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Supplemental Figures 
 

 
Supplemental Figure S1. Explanation of the j(l) indexing as a function of the query locus 𝑙, for 
one trajectory. The best-fit states in the HMM consist of a pair of haplotype labels at each locus 
loci 𝑙 = 	 {1,2,⋯ , 𝐿}: these are the names of the reference haplotypes that best match the query 
SNPs over certain genomic tracts, and the trajectory is the sequence of all such pairs of haplotype 
labels, 𝒯 =	 {𝑗(𝑙), 𝑘(𝑙)}!"#$ .  
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Supplemental Figure S2. Individual-in-database study: Plot of the distribution of the number of 
individuals in the best-fit trajectory set for the replicate simulations where the query individual 
is present in the reference database, as a function of the mutation rate (see Supplemental 
Results for details). Note that only the bottom of the boxplot for the mutation rate = 0.3 case 
reaches 1 (which is the unique identification scenario) whereas the higher mutation rates have 
no instances where the correct individual is uniquely found. 
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Supplemental Figure S3. Contamination study: Plot of the distribution of the number of 
individuals in the best-fit trajectory set for the replicate simulations (error rate = 0.0) where the 
query individual is present in the reference database, as a function of the replacement rate in the 
contamination study (see Supplemental Results for details). Note that a unique and correct 
identification corresponds to the overlap of the bars with a y-axis value of 1.  
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Supplemental Figure S4. Best-fit genotypic trajectories from PLIGHT_Exact for the diploid 
mosaic genome of HG00360+HG00342 constructed across 30 SNPs each for Chromosome 21 
(corresponding results for Chromosomes 1 and 2 in Figures 3A-B). The composition of the best-
fit pair of haplotypes at each locus is depicted by two yellow tags, one below and one above the 
red dots. 
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Supplemental Figure S5. Best-fit genotypic trajectories from PLIGHT_Exact for the diploid 
mosaic genome of HG00360+HG00342 constructed across 30 SNPs each for chromosome with 
recombination rate = 1.0 cM/Mb: (A) Chromosome 1; (B) Chromosome 2; (C) Chromosome 21. 
The composition of the best-fit pair of haplotypes at each locus is depicted by two yellow tags, 
one below and one above the red dots. 
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Supplemental Figure S6. Results for the PLIGHT_Truncated algorithm applied to the same query 
SNP set as for Figure 3. (A) Fraction of the full matrix size at each step (i.e. SNP) in the HMM 
sequence, for a final truncation factor of f = 0.005. (B) Fraction of the full matrix size at each step 
(i.e. SNP) in the HMM sequence, for a final truncation factor of f = 0.02. (C) Trajectory for 
Chromosome 2, shown to illustrate a case where truncation results in different trajectories 
relative to the exact case (compare to Figure 3B). The composition of the best-fit pair of 
haplotypes at each locus is depicted by two yellow tags, one below and one above the red dots. 
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Supplemental Figure S7. Consensus genotypic trajectories from PLIGHT_Iterative for the diploid 
mosaic genome of HG00360+HG00342 constructed across 30 SNPs in Chromosome 1, where the 
consensus score is evaluated by weighting the haplotypes in each trajectory in proportion to their 
occurrence across all three chromosomes. The composition of the best-fit pair of haplotypes at 
each locus is depicted by two yellow tags, one below and one above the red dots. (A) n%&'( = 20, 
replicate 2; (B) n%&'( = 30, replicate 2. Shown at the top of each panel are the most frequent 
haplotypes within each segment indicated. The corresponding first replicates are shown in Figure 
4 of the main manuscript. 
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Supplemental Figure S8. Consensus genotypic trajectories from PLIGHT_Iterative for the diploid 
mosaic genome of HG00360+HG00342 constructed across 30 SNPs in Chromosome 21, where 
the consensus score is evaluated by weighting the haplotypes in each trajectory in proportion to 
their occurrence across all three chromosomes. The composition of the best-fit pair of haplotypes 
at each locus is depicted by two yellow tags, one below and one above the red dots. (A) n%&'( =
20, replicate 1; (B) n%&'( = 30, replicate 1. Shown at the top of each panel are the most frequent 
haplotypes within each segment indicated. The corresponding first replicates are shown in Figure 
4 of the main manuscript. Panel A is an example of a successful identification of the two 
component individuals, while Panel B shows a case where only one of the two individuals is 
found. 
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Supplemental Figure S9. Histograms of the deviation values from the true PRS scores for the 
Height GWAS analysis, shown for both inferred trajectories and background individuals. (A) 
Results for Chromosome 3 (red = Background PRS - True PRS, blue = Trajectory PRS - True PRS); 
(B) Results for Chromosome 6 (red = Background PRS - True PRS, blue dashed line = Trajectory 
PRS - True PRS). 
  

A B

0.0

2.5

5.0

7.5

−20 −10 0 10
Deviation from True PRS

co
un

t PRS
Background
Trajectory



 17 

Supplemental Figure S10. Schematic of the metrics used in the sanitization scheme. In green is 
shown an example of a set of best-fit parallel trajectories. At locus 𝑙 = 2, the figure shows 
examples of the identified haplotype pairs for this particular set of trajectories. On the left, the 
figure includes an explanation of how the unique haplotype pairs are counted, as wells as how 
the entropy across individuals per SNP is calculated at a particular locus. The figure also includes 
a marking of the region of the smallest number of unique haplotype pairs, which is then used in 
the sanitization procedure outlined in the paper.  
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Supplemental Figure S11. Plot of the total entropy of individuals across all trajectories (𝑆)*+  
defined in the main manuscript) for each of 10 independent query SNP sets, for the two different 
sanitization strategies. The entropy is plotted as a function of the number of SNPs removed, 
which varies from run to run. 
  

