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Supplemental Figures

Haplotype labels as a J(1)=1 J(2)=1 Jj4)=2 JL-3)=2  j(-1)=2 j([L)=2
function of locus j(l), k(l):  k(1)=4 k2)=4 " k4)=3 UOKL-3)=3" KL-1)=N KL)=N
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Supplemental Figure S1. Explanation of the j(1) indexing as a function of the query locus [, for
one trajectory. The best-fit states in the HMM consist of a pair of haplotype labels at each locus
locil = {1,2,---,L}: these are the names of the reference haplotypes that best match the query
SNPs over certain genomic tracts, and the trajectory is the sequence of all such pairs of haplotype
labels, T = {j(), k(D}_,.
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Supplemental Figure S2. Individual-in-database study: Plot of the distribution of the number of
individuals in the best-fit trajectory set for the replicate simulations where the query individual
is present in the reference database, as a function of the mutation rate (see Supplemental
Results for details). Note that only the bottom of the boxplot for the mutation rate = 0.3 case
reaches 1 (which is the unique identification scenario) whereas the higher mutation rates have
no instances where the correct individual is uniquely found.
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Replacement Rate

Supplemental Figure S3. Contamination study: Plot of the distribution of the number of
individuals in the best-fit trajectory set for the replicate simulations (error rate = 0.0) where the
qguery individual is present in the reference database, as a function of the replacement rate in the
contamination study (see Supplemental Results for details). Note that a unique and correct
identification corresponds to the overlap of the bars with a y-axis value of 1.
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Supplemental Figure S4. Best-fit genotypic trajectories from PLIGHT_Exact for the diploid

mosaic genome of HG00360+HG00342 constructed across 30 SNPs each for Chromosome 21

(corresponding results for Chromosomes 1 and 2 in Figures 3A-B). The composition of the best-

fit pair of haplotypes at each locus is depicted by two yellow tags, one below and one above the

red dots.
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Supplemental Figure S5. Best-fit genotypic trajectories from PLIGHT_Exact for the diploid
mosaic genome of HG00360+HG00342 constructed across 30 SNPs each for chromosome with
recombination rate = 1.0 cM/Mb: (A) Chromosome 1; (B) Chromosome 2; (C) Chromosome 21.
The composition of the best-fit pair of haplotypes at each locus is depicted by two yellow tags,
one below and one above the red dots.
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Supplemental Figure S6. Results for the PLIGHT _Truncated algorithm applied to the same query
SNP set as for Figure 3. (A) Fraction of the full matrix size at each step (i.e. SNP) in the HMM
sequence, for a final truncation factor of f = 0.005. (B) Fraction of the full matrix size at each step
(i.e. SNP) in the HMM sequence, for a final truncation factor of f = 0.02. (C) Trajectory for
Chromosome 2, shown to illustrate a case where truncation results in different trajectories
relative to the exact case (compare to Figure 3B). The composition of the best-fit pair of
haplotypes at each locus is depicted by two yellow tags, one below and one above the red dots.
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Supplemental Figure S7. Consensus genotypic trajectories from PLIGHT _Iterative for the diploid
mosaic genome of HG00360+HG00342 constructed across 30 SNPs in Chromosome 1, where the
consensus score is evaluated by weighting the haplotypes in each trajectory in proportion to their
occurrence across all three chromosomes. The composition of the best-fit pair of haplotypes at
each locus is depicted by two yellow tags, one below and one above the red dots. (A) njier = 20,
replicate 2; (B) njr = 30, replicate 2. Shown at the top of each panel are the most frequent
haplotypes within each segment indicated. The corresponding first replicates are shown in Figure
4 of the main manuscript.
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Supplemental Figure S8. Consensus genotypic trajectories from PLIGHT _Iterative for the diploid
mosaic genome of HG00360+HG00342 constructed across 30 SNPs in Chromosome 21, where
the consensus score is evaluated by weighting the haplotypes in each trajectory in proportion to
their occurrence across all three chromosomes. The composition of the best-fit pair of haplotypes
at each locus is depicted by two yellow tags, one below and one above the red dots. (A) Njier =
20, replicate 1; (B) njer = 30, replicate 1. Shown at the top of each panel are the most frequent
haplotypes within each segment indicated. The corresponding first replicates are shown in Figure
4 of the main manuscript. Panel A is an example of a successful identification of the two
component individuals, while Panel B shows a case where only one of the two individuals is
found.
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Supplemental Figure S9. Histograms of the deviation values from the true PRS scores for the
Height GWAS analysis, shown for both inferred trajectories and background individuals. (A)
Results for Chromosome 3 (red = Background PRS - True PRS, blue = Trajectory PRS - True PRS);
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Supplemental Figure S10. Schematic of the metrics used in the sanitization scheme. In green is
shown an example of a set of best-fit parallel trajectories. At locus [ = 2, the figure shows
examples of the identified haplotype pairs for this particular set of trajectories. On the left, the
figure includes an explanation of how the unique haplotype pairs are counted, as wells as how
the entropy across individuals per SNP is calculated at a particular locus. The figure also includes
a marking of the region of the smallest number of unique haplotype pairs, which is then used in
the sanitization procedure outlined in the paper.
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Supplemental Figure S11. Plot of the total entropy of individuals across all trajectories (S;,4
defined in the main manuscript) for each of 10 independent query SNP sets, for the two different
sanitization strategies. The entropy is plotted as a function of the number of SNPs removed,

