





In our four-state model, both  and  can return to  so that the burst ends. And the transitions between  and  can be carried out many times before one burst ends, resulting in the bursty production of mRNAs. 
[image: ]





[bookmark: SIFig6]Figure ST2. Schematic for the transitions between discrete states and the generation of mRNAs. ,  and  are three states in the model.  is the number of mRNAs.  are burst rates. The star in the left top corner is the initial state of a burst.


The probability that burst termination time  falls within an infinitesimal interval  equals

		







The joint probability density  for  (discrete random variable) and burst termination time  (continuous random variable) include all incoming fluxes driving the system from state  and  to state  (or ) (Figure ST2). That is, 

		

Then, the marginal probability distribution for  is calculated according to

[bookmark: ZEqnNum627968]		


Denote by  the generating function for . Then based on Eq.  and Eq. , we can obtain 

		




On the other hand,  can be expanded as . Therefore, by identifying the coefficients of the same powers of , we can see that burst size  follows the following geometric distribution (referring to Supplemental Figure S2B)

[bookmark: ZEqnNum980414]		
where 

[bookmark: ZEqnNum470408]		
Furthermore, Eq.  can be rewritten as

[bookmark: ZEqnNum615228]		







		In our model, there are two termination channels whose probability fluxes are expressed perfectly in Eq. . The first term on the right-hand side shows the probability from the state  directly back to the burst termination state  so that the burst ends. And the second term reflects that the probability flux is first from the state  to state  and then burst terminates at state . Therefore,  is the success probability of burst termination. Besides,  can be expressed as

		




which shows the probability flux from state  to state  first and then back to the state , implying a new mRNA is generated. Thus,  is the failure probability of burst termination. And the MBS is given by

[bookmark: ZEqnNum737036]		
2. Dwell time, cycle time and burst frequency
Next, we derive analytical expressions for dwell time and cycle time. First, we calculate the dwell time in each state. Note that the cycle time is equal to the sum of dwell time in all the states.



Following the above analysis, we first neglect the dwell time in state  and then compute the dwell time in state . Subsequently, the dwell time in the state  can be calculated separately (Figure ST3). 
[image: ]
[bookmark: SIFig7]Figure ST3. Schematic for the transition between discrete states. The notations have the same meaning as in Figure ST2.

Based on the discussion of burst size in the previous subsection, the marginal survival probability for time  in Eq.  is 

[bookmark: ZEqnNum245312]		




where  is the exit time from state . For simplicity, we denote  as .

By using Eq.  and , and by setting , we have 	

		


Thus, the survival probability functions at  and  states equal

[bookmark: ZEqnNum637452]		
where

[bookmark: ZEqnNum745676]		


According to the relationship between PDF and survival probability and using Eq. , the dwell time PDFs  and  are

		


[bookmark: _Hlk129467580][bookmark: _Hlk129467589]Since Eq.  is the solution of Eq. , the PDF of the total ON state dwell time,  (note: the complete expression is ) is given by (referring to Supplemental Figure S2D)

[bookmark: ZEqnNum886097]		
where

[bookmark: ZEqnNum926274]		


The mean ON dwell time  (note: the complete expression is ) can be obtained and the result is

[bookmark: ZEqnNum478630]		





Next, we compute the PDF of dwell time in  state. Owing to the introduction of , the  is a state of the flux that the probability only flows out but does not flow in. By using the same method (the derivation process is omitted here), the dwell time PDF  and  are found to be

		
where 

[bookmark: ZEqnNum598652]		


[bookmark: _Hlk129467830]The total OFF state dwell time PDF  (note: the complete expression is ) is given by (referring to Supplemental Figure S2E)

[bookmark: ZEqnNum973917]		
where

[bookmark: ZEqnNum734086]		


The mean OFF state dwell time  (note: the complete expression is ) is

		




[bookmark: _Hlk129468467]Note that the PDF of cycle time  is the convolution of  in Eq.  and  in Eq. . As such, the  equals (referring to Supplemental Figure S2C)

[bookmark: ZEqnNum472804]		




[bookmark: MTBlankEqn]where , ,  and  are shown in Eq. , ,  and . By complex calculation, the MCT is given by