Sanitization_type MAF PLIGHT

3

4

5

6

5 10 15 20
SNP

En
tro
py

2
3
4
5

5 10
SNP

En
tro
py

5.4

5.6

5.8

6.0

2 4 6
SNP

En
tro
py

2
3
4
5
6

5 10 15 20
SNP

En
tro
py

3.5
4.0
4.5
5.0
5.5
6.0

5 10 15
SNP

En
tro
py

4.0

4.5

5.0

5.5

6.0

5 10
SNP

En
tro
py

4

5

6

2.5 5.0 7.5 10.0 12.5
SNP

En
tro
py

5.7
5.8
5.9
6.0
6.1

2 4 6 8
SNP

En
tro
py

2
3
4
5
6

4 8 12 16
SNP

En
tro
py

4.0
4.5
5.0
5.5
6.0

2.5 5.0 7.5 10.0
SNP

En
tro
py



 19 

Supplemental Figure S12. Plot of the maximum probability of finding any of the source 
individuals in all trajectories (𝑃,-./01234 defined in the main manuscript) for each of 7 independent 
query SNP sets, for the two different sanitization strategies. 10 sets were run originally but 3 of 
the runs did not find the underlying source individuals. The probability is plotted as a function of 
the number of SNPs removed, which varies from run to run. 
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Supplemental Figure S13. Plot of the per-SNP entropy for those SNPs containing any of the 
source individuals in all trajectories (𝑆5426/75(𝑖) defined in the main manuscript) for each of 7 
independent query SNP sets, as a function of the two different sanitization strategies. 10 sets 
were run originally but 3 of the runs did not find the underlying source individuals. All the per-
SNP entropies are grouped together according to the sanitization strategy employed in this figure 
(see Supplemental Figure S12 for all the removed SNPs treated separately). P-values are shown 
for the comparison of means between the two distributions based on the Wilcoxon two-sample 
test. 
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Supplemental Figure S14. Plot of the per-SNP entropy for those SNPs containing any of the 
source individuals in all trajectories (𝑆5426/75(𝑖) defined in the main manuscript) for each of 7 
independent query SNP sets, as a function of the individual SNPs removed. 10 sets were run 
originally but 3 of the runs did not find the underlying source individuals.  
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Supplemental Files 
Supplemental File S1. This file reports the results of the contamination analysis, for the 
different mutation rates reported in Table 2 of the main manuscript and for the two 
populations used for the contamination simulation: (a) a “General” population where 
contamination was by samples randomly selected from across the 1000 Genomes cohort and 
(b) a “CDX” population where contamination was by samples randomly selected from the CDX 
population specifically. For each mutation rate, we report: (1) The minimum number of SNPs 
required for correct identification, in all runs (out of a maximum of 30) where the correct 
source individual was found; (2) The difference in the log probability of the observed SNPs 
between the HMM model and an independent SNP model with genotype frequencies 
(!08(5!"")6!08(5#$)

7%&'(
 defined in the main text), in all runs (out of a maximum of 30) where the 

correct source individual was found; (3) The average minimum number of SNPs and the 
standard deviation (using the numbers quoted above); and (4)  The average difference in the 
log probability and the standard deviation (using the numbers quoted above).  
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Supplemental Tables 
Supplemental Table S1. Table of conditional probabilities for the observed genotypes 	
𝐺;,!  based on the sum of two reference haplotypes, 	
𝑍=(!),!
(#) + 𝑍>(!),!

(?) , as a function of the mutation rate per haplotype 𝜆. 
  𝐺;,!   

0 1 2 
 0 (1 − 𝜆)? 2𝜆(1 − 𝜆) 𝜆? 
𝑍=(!),!
(#) + 𝑍>(!),!

(?)  1 𝜆(1 − 𝜆) 𝜆? + (1 − 𝜆)? 𝜆(1 − 𝜆) 

  2 𝜆? 2𝜆(1 − 𝜆) (1 − 𝜆)? 
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Supplemental Table S2. PRS matching scores for the true query genome to the best-fit mosaic 
trajectories for the simulated mosaic HG00360 + HG00342 SNPs across the regions of 
chromosomes ranging from the first observed SNP to the last observed SNP. Corresponding 
matching scores for the true sample to the background genomes are shown in parentheses. Four 
different cosine similarity scores are chosen with the aim of elucidating potentially subtle 
differences in the matching depending on the choice of phenotypes or method of averaging: (1) 
ALL = Cosine similarity of the true sample score relative to the mean score, for all traits; (2) > 1 
SNP = Cosine similarity of the true sample score relative to the mean score, for all non-zero traits 
with more than one GWAS SNP; (3) PRS > 2 = Cosine similarity of the true sample score relative 
to the mean score, for all non-zero traits where the absolute value of the Z-score of the true PRS  
> 2; (4) Compare, then average = Cosine similarity of the true sample score relative to the score 
of each trajectory, subsequently  averaged, for all traits. Non-zero traits are those for which the 
true sample has a non-zero PRS. 

Similarity score Chromosome 1 Chromosome 2 Chromosome 21 
ALL: Best-fit mosaics (background 
individuals) 

0.9983 (0.9982) 
for 343 non-zero 
traits 

0.9694 (0.8575) 
for 225 non-zero 
traits 

0.9213 (0.9478) 
for 131 non-zero 
traits 

> 1 SNP: Best-fit mosaics 
(background individuals) 

0.9288 (0.7637) 
for 197 traits 

0.9111 (0.7824) 
for 93 traits 

0.9517 (0.9526) 
for 53 traits 

PRS > 2: Best-fit mosaics (the 
background individuals were used 
to calculate the Z-scores) 

0.8143 for 12 
traits 

0.7683 for 14 
traits 

0.9712 for 17 
traits 

Compare, then average: Best-fit 
mosaics (background individuals) 

0.9978 (0.7113) 0.9276 (0.7811) 0.8961 (0.8402) 
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Supplemental Table S3. PRS matching scores for the true query genome to the best-fit mosaic 
trajectories for 30 and 90 environmental sample SNPs across the regions of chromosomes 
ranging from the first observed SNP to the last observed SNP. Corresponding matching scores for 
the true sample to the background genomes are shown in parentheses. Four different cosine 
similarity scores are chosen with the aim of elucidating potentially subtle differences in the 
matching depending on the choice of phenotypes or method of averaging: (1) ALL = Cosine 
similarity of the true sample score relative to the mean score, for all traits; (2) > 1 SNP = Cosine 
similarity of the true sample score relative to the mean score, for all non-zero traits with more 
than one GWAS SNP; (3) PRS > 2 = Cosine similarity of the true sample score relative to the mean 
score, for all non-zero traits where the absolute value of the Z-score of the true PRS  > 2; (4) 
Compare, then average = Cosine similarity of the true sample score relative to the score of each 
trajectory, subsequently  averaged, for all traits. Non-zero traits are those for which the true 
sample has a non-zero PRS. 