which varies from run to run.
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Supplemental Figure S12. Plot of the maximum probability of finding any of the source
individuals in all trajectories (P;247°¢ defined in the main manuscript) for each of 7 independent
query SNP sets, for the two different sanitization strategies. 10 sets were run originally but 3 of
the runs did not find the underlying source individuals. The probability is plotted as a function of

the number of SNPs removed, which varies from run to run.
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Supplemental Files

Supplemental File S1. This file reports the results of the contamination analysis, for the
different mutation rates reported in Table 2 of the main manuscript and for the two
populations used for the contamination simulation: (a) a “General” population where
contamination was by samples randomly selected from across the 1000 Genomes cohort and
(b) a “CDX” population where contamination was by samples randomly selected from the CDX
population specifically. For each mutation rate, we report: (1) The minimum number of SNPs
required for correct identification, in all runs (out of a maximum of 30) where the correct
source individual was found; (2) The difference in the log probability of the observed SNPs
between the HMM model and an independent SNP model with genotype frequencies

log(P ~log(P . . . .
( 0g¢ H";’VM) 29%6r) yefined in the main text), in all runs (out of a maximum of 30) where the
SNPs

correct source individual was found; (3) The average minimum number of SNPs and the
standard deviation (using the numbers quoted above); and (4) The average difference in the
log probability and the standard deviation (using the numbers quoted above).
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Supplemental Tables
Supplemental Table S1. Table of conditional probabilities for the observed genotypes

Gg,. based on the sum of two reference haplotypes,
Zj((ll))’l + Z,(cz(?),l, as a function of the mutation rate per haplotype A.
Gg,
0 1 2
0 (1-2)? 21— 1) A2
1) (2) — 2 — )2 —
Zj(m + Zk(l),l A(1-2) AA+(0-2) A(1-2)
2 A? 21— 1) (1-2)?
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Supplemental Table S2. PRS matching scores for the true query genome to the best-fit mosaic
trajectories for the simulated mosaic HG00360 + HGO00342 SNPs across the regions of
chromosomes ranging from the first observed SNP to the last observed SNP. Corresponding
matching scores for the true sample to the background genomes are shown in parentheses. Four
different cosine similarity scores are chosen with the aim of elucidating potentially subtle
differences in the matching depending on the choice of phenotypes or method of averaging: (1)
ALL = Cosine similarity of the true sample score relative to the mean score, for all traits; (2) > 1
SNP = Cosine similarity of the true sample score relative to the mean score, for all non-zero traits
with more than one GWAS SNP; (3) PRS > 2 = Cosine similarity of the true sample score relative
to the mean score, for all non-zero traits where the absolute value of the Z-score of the true PRS
> 2; (4) Compare, then average = Cosine similarity of the true sample score relative to the score
of each trajectory, subsequently averaged, for all traits. Non-zero traits are those for which the
true sample has a non-zero PRS.