[bookmark: ZEqnNum229870]		
Finally, the BF is given by

[bookmark: ZEqnNum255353]		

[bookmark: _Hlk148019162]Note that the BF in Eq.  is measured in , meaning how many transcriptional bursts occur in one second.
[bookmark: _Toc129279450][bookmark: _Toc153093784]Power laws for transcriptional bursting kinetics
[bookmark: _Toc129279451][bookmark: _Toc153093785]Binary approximation

[bookmark: _Hlk129462976][bookmark: _Hlk129462124]In the previous section, some rates related to E-P spatial distance are described by a piecewise continuous non-binary Hill function in Eq. . The power  of Hill function brings difficulties to the theoretical calculations of MBS, MDT, MCT, and MTR. For this reason, we consider using a simple function to approximate the Hill function. At the simplest level, we may use a deterministic binary rate for transcriptional burst for approximation. That is, 

[bookmark: ZEqnNum245065]		


Note that we choose  instead of  in Eq.  as the threshold. 




For binary linearization, only the maximum rate  and the minimum rate  are needed. For requirement, we compute  (referring to Supplemental Figure S1C), which is the CDF of  that can be expressed as 

[bookmark: ZEqnNum147402]		


where  is the error function defined as . The Eq.  establish a direct relationship between E-P communication strength and experimental contact probability data. 



In the case that fluctuations in  are much faster compared with the rate of transcription,  may be approximated as 

[bookmark: ZEqnNum588270]		




Then,  and  can be approximated as  and , and 

		





On contrary, if fluctuations in  are much slower, the  and  can be approximated as  and , and

[bookmark: ZEqnNum903577]		
where 

[bookmark: ZEqnNum684134]		


Therefore, the approximations of  and  can be expressed as (referring to Supplemental Figures S5D-E and I-J)

[bookmark: ZEqnNum810192]		
[bookmark: _Toc129279452][bookmark: _Toc153093786]Power laws for transcriptional bursting kinetics

















[bookmark: _Hlk129462182]E-P communication strength  and E-P genomic distance  are two key parameters in our model. Note that  in Eq.  can be regarded as a function of three independent variables ,  and , and may be written as . Therefore, MBS and MCT can be also treated as multivariate functions, denoted by  and , respectively. In order to show the effects of increasing  or  on  and , we calculate derivatives:  and ,  and .
Using Eq. , we know that

		
and

[bookmark: ZEqnNum899581]		









In the following, for the sake of simplicity, we rewrite  as  () when analyzing the effect of  (). Note that the following theoretical derivation is for the case of  (when we consider ) and  (when we consider ). Of course, the corresponding theoretical derivation method is still applicable to cases of other parameter values.
1. Power law in terms of E-P communication strength

[bookmark: _Hlk129463006]The effect of changing  on MBS can be approximated as

[bookmark: ZEqnNum682848]		
where

		

and .

Similarly, the effect of changing  on BF is

[bookmark: ZEqnNum745484]		
where

		

and .







[bookmark: _Hlk129463021]Note that both  and  are positive when the parameters are not extreme. They increase for small  and then quickly decrease to 0 with increasing . Meanwhile, the value of the derivatives changes little (the maximum values are not more than 0.8, Supplemental Figures S5A-C), implying that linear approximation is appropriate for  and  within an appropriate range of .




Assume that we can obtain distribution  when  is greater than a pre-given value, and  where  (Supplemental Figure S1D). We define

[bookmark: ZEqnNum341018]		


which represents the slope of the line of  vs . Then, we obtain the following an approximate linear relation:

[bookmark: ZEqnNum993401]		
which implies that mean burst size obeys the following power law: 

[bookmark: ZEqnNum797491]		
Similarly, burst frequency obeys the following power law: 

[bookmark: ZEqnNum536437]		
2. Power law in terms of E-P genomic distance


Similarly, we can also compute  and , that is,

[bookmark: ZEqnNum525483]		
where

		

and .