Cosine similarity metric Chromosome 3 Chromosome 6 
ALL: Best-fit mosaics (background 
individuals) 

30-SNP-case: 0.82 
(0.98) for 569 non-
zero traits 

30-SNP-case: 0.96 
(0.96) for 668 non-zero 
traits 

90-SNP-case: 0.97 
(0.97) for 587 non-
zero traits 

90-SNP-case: 0.93 
(0.96) for 672 non-zero 
traits 

> 1 SNP: Best-fit mosaics 
(background individuals) 

30-SNP-case: -0.03 
(0.9996) for 314 traits 

30-SNP-case: 0.981 
(0.997) for 380 traits 

90-SNP-case: 0.9997 
(0.9995) for 320 traits 

90-SNP-case: 0.995 
(0.997) for 384 traits 

PRS > 2: Best-fit mosaics (the 
background individuals were used 
to calculate the Z-scores) 

30-SNP-case: 0.61 for 
52 traits 

30-SNP-case: -0.39 for 
63 traits 

90-SNP-case: 0.46 for 
58 traits 

90-SNP-case: -0.34 for 
61 traits 

Compare, then average: Best-fit 
mosaics (background individuals) 

30-SNP-case: 0.82 
(0.90) 

30-SNP-case: 0.48 
(0.73) 

90-SNP-case: 0.96 
(0.90) 

90-SNP-case: 0.94 
(0.75) 
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Supplemental Methods 
Simulation of the degree of correlation of randomly selected SNPs.  
We have carried out an analysis into how often SNPs may be expected to be correlated even in 
the specific case of a random selection across a chromosome. We simply made a random 
selection of N SNPs across a chromosome out of all possible ones, and then used the program 
LDlinkR (Myers et al. 2020) (https://github.com/CBIIT/LDlinkR) to calculate the pairwise LD for 
the selected SNPs using the (default) 1000 Genomes (The 1000 Genomes Project Consortium 
2015) populations. We ran 1,000 simulations of this process, calculating linkage disequilibrium 
(LD) under 5 superpopulations, "AFR","AMR","EAS","EUR","SAS", and identifying the number of 
times at least one pair of SNPs occurs for which R2 > 0.5. That is, if a single pair occurs for a 
single superpopulation, we count it as a score of 1.  
 
Li-Stephens model and associated biological parameters 
For clarity, we summarize the primary aspects of the Li-Stephens model as applicable to the work 
herein. Let 𝐺; = >𝐺;,!?!"#

$
 be the genotypes of a query individual 𝑞, observed at SNP loci 𝑙 =

{1,2,⋯ , 𝐿}. The probability of observing such an individual given a space of reference haplotypes 
𝐻 =	 >𝑍=,!?!"#;="#

!"$)*+;="7 (𝐿A4B = total number of genotyped sites in the reference genomes, 𝑁 = total 

number of haplotypes in the reference database) is: 
 
𝑃C𝐺;D𝐻E = 	∑ 𝑃G𝐺;H𝑍=

(#), 𝑍>
(?)I. 𝑃G𝑍=

(#), 𝑍>
(?)H𝐻IC,

(.),C0
(1)      (S1) 

 
where the set of all possible haplotypes at the observed loci on the two chromosomes is given 

by 𝑍=
(D) = K𝑍=(!),!

(D) L
!"#

$
, with 𝑍=(!),!

(D"#,?) being the haplotype at position 𝑙, and 𝑗 being the index of the 

sampled haplotype. We treat the haplotype index 𝑗(𝑙) as a  function of 𝑙, as it is possible for the 
choice of reference haplotype to be different at each locus; that is, in the haplotype matching 
process, recombination between reference haplotypes may occur from one observed locus to 
the next (see Supplemental Fig. S1). The second subscript explicitly indicates that, for reference 
haplotype 𝑗(𝑙), we select the genotype at locus 𝑙.  
 The assumption in the current iteration of the algorithm is that the observed genotypes 
and the reference haplotypes are registered with respect to the same, linear reference genome. 
This enables a simpler matching of reference haplotypes to observed genotypes. For data 
structures such as personal genomes and graph genomes, additional genotype matching 
strategies would need to be incorporated, but the conceptual framework of searching through 
recombining haplotypes would be the same. In general, the set of genotyped sites does not have 
to perfectly overlap with the set of reference haplotype sites because of rare SNPs in an 
individual’s genotype or differences in genotyping arrays. However, for the purposes of this study 
we only consider genotyped sites that overlap with those of the reference haplotypes, especially 
given our interest in determining the identification power of common SNPs. In case of the 
presence of structural variants overlapping SNP loci, we allow for missing loci in any of the 
reference haplotypes. We thus consider the reference haplotypes as providing the complete 
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search space, especially in light of the constantly growing genetic databases available for 
comparison. We avoid making explicit assumptions of population membership and statistics for 
the query individual with the belief that, beyond the implicit assumptions of the chosen reference 
set, this will enable more unbiased estimates of kinship and genotypic similarity.  
 

𝑃G𝑍=
(#), 𝑍>

(?)H𝐻I contains information on the “trajectories” through haplotype space that 
emerge from the reference set: it is the probability of obtaining a given set of haplotype 
observations at all the query loci. In general, this is not a simple measure of the frequencies of 
entire reference haplotypes (unless the query genotype is known to be in the reference set) due 
to the possibility of recombination. Recombination is incorporated into the analysis in the 
expressions for the transition probabilities from one query site to the next. Using results of Li and 
Stephens (Li and Stephens 2003) and Marchini et al (Marchini et al. 2007), we have 

 
𝑃G𝑍=

(#), 𝑍>
(?)H𝐻I = 𝑃 G𝑍=(#),#

(#) , 𝑍>(#),#
(?) H𝐻I∏ 𝑃 GK𝑍=(!),!

(#) , 𝑍>(!),!
(?) L → K𝑍=(!E#),!E#

(#) , 𝑍>(!E#),!E#
(?) L H𝐻I$6#

!"#  
            (S2) 
 
where 𝑃 G𝑍=(#),#

(#) , 𝑍>(#),#
(?) H𝐻I is the probability of observing a given set of haplotypes at the first 

query locus. This is often drawn from a uniform distribution across all haplotype pairs, but could 
be modified if prior knowledge on the membership of the query individual in a particular 
subpopulation is available. All terms are written with the conditional dependence on the set of 
reference haplotypes, 𝐻, made explicit. The transition from one site to the next is given by  
 
𝑃 GK𝑍=(!),!