Similarity score

Chromosome 1

Chromosome 2

Chromosome 21

ALL: Best-fit mosaics (background
individuals)

0.9983 (0.9982)
for 343 non-zero
traits

0.9694 (0.8575)
for 225 non-zero
traits

0.9213 (0.9478)
for 131 non-zero
traits

to calculate the Z-scores)

> 1 SNP: Bestfit mosaics | 0.9288 (0.7637) | 0.9111 (0.7824) | 0.9517 (0.9526)
(background individuals) for 197 traits for 93 traits for 53 traits

PRS > 2: Best-fit mosaics (the | 0.8143 for 12 |0.7683 for 14 |0.9712 for 17
background individuals were used | traits traits traits

Compare, then average: Best-fit
mosaics (background individuals)

0.9978 (0.7113)

0.9276 (0.7811)

0.8961 (0.8402)
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Supplemental Table S3. PRS matching scores for the true query genome to the best-fit mosaic
trajectories for 30 and 90 environmental sample SNPs across the regions of chromosomes
ranging from the first observed SNP to the last observed SNP. Corresponding matching scores for
the true sample to the background genomes are shown in parentheses. Four different cosine
similarity scores are chosen with the aim of elucidating potentially subtle differences in the
matching depending on the choice of phenotypes or method of averaging: (1) ALL = Cosine
similarity of the true sample score relative to the mean score, for all traits; (2) > 1 SNP = Cosine
similarity of the true sample score relative to the mean score, for all non-zero traits with more
than one GWAS SNP; (3) PRS > 2 = Cosine similarity of the true sample score relative to the mean
score, for all non-zero traits where the absolute value of the Z-score of the true PRS > 2; (4)
Compare, then average = Cosine similarity of the true sample score relative to the score of each
trajectory, subsequently averaged, for all traits. Non-zero traits are those for which the true
sample has a non-zero PRS.
Cosine similarity metric

Chromosome 3 Chromosome 6

ALL: Best-fit mosaics (background | 30-SNP-case: 0.82 | 30-SNP-case: 0.96

individuals) (0.98) for 569 non- | (0.96) for 668 non-zero
zero traits traits
90-SNP-case: 0.97 | 90-SNP-case: 0.93
(0.97) for 587 non- | (0.96) for 672 non-zero
zero traits traits

> 1 SNP: Best-fit mosaics | 30-SNP-case:  -0.03 | 30-SNP-case: 0.981

(background individuals) (0.9996) for 314 traits | (0.997) for 380 traits
90-SNP-case: 0.9997 | 90-SNP-case: 0.995
(0.9995) for 320 traits | (0.997) for 384 traits

PRS > 2: Best-fit mosaics (the
background individuals were used
to calculate the Z-scores)

30-SNP-case: 0.61 for
52 traits

30-SNP-case: -0.39 for
63 traits

90-SNP-case: 0.46 for
58 traits

90-SNP-case: -0.34 for
61 traits

Compare, then average: Best-fit
mosaics (background individuals)

30-SNP-case: 0.82 | 30-SNP-case: 0.48
(0.90) (0.73)
90-SNP-case: 0.96 | 90-SNP-case: 0.94
(0.90) (0.75)
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Supplemental Methods

Simulation of the degree of correlation of randomly selected SNPs.

We have carried out an analysis into how often SNPs may be expected to be correlated even in
the specific case of a random selection across a chromosome. We simply made a random
selection of N SNPs across a chromosome out of all possible ones, and then used the program
LDlinkR (Myers et al. 2020) (https://github.com/CBIIT/LDIlinkR) to calculate the pairwise LD for
the selected SNPs using the (default) 1000 Genomes (The 1000 Genomes Project Consortium
2015) populations. We ran 1,000 simulations of this process, calculating linkage disequilibrium
(LD) under 5 superpopulations, "AFR","AMR","EAS","EUR","SAS", and identifying the number of
times at least one pair of SNPs occurs for which R? > 0.5. That is, if a single pair occurs for a
single superpopulation, we count it as a score of 1.