Based on Eq. , we know that the monotonicity of  and is opposite that of  and , respectively. Moreover,  and  decrease for small  and then quickly increase to 0 with increasing . Meanwhile, the derivatives value changes little (the minimum values are not less than -0.6, Supplemental Figures S5F-G), implying that linear approximation is appropriate for  and  within an appropriate range of .








Assume that we can obtain distribution  where  is the minimum of  and  (Supplemental Figure S1D). Numerical results indicate that the turning point for the biphasic responses of burst size and burst frequency to  is different. We denote by  and  the  values corresponding to the turning points of burst size and burst frequency respectively. And we define 

		



which represents the slope of the line of  vs . Then, we obtain the following approximate linear relation when 

		
which implies that mean burst size obeys the following power law: 

[bookmark: ZEqnNum284261]		

For , burst frequency obeys the following power law: 

[bookmark: ZEqnNum677430]		
Numerical simulations including analysis of experimental data have verified these power-law behaviors, referring to Supplemental Figure S6.
[bookmark: _Toc96337943][bookmark: _Toc153093787]E-P communication mainly modulates burst frequency 
In order to theoretically investigate which of burst size and burst frequency is more affected than the other by E-P communication, we consider the ratio

[bookmark: ZEqnNum710024]		


Note that for enhancer deletion, we have . In this case, the transcriptional burst rates are always the minimums and are independent of E-P spatial distance . Then, Eq.  can be written as 

[bookmark: ZEqnNum184203]                        



In the main text, we have mapped the high-dimensional parameter space into an experimentally measurable and theoretically computable two-dimensional space. The key is that we take ratios  and  as the coordinates in two-dimensional space, where the involved  are defined in Eq. . 
[bookmark: _E-P_communication_mainly][bookmark: _Toc129279454][bookmark: _Toc153093788]Explanation of mutual information 


We find the  value is in general small. This may be because of the following three reasons. First, our model only considers one E-P pair, but in the real organisms, multiple pairs can be formed. And multiple genes or multipair E-P communication generally transduce more information than a single E-P communication (30). Second, multiple output distributions such as burst size distribution and cycle time distribution make it possible to separately measure the amount of the information transduced from the E-P communication signal to outcome distributions. This would lead to smaller  than calculating the mutual information between the input distribution and the gene expression distribution that integrates BS’s and CT’s information. The third possible reason is that the timescale difference between the upstream and the downstream influences the size of mutual information, e.g., if the upstream motion is much faster than the downstream but the information arriving at the downstream is the average, the upstream and the downstream are independent and the mutual information between them is zero. However, the smaller mutual information does not mean that E-P communication is meaningless but may reflect the robustness of E-P communication.
[bookmark: _Toc153093789]Biologically reasonable setting of model parameter values 
Drosophila, one of the intensively studied organisms in the biological field, serves as a test system to explore cellular processes including transcriptional bursting. To investigate the power of our model, it is needed to discuss how the model parameters to fit experimental conditions.
1. Enhancer and promoter lengths 
Enhancers and promoters are regulatory elements in transcriptional activation and bursting, and their lengths are highly variable in different organisms or genes. 
The length of an enhancer can vary from about 50 bp to 1.5 kbp (31) and typically, the metazoan enhancer is ~500 bp (32). For example, in Drosophila embryo, the rhomboid (rho) enhancer is 300 bp in length, the brinker (brk) and vein (vn) enhancers are 500 bp in length (32) and the enhancer of lab gene contains a 550 bp fragment (33). Each enhancer contains specific motifs and multiple binding sites for TFs, and these motifs assemble within a ~300 bp core domain (32). Therefore, we stipulate that the enhancer length is 300 bp in simulations.
Promoters can be divided into peaked and broad promoters based on their widths. And promoter length is also highly variable. In Drosophila, the median width of broad promoters is 162 bp (34). An experimental program obtained 422 kbp promoter sequences from 2424 genes in Drosophila (35), and then we can calculate that one promoter is about 174 bp in length. Thus, we assume the promoter length is 170 bp in simulations. 
The length of DNA around a nucleosome is about 167 bp, which is approximate to that of a promoter. In contrast, the length of the linker DNA is more variable, ranging from 10 bp to 90 bp (36, 37). Thus, the length of DNA in one nucleosome plus the length of the linker DNA at both sides of the nucleosome is approximately equal to that of the enhancer. Overall, we can use one nucleosome indicates an enhancer or a promoter.
2. E-P genomic distance and the number of monomers