(#) , 𝑍>(!),!
(?) L → K𝑍=(!E#),!E#

(#) , 𝑍>(!E#),!E#
(?) L H𝐻I =
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	𝑖𝑓	𝑏𝑜𝑡ℎ	ℎ𝑎𝑝𝑙𝑜𝑡𝑦𝑝𝑒𝑠	𝑐ℎ𝑎𝑛𝑔𝑒

  (S3) 

with 𝜌! = 4𝑁4𝑟!, 𝑟!  being the per generation genetic distance between the sites 𝑙 and 𝑙 + 1. The 
exponential dependence arises from the assumption of a Poisson process of recombination at 
any position in the genome, while the division by 𝑁 in the exponent ensures that the probability 
of a recombination event drops exponentially with growth in the reference haplotype database. 
The latter idea ensures that the number of truly novel haplotypes reaches a plateau, i.e. there is 
a stable set of possible haplotypes in a population.  In terms of the recombination rate 𝑐!  and the 
physical distance between adjacent loci 𝑑!→!E#, 𝑟! = 𝑐! × 𝑑!→!E#. 𝑁 is the number of reference 
haplotypes, and 𝑁4  is the effective population size, taken to be 11,418 (Li and Stephens 2003; 
Marchini et al. 2007; The International HapMap Consortium 2003).  
 In our methods, the linear model 𝜌! = 4𝑁4𝑐!𝑑!→!E# is included as the default. However, 
we allow for the inclusion of a user-defined model of recombination in its place. For example, if 
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there is a known recombination hotspot between two adjacent query sites, it would alter the 
probability of transitioning between reference haplotypes in the search space, and thus impact 
the best-fit haplotypes calculated by the method. The user can explicitly include a vector of 
recombination values to be used for the 𝐿 − 1 intervals between query sites.  
 Another essential aspect of Equation S3 is the implicit assumption of uniform transition 
probabilities. That is, in its current form, Equation S3 does not discriminate between transitions 
from one haplotype to any other. If, on the other hand, a model is to be constructed where 
different subgroups have distinct recombination rates at particular locations and/or are assumed 
to impacted by assortative mating then transition probabilities would be conditional based on 
membership in these subgroups. In this iteration of our model, we do not provide a framework 
of this nature, but such an update would simply require the inclusion of appropriate bias terms 
conditional on the memberships of the initial and final haplotypes. However, we wish to 
emphasize that maintaining uniform transition probabilities helps prevent biased interpretations 
of ethnic group membership and isolation, and allows for the broad intermixing of haplotypes 
known to have occurred throughout human history (Narasimhan et al. 2019). 

The other term in Equation S1, 𝑃G𝐺;H𝑍=
(#), 𝑍>

(?)I, quantifies the probability of observing 
the query genotypes given a particular set of underlying haplotypes. This probability helps 
constrain the haplotypes that are possible given the observed genotypes, allowing for the case 
where mutations or genotyping errors occur (as considered in IMPUTE(Howie et al. 2009)).  
𝑃G𝐺;H𝑍=

(#), 𝑍>
(?)I = ∏ 𝑃 G𝐺;,!H𝑍=(!),!

(#) , 𝑍>(!),!
(?) I$

!"# = ∏ 𝑃 G𝑍=(!),!
(#) + 𝑍>(!),!

(?) → 𝐺;,!I$
!"#   (S4) 

with 𝑃 G𝑍=(!),!
(#) + 𝑍>(!),!

(?) → 𝐺;,!I determined by the number of sites that require mutation to 
match the observed genotypes. We follow the suggestion of the authors of IMPUTE to consider 
a background rate of base pair mutation 𝜃 that translates into a mutation rate per haplotype of 
𝜆 = 	 G

?(7E	G)
 under the assumption of a neutral coalescent tree for 𝑁 haplotypes(Li and Stephens 

2003; Marchini et al. 2007). However, it is possible for the user to explicitly augment the 
background rate 𝜃 with contributions from genotyping error, or to ignore the mutation rate 
altogether and set 𝜃 = 	 ?7I

#6?I
 such that 𝜆 is equal to the known genotyping error. Thus, our code 

allows for either 𝜃 (the thetamutationrate parameter) or 𝜆  (the lambdamutationrate 
parameter) to be set. The values of 𝑃 G𝑍=(!),!

(#) + 𝑍>(!),!
(?) → 𝐺;,!I dependent on 𝜆 are shown in 

Supplemental Table S1. 
 
To summarize, the aim is to figure out the contribution to the total probability of each of 

the haplotype combinations, by estimating 𝑃G𝐺;H𝑍=
(#), 𝑍>

(?)I. 𝑃G𝑍=
(#), 𝑍>

(?)H𝐻I for all haplotype 
trajectories, and to maximize this probability. 
 
Hidden Markov Model optimization 
The problem of identifying the best-fit combination of haplotypes is well-suited to the framework 
of Hidden Markov models (HMMs) given the traditional treatment of the genome as a linear 
sequence of base pairs. In this understanding, meiotic recombination between loci does not 
occur between distant locations of a chromosome (as may occur, hypothetically, due to 
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consistent 3D folding of the chromosomes within the nucleus), but has a certain probability of 
occurring at every intermediate site between any pair of loci. Usually, the greater the distance 
between the loci, the higher is the probability that recombination will have occurred in an 
ancestor of the query genome, though the probability is not necessarily uniform across every 
site. It then becomes easy to associate HMM emission probabilities at genomic sites with 
mutation rates and HMM transition probabilities between latent haplotypes with recombination 
rates. Furthermore, in the above expressions first-order Markovian behavior is assumed, and the 
observed output genotype is seen to depend only on the underlying haplotypes at that site alone 
(so-called output independence). This constrains the type of HMMs considered here, but leaves 
open interesting future applications where such assumptions are relaxed. 
 Accordingly, the problem of identifying the best trajectory through haplotype space can 
be carried out using the Viterbi algorithm (Viterbi 1967). This method solves the problem of 
maximizing the probability of the trajectories through the latent space in time 𝑂((𝑁 × 𝑁)?𝐿), 
where 𝑁 is the number of possible haploid states, i.e. the number of reference haplotypes, 𝑁 × 𝑁 
is the corresponding number of diploid states, and 𝐿 is the number of observed loci: 

𝑀𝑜𝑠𝑡	𝑙𝑖𝑘𝑒𝑙𝑦	𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 = 	 argmax
C,
(.),C0

(1)∈KC,(3),3
(.,1)L

36.;,6.

368;,6&
𝑃G𝐺;H𝑍=

(#), 𝑍>
(?)I. 𝑃G𝑍=

(#), 𝑍>
(?)H𝐻I 

= argmax
C,
(.),C0

(1)∈KC,(3),3
(.,1)L

36.;,6.

368;,6&
𝑃G𝐺; , 𝑍=

(#), 𝑍>
(?)H𝐻I	       (S5) 

where expressions for the two probabilities are given in Equations S2, S3 and S4. 
 The Viterbi algorithm achieves a more efficient solution to the optimization problem in 
Equation S5 than the naïve search by recognizing that the overall optimization problem can be 
separated into separate optimization steps at each query site with the convenient iterative 
scheme: 
 

  𝑃 q>𝐺;,M?M"#
! , K𝑍=(M),M

(#) , 𝑍>(M),M
(?) L

M"#

!6#
, 𝑍=(!),!