Li-Stephens model and associated biological parameters
For clarity, we summarize the primary aspects of the Li-Stephens model as applicable to the work
herein. Let G, = {Gq'l}i;l be the genotypes of a query individual g, observed at SNP loci | =

{1,2,---,L}. The probability of observing such an individual given a space of reference haplotypes
_ I=LRef;j=N
number of haplotypes in the reference database) is:

(Lges = total number of genotyped sites in the reference genomes, N = total

P(Gy|H) = Z,m Z}({z)P(Gq|ZJ.(1),Z,£2)).P(Zj(l),Z,(cz)|H) (S1)
,

where the set of all possible haplotypes at the observed loci on the two chromosomes is given

L -
by Zj(“) = {Zj((cg l}l , with Zj(g)_;,z) being the haplotype at position [, and j being the index of the
= )

sampled haplotype. We treat the haplotype index j(l) as a function of [, as it is possible for the
choice of reference haplotype to be different at each locus; that is, in the haplotype matching
process, recombination between reference haplotypes may occur from one observed locus to
the next (see Supplemental Fig. S1). The second subscript explicitly indicates that, for reference
haplotype j(1), we select the genotype at locus L.

The assumption in the current iteration of the algorithm is that the observed genotypes
and the reference haplotypes are registered with respect to the same, linear reference genome.
This enables a simpler matching of reference haplotypes to observed genotypes. For data
structures such as personal genomes and graph genomes, additional genotype matching
strategies would need to be incorporated, but the conceptual framework of searching through
recombining haplotypes would be the same. In general, the set of genotyped sites does not have
to perfectly overlap with the set of reference haplotype sites because of rare SNPs in an
individual’s genotype or differences in genotyping arrays. However, for the purposes of this study
we only consider genotyped sites that overlap with those of the reference haplotypes, especially
given our interest in determining the identification power of common SNPs. In case of the
presence of structural variants overlapping SNP loci, we allow for missing loci in any of the
reference haplotypes. We thus consider the reference haplotypes as providing the complete
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search space, especially in light of the constantly growing genetic databases available for
comparison. We avoid making explicit assumptions of population membership and statistics for
the query individual with the belief that, beyond the implicit assumptions of the chosen reference
set, this will enable more unbiased estimates of kinship and genotypic similarity.

P(Z].(l),Z,EZ) |H) contains information on the “trajectories” through haplotype space that

emerge from the reference set: it is the probability of obtaining a given set of haplotype
observations at all the query loci. In general, this is not a simple measure of the frequencies of
entire reference haplotypes (unless the query genotype is known to be in the reference set) due
to the possibility of recombination. Recombination is incorporated into the analysis in the
expressions for the transition probabilities from one query site to the next. Using results of Li and
Stephens (Li and Stephens 2003) and Marchini et al (Marchini et al. 2007), we have

P(2.22|1) = P (2,0 205 |[H) T P (1200 260.) = {2 B} 1)

(S2)

1) (2)
where P (Zj(l),l’Zk(l),l

query locus. This is often drawn from a uniform distribution across all haplotype pairs, but could
be modified if prior knowledge on the membership of the query individual in a particular
subpopulation is available. All terms are written with the conditional dependence on the set of
reference haplotypes, H, made explicit. The transition from one site to the next is given by

P((£80 2804 = (00000 Znani} 1) =

_p1\?

§
p _
(e_ﬁl + 2 jv N) if neither haplotype changes from ssiteltol + 1

|H) is the probability of observing a given set of haplotypes at the first

_P1
e 3 1—-e N N

o 1 e
3 (e N+ " )(1 1€v ) if one haplotype changes, but not the other (S3)

2
1-e N

Pl

\ ( > N) if both haplotypes change
with p; = 4N,1;, 1; being the per generation genetic distance between the sites [ and [ + 1. The
exponential dependence arises from the assumption of a Poisson process of recombination at
any position in the genome, while the division by N in the exponent ensures that the probability
of a recombination event drops exponentially with growth in the reference haplotype database.
The latter idea ensures that the number of truly novel haplotypes reaches a plateau, i.e. there is
a stable set of possible haplotypes in a population. In terms of the recombination rate ¢; and the
physical distance between adjacent loci d;_,;+1, 17 = ¢; X d;;41. N is the number of reference
haplotypes, and N, is the effective population size, taken to be 11,418 (Li and Stephens 2003;
Marchini et al. 2007; The International HapMap Consortium 2003).