Along the linear genome, the distances between the enhancers and their cognate promoters vary greatly. In Drosophila, this distance can be more than 100 kbp. The median distance is 10 kbp and the most possible distance of an E-P pair is 5 kbp (38). The distances from more than 70% of enhancers to target transcriptional start sites do not exceed 20 kbp. Therefore, we set the total genome length  as 20 kbp in simulations. And the E-P genomic distance is set to be 10 kbp by default. When considering the effect of E-P genomic distance on transcriptional bursting, we let the E-P genomic distance increase from 1 kbp to 20 kbp. In simulations, we assume that one monomer represents a nucleosome (~200 bp). Thus, the number of monomers  is 100.
3. Monomer diffusion coefficient















The Boltzmann constant equals  and we set temperature  as  (room temperature). Thus, . Owing to the Einstein relation  and the fact that the E-P spatial distance PDF is affected by the product of  and , we may not care about the respective values of  and . We set the monomer diffusion coefficient of DNA as  and thus the friction coefficient is. Of course, for  and , we can set different values, but  must be guaranteed. It is worth noting that the size of  affects the timescale of upstream chromatin motion.
4. Spring coefficient for successive monomers and E-P communication strength












We set the spring coefficient for successive monomers is . In Drosophila embryos (39), the difference between the E-P distances of different experiments can reach up to . The E-P interaction coefficient  may change in the range of , so we can study the effects of distinct  on bursting kinetics. Note that  means that there is no communication between enhancer and promoter. Also, it is unnecessary to consider the case of larger  () because the bursting dynamics do not change with the increase  when . The  is set to be  by default.
5. Hill function






The Hill coefficient  measures ultra-sensitivity. In biology, the  usually changes from 2 to 5 (40, 41). We fix  for the studies in the main text. The increase of  makes the Hill function closer to the binary function, which leads to the better approximation effect (Figure S9). The E-P encounter distance is  and approximately equals to  in (42). 




E-P communication or E-P proximity is necessary for transcriptional bursting. The E-P distance is about  in bursting (39, 43-45). When E-P spatial distance is larger than , the burst rates tend to the minimum. Considering this, we assume the half-value distance of burst rates is , and thus the rates drop to the minimum around . 
6. Gene states switching rates

In Drosophila, the burst duration is about 10-20 minutes (46-49). The sm-FISH has shown that in Drosophila gap genes, the mRNA is transcribed with the average residence time  and the gene is not expressed with a relatively longer lifetime.  














In Section C, we analytically showed that the OFF-state dwell time is . For simplicity, we assume that the relationship between  and  is multiple (17), e.g., . Thus, the OFF-state dwell time is . We can assume that the fluctuating range of the transcriptional initial rate is from  to . Due to the deep inactive state , the transition rates between  and  are smaller than those between  and . We set  and .







If we set , the ON-state dwell time can be theoretically reduced to  . We set the value of  as . Because the paused Pol II is more stable (10, 11), we suppose  and set , . 




The promoter-proximal pausing timescale is about a minute level (50). We assume that the fluctuating range of the Pol II pause release rate is from  to . In addition, we assume that the fluctuating range of the Pol II recruitment rate is from  to 
7. Transcriptional elongation






DNAs are transcribed at a speed of about (51). Many methods have measured that in Drosophila, the elongation rate is , i.e.,  (52-55). In addition, recent studies have suggested that in the Drosophila embryo, the Pol II elongation rate is (56), approximately twice as the previously estimated value. These facts indicate that the rate of elongation is variable in different developmental stages. For simplicity, we consider that the Pol II elongation rate  is about . 







In Drosophila, the size of the averagely predicted mRNA transcripts is 3058 bp (57). We let the gene body’s length  be roughly 3000 bp. Therefore, the transcriptional elongation time  is about . Note that the  here is different from genome length .  is the length of the gene to be transcribed after the pause release of the Pol II, which is independent of  in simulations.
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