(#) , 𝑍>(!),!
(?) r𝐻s = 

𝑃G𝐺;H𝑍=(!),!
(#) , 𝑍>(!),!

(?) , 𝐻I. max
=(!6#),>(!6#)

t
𝑃 q>𝐺;,M?M"#
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, K𝑍=(M),M

(#) , 𝑍>(M),M
(?) L
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!6?
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(?) r𝐻s ×

𝑃G𝑍=(!6#),!6#
(#) → 𝑍=(!),!

(#) , 𝑍>(!6#),!6#
(?) → 𝑍>(!),!

(?) H𝐻I
u 

 
⇒ 𝑣!C𝑗(𝑙), 𝑘(𝑙)E = 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑃𝑟𝑜𝑏G𝐺;,!H𝑍=(!),!

(#) , 𝑍>(!),!
(?) , 𝐻I × 

max
=(!6#),>(!6#)

y𝑣!6#C𝑗(𝑙 − 1), 𝑘(𝑙

− 1)E. 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏G𝑍=(!6#),!6#
(#) → 𝑍=(!),!

(#) , 𝑍>(!6#),!6#
(?) → 𝑍>(!),!

(?) H𝐻I{ 

with 𝑣!C𝑗(𝑙), 𝑘(𝑙)E = 𝑃 q>𝐺;,M?M"#
! , K𝑍=(M),M

(#) , 𝑍>(M),M
(?) L

M"#

!6#
, 𝑍=(!),!

(#) , 𝑍>(!),!
(?) r𝐻s 

            (S6) 
where the algorithm initializes a value of 𝑣#C𝑗(1), 𝑘(1)E and then proceeds to iteratively update 
the probability. The second line of Equation S6 simply provides a clearer conceptual 
understanding of the first line. 
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𝑃 q>𝐺N,M?M"#
! , K𝑍=(M),M

(#) , 𝑍>(M),M
(?) L

M"#

!6#
, 𝑍=(!),!

(#) , 𝑍>(!),!
(?) r𝐻s is the joint probability of the observed 

genotypes at all sites up to and including site 𝑙, and of the reference haplotypes at all sites up to 
site 𝑙 − 1, with the reference haplotypes at site 𝑙 being fixed at 𝑍=(!),!

(#) , 𝑍>(!),!
(?) , and is easily related 

to the argument of the argmax function on the right-hand side of Equation S5. 
 
Matrix methods used in the modified Viterbi algorithm. The probability vectors were encoded as 
Python numpy arrays. Assuming an unbiased transition matrix (Equation S3, no assumed 
subpopulation membership), each argmax calculation in Equation 2 was calculated over an array 
whose elements were updated as follows: 

a. Let log 𝑣!(𝑗, 𝑘) be the log-probability vector (Equation S6). 
b. log 𝑣!(𝑗, 𝑘) is a matrix indexed by every pair of reference haplotypes. This matrix was 

flattened in 1D, keeping only the lower triangle of the matrix. 
c. At each observed genotype locus, initialize log 𝑣!(𝑗, 𝑘) = log 𝐸!

O3(𝑗, 𝑘), the vector of 
precalculated log-emission-probabilities for each pair of reference haplotypes and the 
observed genotype.  

d. For 𝑙 = 1, set log 𝑣#(𝑗, 𝑘) = log P.
#.(=,>)
71

, with the assumption of equal likelihood of all 
reference haplotypes at the first observed locus. 

e. Define 𝑇0* = logS𝑒6
23
& + #644

23
&

7
U and 𝑇0BB = log S#64

4
23
&

7
U (the log probabilities of 

retaining a haplotype and crossing over to another one, respectively; see Equation S3). 
f. Define the matrix ∆(𝑗, 𝑘) 	= log 𝑣!6#(𝑗, 𝑘) + 2𝑇0BB 
g. For every pair of reference haplotypes (𝑗, 𝑘), update all elements in the same row and 

column: ∆(𝑗, . )	+= 	𝑇0* − 𝑇0BB and ∆(. , 𝑘)	+= 	𝑇0* − 𝑇0BB. 
h. Find the maximum log-probability 𝑀(𝑗, 𝑘) = max

N.=
∆(𝑖, 𝑗) and the corresponding 

arguments 𝐵𝑇(𝑗, 𝑘) = argmax
D,R

∆(𝛼, 𝛽), where the last term is the backtrace vector.  

i. Repeat steps (f)-(h) for all haplotype pairs. The matrix ∆(𝑗, 𝑘) is reinitialized every time in 
step (f). 

j. Importantly, we further modified the previous step to include all pairs of haplotypes that 
were within a certain range of the absolute maximum (by default, the cutoff was 
|𝑀(𝑗, 𝑘)| − 0.01 ∗ |𝑀(𝑗, 𝑘)|). We did this as, given the assumed data sparsity, it was likely 
that multiple haplotypes would match exactly or nearly so. Additionally, this looser 
definition of maximization also compensates any rounding-off errors that may cause two 
similar paths to diverge in log-probability. Changing this parameter could also allow the 
user to discover sub-optimal paths. 

k. Update log 𝑣!(𝑗, 𝑘)+= 𝑀(𝑗, 𝑘). 
l. Repeat steps (c)-(k) for every observed genotyped site. 
m. When 𝑙 = 𝐿, the process is terminated by finding 𝑀 = max

D,R
log 𝑣$(𝛼, 𝛽) and 𝐵𝑇 =

𝐴𝑙𝑙	(𝑗, 𝑘)	𝑠𝑢𝑐ℎ	𝑡ℎ𝑎𝑡	|log 𝑣$(𝑗, 𝑘)| 	≥ 	 |𝑀| − 0.01 ∗ |𝑀|. 
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1) Using this terminal set of 𝐵𝑇, the corresponding backtrace values for each selected reference 
haplotype pair are traced all the way back to the first observed locus. This results in a set of 
trajectories that may fork and merge. 

2) Instead of explicitly storing the backtrace vector in RAM, we use the Python package gzip to 
write the backtrace vector for each observed site directly to a gzipped file. We similarly read 
through the gzipped file during the final stage of reading out the best-fit trajectories. 