In our methods, the linear model p; = 4N,c;d;_,;41 is included as the default. However,
we allow for the inclusion of a user-defined model of recombination in its place. For example, if
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there is a known recombination hotspot between two adjacent query sites, it would alter the
probability of transitioning between reference haplotypes in the search space, and thus impact
the best-fit haplotypes calculated by the method. The user can explicitly include a vector of
recombination values to be used for the L — 1 intervals between query sites.

Another essential aspect of Equation S3 is the implicit assumption of uniform transition
probabilities. That is, in its current form, Equation S3 does not discriminate between transitions
from one haplotype to any other. If, on the other hand, a model is to be constructed where
different subgroups have distinct recombination rates at particular locations and/or are assumed
to impacted by assortative mating then transition probabilities would be conditional based on
membership in these subgroups. In this iteration of our model, we do not provide a framework
of this nature, but such an update would simply require the inclusion of appropriate bias terms
conditional on the memberships of the initial and final haplotypes. However, we wish to
emphasize that maintaining uniform transition probabilities helps prevent biased interpretations
of ethnic group membership and isolation, and allows for the broad intermixing of haplotypes
known to have occurred throughout human history (Narasimhan et al. 2019).

The other term in Equation S1, P(Gq|Zj(1),Z,(€2)), quantifies the probability of observing

the query genotypes given a particular set of underlying haplotypes. This probability helps
constrain the haplotypes that are possible given the observed genotypes, allowing for the case
where mutations or genotyping errors occur (as considered in IMPUTE(Howie et al. 2009)).

P (Gq|Zj(1)'Zz£2)) ==, P (Gq'l|Zf((1l)).l'ZIE2),l) =i P (Zj((ll)).l + z,gﬁg),l - Gq'l) (54)

with P(Zj((ll))’l +Zz(<2(2),1 - Gq,l) determined by the number of sites that require mutation to

match the observed genotypes. We follow the suggestion of the authors of IMPUTE to consider
a background rate of base pair mutation 6 that translates into a mutation rate per haplotype of

A= Z(Ni %) under the assumption of a neutral coalescent tree for N haplotypes(Li and Stephens

2003; Marchini et al. 2007). However, it is possible for the user to explicitly augment the
background rate 8 with contributions from genotyping error, or to ignore the mutation rate

yl . .
altogether and set 8 = 121\’7 such that A is equal to the known genotyping error. Thus, our code

allows for either 8 (the thetamutationrate parameter) or A (the lambdamutationrate
parameter) to be set. The values of P (Zj((ll))J + Z,(CZ(?)J - Gq,,) dependent on A are shown in

Supplemental Table S1.

To summarize, the aim is to figure out the contribution to the total probability of each of
the haplotype combinations, by estimating P(Gq|zj(1),zlgz)).P(Zj(l),zlgz)|H) for all haplotype
trajectories, and to maximize this probability.

Hidden Markov Model optimization

The problem of identifying the best-fit combination of haplotypes is well-suited to the framework
of Hidden Markov models (HMMs) given the traditional treatment of the genome as a linear
sequence of base pairs. In this understanding, meiotic recombination between loci does not
occur between distant locations of a chromosome (as may occur, hypothetically, due to
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consistent 3D folding of the chromosomes within the nucleus), but has a certain probability of
occurring at every intermediate site between any pair of loci. Usually, the greater the distance
between the loci, the higher is the probability that recombination will have occurred in an
ancestor of the query genome, though the probability is not necessarily uniform across every
site. It then becomes easy to associate HMM emission probabilities at genomic sites with
mutation rates and HMM transition probabilities between latent haplotypes with recombination
rates. Furthermore, in the above expressions first-order Markovian behavior is assumed, and the
observed output genotype is seen to depend only on the underlying haplotypes at that site alone
(so-called output independence). This constrains the type of HMMs considered here, but leaves
open interesting future applications where such assumptions are relaxed.

Accordingly, the problem of identifying the best trajectory through haplotype space can
be carried out using the Viterbi algorithm (Viterbi 1967). This method solves the problem of
maximizing the probability of the trajectories through the latent space in time O((N X N)2L),
where N is the number of possible haploid states, i.e. the number of reference haplotypes, N X N
is the corresponding number of diploid states, and L is the number of observed loci:

Most likely trajectory = argmax P(Gq|Zj(1),Z,({2)), P(Zj(l),Z,EZ)|H)
@ @ (a2 LN
Zjl ’Zkz E{Zj(llil}lzl:jzl
= argmax P(Gq,Zj(l),Z,(cz)|H) (S5)
7 Z(Z)E{Z(l.Z)}l=LU=N
F I e G OV P

where expressions for the two probabilities are given in Equations S2, S3 and S4.

The Viterbi algorithm achieves a more efficient solution to the optimization problem in
Equation S5 than the naive search by recognizing that the overall optimization problem can be
separated into separate optimization steps at each query site with the convenient iterative
scheme:

-1
(1) (2) ® (2)
<{Gq6}5 1’ { ](6)6’Zk(8),6} Z](l)l' k(l)l|H)

70 @ VL0 L@
( 70 5@ ) max <{Gq 6}5 P { 1(5)5’2"‘(5)'5}5 Z(l)l’Zk(l)l|H) X
Zjww L jA-1),kA-1) o)) ) 7@
P(Z](z -1 2 Ziw Lki--1 = k(l)l|H)
=>Ul(j(l) k(l)) EmlsswnProb( ql| ]((ll))l,Z,gZ&)’l,H) X
L [vl—l(](l_l);k(l
(€] @) (2)
— 1)) TT‘aTlSltLOTlPT‘Ob(Z o1 ™ Zj(l) l’Zk(l—l),l—l - k(l)l|H)]

-1
with VL(](D k(l)) P<{Gq 6} {](8-(;)5’2]22(35),5}8 Z((ll))lrzl(cz(g),l|H)

(S6)
where the algorithm initializes a value of vl(j(l), k(1)) and then proceeds to iteratively update
the probability. The second line of Equation S6 simply provides a clearer conceptual
understanding of the first line.
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l -1 2 . .. -
P<{Gi15}5=1'{ng(lts)),a’zlgz(é),a}(s:l’ ].((11))'1,2,(((2)’[|H) is the joint probability of the observed

genotypes at all sites up to and including site [, and of the reference haplotypes at all sites up to

site [ — 1, with the reference haplotypes at site [ being fixed at Z].((ll))'l,Z,EZ&)’l, and is easily related

to the argument of the argmax function on the right-hand side of Equation S5.

Matrix methods used in the modified Viterbi algorithm. The probability vectors were encoded as
Python numpy arrays. Assuming an unbiased transition matrix (Equation S3, no assumed
subpopulation membership), each argmax calculation in Equation 2 was calculated over an array
whose elements were updated as follows:

a. Letlogv;(j, k) be the log-probability vector (Equation S6).

b. logv,(j, k) is a matrix indexed by every pair of reference haplotypes. This matrix was
flattened in 1D, keeping only the lower triangle of the matrix.

c. At each observed genotype locus, initialize logv;(j, k) = logElGl(j, k), the vector of
precalculated log-emission-probabilities for each pair of reference haplotypes and the
observed genotype.