 
Truncation scheme. In the PLIGHT_Truncated module, at every observed site we truncate the 
possible haplotype states by choosing the top 𝑇 sets of (𝛼, 𝛽) pairs. This scheme was inspired by 
similar techniques employed in the Eagle2 imputation program (Loh et al. 2016). The main 
premise of this approximation is after a certain point, only a fraction of a the total number of 
trajectories will meaningfully contribute to the best-fit states, and allow the retention of only a 
fraction of the total number of states in memory. However, in addition to tracking the 
probabilities and backtrace vectors of these states, we now also need to retain positional indices 
associated with the particular pairs for future look-up (i.e. we need to know the identity of these 
pairs).  
 The module allows the user to set the truncation factor as the fraction of the total number 
of reference haplotype pairs retained in the calculation: 
Truncation factor 𝑓 = 𝑇 G7(7E#)

?
I� = 𝑇 𝑇S0S⁄ ;	𝑇S0S =

7(7E#)
?

    (S7) 
However, we recognize that immediate truncation at the first location would not allow the 
probabilities of the most likely trajectories to build up sufficiently. Therefore, we phase-in the 
truncation by using a linear decrease in the value of 𝑇 until the halfway point: 

𝑇! = �
𝑓𝑙𝑜𝑜𝑟(𝑠𝑙𝑜𝑝𝑒 × (𝑙 − 1) + 𝑇S0S), 𝑓𝑜𝑟	𝑙 ≤ 𝑓𝑙𝑜𝑜𝑟 G$

?
I		

𝑓𝑙𝑜𝑜𝑟(𝑓 × 𝑇S0S), 𝑓𝑜𝑟	𝑙 > 𝑓𝑙𝑜𝑜𝑟 G$
?
I

     (S8) 

where 𝑠𝑙𝑜𝑝𝑒 = 𝑇S0S × (𝑓 − 1) G𝑓𝑙𝑜𝑜𝑟 G
$
?
I − 1I�  and 𝑓𝑙𝑜𝑜𝑟(𝑥) is the rounding down function. 

Furthermore, setting a cutoff on the number of states could possibly arbitrarily remove states 
that have the same probability as the included ones. Accordingly, we soften the truncation by 
including all additional states that have the exact same probability as the final 𝑇!  state. Note that 
this may grow the size of the matrices significantly, if the number of equiprobability or 
degenerate states is large. This may occur for very sparse data. 
 The advantage of the truncation scheme is the reduction of the size of the matrices. To 
maintain this advantage, we had to explicitly calculate the probabilities at the first observed site, 
where the truncation had not been applied yet. This prevents (in the current version of the code) 
the inclusion of missing genotypes. Additionally, the parallelization procedure at the first 
observed site required the chunking up of the haplotype pairs into subgroups the size of 
𝑓𝑙𝑜𝑜𝑟(𝑓 × 𝑇S0S), and running each of these subgroups through parallel matrix calculations. This 
prevented the necessity of having the entire set of haplotype pairs be manipulated in matrices 
simultaneously, which would have defeated the purpose of the truncation process.  
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Imputation of blood tissue sample genotypes 
The blood tissue sample genotypes were phased using the TOPmed Imputation Server(Taliun et 
al. 2021; Das et al. 2016; Fuchsberger et al. 2015). Specifically, we used the TOPmed reference 
panel version r2, with an array build of GRCh37/hg19 for the unphased VCF file; the “rsq Filter” 
was set to “off”; the phasing used “Eagle v2.4”; no “Population” was selected; and we ran the 
server in “Quality Control & Phasing Only” mode. Since, the output of the TOPmed phasing was 
aligned to hg38, we used the LiftoverVcf from Picard tools (Broad Institute) to lift over the 
variants to the hg19 reference, so as to match up with the existing 1000 Genomes-based vcf 
files. 
 
Mosaic genome correspondence and polygenic risk scores 
Correspondence score. Using mosaic genome reconstructions, we assessed the accuracy to which 
we could impute SNPs across the genomic region covered by the observed SNP loci. The accuracy 
metrics included a straightforward calculation of the fraction of SNPs exactly matched in 
genotype dosage, as well as a measure of the degree to which the inferred trajectory matched 
the query genome, with the contribution from each SNP weighted by a function of the genotype 
frequency: 

𝐶𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑐𝑒	𝑠𝑐𝑜𝑟𝑒	𝐶 ≡ 	 #
7%&'

∑ G1 − 𝑝T(𝐺T𝒯)I.
V?6WO(𝒯6O(

:WX

?
7%&'
T"#    (S9) 

𝐶 measures the total correspondence between the set of query individual genotypes, >𝐺T
Y?

T"#

7%&', 

and the set of genotypes for trajectory 𝒯, {𝐺T𝒯}T"#
7%&', where 𝑁/75 is the total number of 

overlapping SNPs defined in the VCFs of the reference database and the query individual between 
the first and last observed SNPs. Next, D𝐺T𝒯 − 𝐺T

YD quantifies the deviation of the genotype dosage 
of 𝒯 from that of the query 𝑄 at SNP position 𝑠, and is subtracted from 2 and divided by 2 to set 
a score scale where 0 corresponds to maximal deviation of 𝒯 from 𝑄 and 1 corresponds to a 
perfect match between the two. Finally, 𝑝T(𝐺T𝒯) is the genotype frequency (as opposed to the 
allele frequency) of the SNP dosage 𝐺T𝒯, which is the probability that trajectory 𝒯 could have a 
given dosage at random based on population occurrence frequencies. The heuristic 
G1 − 𝑝T(𝐺T𝒯)I is therefore a measure of the non-randomness of the trajectory SNP dosage. 𝐶 =
0 when no SNPs match between 𝒯 and 𝑄 and/or the SNPs occurred in the reference population 
at 100% frequency, while 𝐶 ≈ 1 when 𝒯 and 𝑄 agree at every SNP position and the SNPs are 
extremely rare (and so the matching of the two is very likely to be a non-random occurrence). 
 We compared the fraction of correct SNPs and the correspondence scores for our 
trajectories to the equivalent scores calculated on a set of 99 randomly selected genomes in the 
same genomic regions from the 1000 Genomes cohort. 
 
Polygenic risk score calculation. We perform approximate calculations of the linear polygenic 
risk scores (PRSs) based on all SNP associations in the GWAS catalog version 1.0.2 (Buniello et 
al. 2019). We first identify all individuals in the trajectories of each HMM run. We then 
constructed the (previously described) diploid mosaic genome of the query individual based on 
each trajectory. The resulting genotypes are used to calculate PRSs for each phenotype 𝑦 and 
each individual 𝑛 as:  
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𝑃𝑅𝑆(𝑦, 𝑛) ≡ ∑ 𝛽N𝑥N*
A(Z)
N"# ,          (S10) 

    
where 𝛽N = 𝑆𝑖𝑔𝑛𝑒𝑑	𝑒𝑓𝑓𝑒𝑐𝑡	𝑠𝑖𝑧𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑟𝑖𝑠𝑘	𝑎𝑙𝑙𝑒𝑙𝑒	𝑎𝑡	𝑆𝑁𝑃	𝑖,  
𝑥N* ∈ {0,1,2} = 𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑜𝑓	𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙	𝑛	𝑎𝑡	𝑆𝑁𝑃	𝑖,  
and 𝑅(𝑦) = 𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑟𝑖𝑠𝑘	𝑎𝑙𝑙𝑒𝑙𝑒𝑠	𝑓𝑜𝑟	𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒	𝑦.  