ESL(K)
N2 '

d. Forl =1, setlogv,(j, k) =log
reference haplotypes at the first observed locus.

with the assumption of equal likelihood of all

. _P1 1—e Wl 1—6_% peye
e. Define T,, =logle v + " and Tyrr = log . (the log probabilities of

retaining a haplotype and crossing over to another one, respectively; see Equation S3).
Define the matrix A(j, k) =logv,_1(j, k) + 2Tz

g. For every pair of reference haplotypes (j, k), update all elements in the same row and
column: A(j,.) += Ton — Torr and A, k) += Ty — Topp-

h. Find the maximum log-probability M(j, k) = rr}?x A(i,j) and the corresponding

arguments BT (j, k) = argmax A(a, 8), where the last term is the backtrace vector.
a,p

i. Repeat steps (f)-(h) for all haplotype pairs. The matrix A(j, k) is reinitialized every time in
step (f).

j- Importantly, we further modified the previous step to include all pairs of haplotypes that
were within a certain range of the absolute maximum (by default, the cutoff was
IM(j, k)| —0.01 = [M(j, k)|). We did this as, given the assumed data sparsity, it was likely
that multiple haplotypes would match exactly or nearly so. Additionally, this looser
definition of maximization also compensates any rounding-off errors that may cause two
similar paths to diverge in log-probability. Changing this parameter could also allow the
user to discover sub-optimal paths.

k. Update logv;(j, k) += M(j, k).

Repeat steps (c)-(k) for every observed genotyped site.

m. When [ = L, the process is terminated by finding M = rg%xlong(a,[)’) and BT =

All (j, k) such that |logv,(j, k)| = |M|—0.01 = |M]|.
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1) Using this terminal set of BT, the corresponding backtrace values for each selected reference
haplotype pair are traced all the way back to the first observed locus. This results in a set of
trajectories that may fork and merge.

2) Instead of explicitly storing the backtrace vector in RAM, we use the Python package gzip to
write the backtrace vector for each observed site directly to a gzipped file. We similarly read
through the gzipped file during the final stage of reading out the best-fit trajectories.

Truncation scheme. In the PLIGHT Truncated module, at every observed site we truncate the
possible haplotype states by choosing the top T sets of (a, ) pairs. This scheme was inspired by
similar techniques employed in the Eagle2 imputation program (Loh et al. 2016). The main
premise of this approximation is after a certain point, only a fraction of a the total number of
trajectories will meaningfully contribute to the best-fit states, and allow the retention of only a
fraction of the total number of states in memory. However, in addition to tracking the
probabilities and backtrace vectors of these states, we now also need to retain positional indices
associated with the particular pairs for future look-up (i.e. we need to know the identity of these
pairs).

The module allows the user to set the truncation factor as the fraction of the total number
of reference haplotype pairs retained in the calculation:

Truncation factor f = T/(N(NTH)) =T/Teor; Tror = NN+1) (S7)

2
However, we recognize that immediate truncation at the first location would not allow the
probabilities of the most likely trajectories to build up sufficiently. Therefore, we phase-in the
truncation by using a linear decrease in the value of T until the halfway point:
floor(slope X (I = 1) + Tyt), for L < floor (g)
T, = (S8)
floor(f X Tiot), for L > floor (g)

where slope = Tyor X (f — 1)/(floor (é) — 1) and floor(x) is the rounding down function.

Furthermore, setting a cutoff on the number of states could possibly arbitrarily remove states
that have the same probability as the included ones. Accordingly, we soften the truncation by
including all additional states that have the exact same probability as the final T} state. Note that
this may grow the size of the matrices significantly, if the number of equiprobability or
degenerate states is large. This may occur for very sparse data.

The advantage of the truncation scheme is the reduction of the size of the matrices. To
maintain this advantage, we had to explicitly calculate the probabilities at the first observed site,
where the truncation had not been applied yet. This prevents (in the current version of the code)
the inclusion of missing genotypes. Additionally, the parallelization procedure at the first
observed site required the chunking up of the haplotype pairs into subgroups the size of
floor(f X Tt,:), and running each of these subgroups through parallel matrix calculations. This
prevented the necessity of having the entire set of haplotype pairs be manipulated in matrices
simultaneously, which would have defeated the purpose of the truncation process.
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Imputation of blood tissue sample genotypes