The PRS is very approximate in the sense that no SNP filtering was conducted beyond 
those presented in the GWAS catalog, either by p-value or by LD with other associated SNPs. 
However, the aim here is merely to determine whether there are aggregate properties across the 
genome that can be inferred using our approach. We calculated the Pearson’s correlation 
between the PRSs of the true samples and the best-fit mosaic genomes within the regions and 
chromosomes sampled. All traits for which the PRS of the true sample was non-zero (‘non-zero 
traits’) were included. To assess whether the PRS correlations between the true individual and 
inferred mosaic genomes were statistically significant, we sampled a background set of ~100 
individuals from the 1000 Genomes dataset that did not occur in any of the test sets we ran, and 
calculated the PRSs for the non-zero traits.  

We employed several statistical metrics to assess the correspondence in PRSs between 
the query genomes and the best-fit mosaic genomes, relative to the background scores: (1) the 
cosine similarity between the query and mean values of the best-fit scores, compared to the 
mean value of the background scores; (2) the same metric as in (1) but only for traits with more 
than one GWAS SNP in the regions sampled (thus removing one-SNP traits); (3) the same metric 
as in (1) but only for traits where the query PRS had an absolute Z-score > 2 (i.e. traits for which 
the query itself is an outlier relative to the background); and (4) the cosine similarity between 
the query genome and each of the best-fit mosaic genomes, followed by the mean of all the 
cosine similarity values (same for the background).  
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Supplemental Results 
Simulation of the degree of correlation of randomly selected SNPs.  
As described in the Supplemental Methods, the goal of this analysis was to explore the degree 
of SNP correlation that occurs even when randomly sampling SNPs across the entire genome 
(one of the possible cases where PLIGHT would be useful). We tested out the longest 
chromosome, Chromosome 1, and the shortest autosomal chromosome, Chromosome 22, with 
30 randomly selected SNPs, as well as Chromosome 1 with 90 randomly selected SNPs. Shown 
below are the number of SNP pairs found with a linkage disequilibrium (LD) 𝑅? > 0.5, where we 
tested the LD score against 5 superpopulations "AFR","AMR","EAS","EUR","SAS" in the 1000 
Genomes cohort (The 1000 Genomes Project Consortium 2015). It is possible for pairs to be 
counted in the LD analysis for a single superpopulation, or across multiple superpopulations 
(eg., a single SNP pair could be under LD in both the AFR and SAS superpopulations, and this 
would count as two pairs in total). The results are: 
 
Chromosome 1 (the longest chromosome), N = 30 : 41 out of the 1,000 simulations produced a 
pair of correlated SNPs, with 3 cases of 2 pairs being found. 
 
Chromosome 22 (the shortest autosomal chromosome), N = 30 : 31 out of the 1,000 
simulations produced a pair of correlated SNPs, with 1 case of 2 pairs, 3 pairs, 4 pairs and 5 
pairs each being found. 
 
Chromosome 1, N = 90 : 236 out of the 1,000 simulations produced a pair of correlated SNPs, 
with 45 cases of 2 pairs, 14 cases of 3 pairs, 6 cases of 4 pairs and 1 case of 5 pairs being found. 
 
These results indicate that, while a very small number of SNPs randomly selected do not exhibit 
much correlation structure, the degree of correlation goes up with an increase in the number of 
SNPs. The degree would be higher if we allow for more moderate LD (i.e. if we lower the R2 
cutoff to a value below 0.5). In general, given that an attack on privacy would not have to follow 
the random selection process (as discussed in the paper), we foresaw a need for a more general 
model of SNP matching. 
 
Supplement to Section “Identification of individuals known to be within a database”. We 
examine the reasons for the non-monotonic behavior of the 𝑁/75[02243S values in Table 1. We run 
an independent simulation to the one in Table 1, using the same parameters: chose 10 
individuals, one at a time, from the 1000 Genomes cohort; for each individual, ran 40 separate 
SNP selection runs, corresponding to 𝑁/75 ∈ [1,⋯ ,40]; select SNPs according to a Bernoulli 
process with probability 0.003 until we reach the chosen 𝑁/75 value; mutate each SNP’s 
genotype as a function of the mutation rate 𝜆 (according to Supplemental Table S1), and include 
the SNP if the mutated genotype is either heterozygous or homozygous in the alternate allele. 
This time we run simulations up to higher mutation rates: 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. We 
then run PLIGHT_InRef on these query sets. For the runs where PLIGHT_InRef successfully found 
the correct query individual, we count the total number of individuals (including the correct one) 
found in the best-fit trajectories across all 10 query individuals and all SNP numbers as a function 
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of the mutation rate. The results are shown in Supplemental Fig. S2. Given that the metric of 
interest in Table 1 is 𝑁/75[02243S, the number of SNPs needed for both correct and unique 
identification, we can see that the distributions up to 𝜆 = 0.2 are mostly concentrated close to 
1. This implies that there are a large number of runs for low mutation rates that have correctly 
and uniquely identified the query individual. On the other hand, as 𝜆 increases to 0.3, the tail of 
the distribution is at 1, while for 𝜆 > 0.3, there are no instances of correct and unique 
identification. The numbers of runs with correct and unique identification at each mutation rate 
are: 𝜆 = 0.0, 334 runs; 𝜆 = 0.05, 285 runs; 𝜆 = 0.1, 222 runs; 𝜆 = 0.2, 62 runs; 𝜆 = 0.3, 8 runs. 
When 𝑁/75[02243S as the average minimum number of SNPs required for a correct and unique 
identification, we find  
𝑁/75[02243S = 6.8	 ± 	1.5 across 10 individuals, for 𝜆 = 0.0 
𝑁/75[02243S = 8.3	 ± 	2.0 across 10 individuals, for 𝜆 = 0.05 
𝑁/75[02243S = 9.9	 ± 	2.6 across 10 individuals, for 𝜆 = 0.1 
𝑁/75[02243S = 19.7	 ± 	6.1 across 10 individuals, for 𝜆 = 0.2 
𝑁/75[02243S = 27.0	 ± 	13.0 across 5 individuals, for 𝜆 = 0.3 
 
We see that the number is less stable for 𝜆 = 0.3 (where only 5 individuals had the requisite 
identifications), and that the monotonic trend is recovered. 
 
Supplement to Section “Identification of individuals from contaminated samples”. We 
examine the reasons for the non-monotonic behavior of the 𝑁/75[02243S values as a function of the 
replacement rate in the contamination study in Table 2. We run replicate simulations using the 
same methods as described in the main manuscript, except for the fact that we set the error rate 
to be 0.0. The results, shown in Supplemental Fig. S3, indicate that when no possibility of error 
is included in the PLIGHT model, there is a monotonic increase (as a function of the replacement 
rate) in the number of possible individuals who are found along with the correct individuals. In 
other words, there is a steady increase in the difficulty of uniquely picking out the query 
individual. As discussed in the main manuscript, a larger input error rate in the inference allows 
greater leeway in the overlap between the observed SNPs and the reference database 
individuals. This is the reason for the observed increase in the number of unique and correct 
identifications at higher replacement rates. Thus, comparing the results in the main manuscript 
and those in the replicate analysis here, we suggest that the inference process may improve by 
increasing the allowed error in the model. 
 
Supplement to Section “Truncated algorithm”. We ran the same SNP set as in Section “Exact 
search within a reference database of 400 haplotypes” through the truncated algorithm to 
assess the degree of compressibility of the trajectories, with a recombination rate of 0.5 cM/Mb 
and with a search through 200 reference individuals. In interpreting the results, it is worth 
bearing in mind the fact that while the algorithm was set up to slowly phase-in the restriction of 
the number of considered haplotype pairs to the top few, it yet retained a degree of elasticity to 
prevent an abrupt cut-off: all haplotype pairs with the same probability as the last state in the 
imposed cut-off were also included (Supplemental Fig. S6). We ran the calculation for two 
different asymptotic truncation levels, with the truncation factor 𝑓 in Equations S7 and S8 = 0.005 
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and 0.02 (Figs. S6A and S6B). For reference, the fractions of the matrix sizes at each SNP in the 
calculations are shown for 𝑓 = 0.005 (Fig. S6A) and 𝑓 = 0.02 (Fig. S6B). The resultant trajectories 
for Chromosome 1 were identical to the exact algorithm, implying that reducing the number of 
considered trajectories did not impact the search process. For Chromosome 21, the lower 
truncation level of 0.005 resulted in fewer trajectories being included, while the higher truncation 
of 0.02 reproduced the same trajectories as the exact algorithm. Chromosome 2 appeared to be 
less resilient to truncation and produced different results from the exact algorithm (the 
trajectories for 𝑓 = 0.005 are shown in Fig. S6C; compare to Fig. 3B). Note that truncation at later 
SNPs favors the prioritization of HG00360 in the earlier parts of the chromosome, whereas the 
exact algorithm with the same recombination rate removes this individual from the final results. 
The degree to which different trajectories are resilient to truncation is a measure of the degree 
to which the best trajectories separate out from the others. In informatic terms, if the best 
trajectory probabilities (analogous to the energies of physical states) have low entropy 
(analogous to deep, sharp valleys in the energy landscape) trajectory truncation will not impact 
the search; if the entropy is high (broad, shallow valleys in the energy landscape) truncation will 
impact the results. 
 
Supplement to “Predicting genotypes at GWAS loci and polygenic risk score (PRS) 
analysis” 
We construct a query set of 90 SNPs, each within ±2 kb of known GWAS SNPs for the phenotype 
“Height”. This increases the likelihood of LD with GWAS variants. Within these windows, 25 
GWAS variants are found for Chromosome 3 and 26 for Chromosome 6. We ran PLIGHT_Iterative 
with 𝑛NS42 = 20 and 𝑆T8 = 300 on the query sets, and study the resulting 5 and 12 trajectories 
for Chromosomes 3 and 6, respectively. First, we looked at the 22 and 23 GWAS SNPs in 
Chromosomes 3 and 6, respectively, not directly in the query sets and checked how well the 
inferred trajectories matched the unseen query genotypes. For Chromosome 3, the 5 trajectories 
produced {10, 10, 10, 13, 13} matches out of 22 SNPs. We also checked the same SNP sites for 
100 randomly sampled individuals, and ran a Welch’s two-sided, two-sample t-test between the 
two distributions, obtaining a p-value of 0.004. However, a few of the background samples 
matched the GWAS SNPs to a higher degree (16 SNPs out of 22). We therefore looked at the 
consensus across the trajectories and found that the 5 trajectories matched the query genotypes 
perfectly at 9 GWAS SNP sites, and were off by a dosage of 1 at the remaining sites. The 
background individuals had mixed results across all SNP sites. The trajectories for Chromosome 
6 yielded match rates of at most 12 out of 23 and a two-sided, one-sample t-test with respect to 
the background distribution for the same 100 individuals yielded a p-value of 0.56. Many of the 
background individuals did better than 12 out of 22 matches. Thus, the imputation of GWAS SNPs 
did not indicate that the inferred trajectories do better at imputing the GWAS SNPs.  

 We also assessed whether the inferred PRSs are a better match than a background set of 
PRSs from 100 randomly sampled individuals. We consider the statistical significance of the 
deviation from the true sample’s PRS (a Welch’s two-sided, two-sample t-test). The resulting p-
values for the absolute PRS deviations: Chromosome 3 = 0.25, and Chromosome 6 = 0.15. In both 
cases, the trajectory-based PRSs were not significantly closer to the true sample’s PRS than the 
mean of the background PRSs (distributions in Supplemental Fig. S9A-B).  
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Supplement to “Sanitization of SNPs based on Inferred Trajectories” 
We address specific examples of scenarios where published data may be subject to the type of 
sanitization considered in our work. 

1. There are cases where DNA samples from environmental objects may be published, 
such as for DNA from historical objects (eg. ongoing work from co-authors of this paper, 
https://www.nyhistory.org/blogs/extracting-stories-from-19th-century-dna), which may 
also be contaminated with DNA from living individuals. Any such published data can be 
sanitized using the method described.  

2. Second, another possible situation where publication is an issue is the production of 
functional genomics data where a limited number of SNPs may be extracted, such as 
microarray data from targeted sites. 

3. Finally, for nanopore reads, we envisioned using PLIGHT for the case where considerable 
contamination from multiple individuals may obscure the provenance of multiple reads. 
On the other hand, a single read will undoubtedly be derived from a single individual, 
and so it would be worthwhile running the sanitization process on even a single read’s 
SNPs to prevent significant identifying information regarding that individual. 
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