The blood tissue sample genotypes were phased using the TOPmed Imputation Server(Taliun et
al. 2021; Das et al. 2016; Fuchsberger et al. 2015). Specifically, we used the TOPmed reference
panel version r2, with an array build of GRCh37/hg19 for the unphased VCF file; the “rsq Filter”
was set to “off”; the phasing used “Eagle v2.4”; no “Population” was selected; and we ran the
server in “Quality Control & Phasing Only” mode. Since, the output of the TOPmed phasing was
aligned to hg38, we used the LiftoverVcf from Picard tools (Broad Institute) to lift over the
variants to the hgl9 reference, so as to match up with the existing 1000 Genomes-based vcf
files.

Mosaic genome correspondence and polygenic risk scores

Correspondence score. Using mosaic genome reconstructions, we assessed the accuracy to which
we could impute SNPs across the genomic region covered by the observed SNP loci. The accuracy
metrics included a straightforward calculation of the fraction of SNPs exactly matched in
genotype dosage, as well as a measure of the degree to which the inferred trajectory matched
the query genome, with the contribution from each SNP weighted by a function of the genotype
frequency:

2—|GST—GSQ|)

Correspondence score C = ;ZNSNP(l — pS(GST)).( (S9)
Nsnp

s=1 2

N
C measures the total correspondence between the set of query individual genotypes, {GSQ}S:IVP,
Nsnp

and the set of genotypes for trajectory T, {GJ}.5"", where Ngyp is the total number of
overlapping SNPs defined in the VCFs of the reference database and the query individual between
the first and last observed SNPs. Next, |GI — G2 | quantifies the deviation of the genotype dosage
of T from that of the query Q at SNP position s, and is subtracted from 2 and divided by 2 to set
a score scale where 0 corresponds to maximal deviation of 77 from Q and 1 corresponds to a
perfect match between the two. Finally, p;(GJ) is the genotype frequency (as opposed to the
allele frequency) of the SNP dosage G, which is the probability that trajectory T could have a
given dosage at random based on population occurrence frequencies. The heuristic

(1 - pS(GST)) is therefore a measure of the non-randomness of the trajectory SNP dosage. C =

0 when no SNPs match between T and Q and/or the SNPs occurred in the reference population
at 100% frequency, while C = 1 when 7 and Q agree at every SNP position and the SNPs are
extremely rare (and so the matching of the two is very likely to be a non-random occurrence).

We compared the fraction of correct SNPs and the correspondence scores for our
trajectories to the equivalent scores calculated on a set of 99 randomly selected genomes in the
same genomic regions from the 1000 Genomes cohort.

Polygenic risk score calculation. We perform approximate calculations of the linear polygenic
risk scores (PRSs) based on all SNP associations in the GWAS catalog version 1.0.2 (Buniello et
al. 2019). We first identify all individuals in the trajectories of each HMM run. We then
constructed the (previously described) diploid mosaic genome of the query individual based on
each trajectory. The resulting genotypes are used to calculate PRSs for each phenotype y and
each individual n as:
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PRS(y,n) = Zfﬁ{) pixi, (S10)

where f5; = Signed ef fect size of the risk allele at SNP i,
xl' € {0,1,2} = Genotype of individual n at SNP i,
and R(y) = Total number of risk alleles for phenotype y.

The PRS is very approximate in the sense that no SNP filtering was conducted beyond
those presented in the GWAS catalog, either by p-value or by LD with other associated SNPs.
However, the aim here is merely to determine whether there are aggregate properties across the
genome that can be inferred using our approach. We calculated the Pearson’s correlation
between the PRSs of the true samples and the best-fit mosaic genomes within the regions and
chromosomes sampled. All traits for which the PRS of the true sample was non-zero (‘non-zero
traits’) were included. To assess whether the PRS correlations between the true individual and
inferred mosaic genomes were statistically significant, we sampled a background set of ~100
individuals from the 1000 Genomes dataset that did not occur in any of the test sets we ran, and
calculated the PRSs for the non-zero traits.

We employed several statistical metrics to assess the correspondence in PRSs between
the query genomes and the best-fit mosaic genomes, relative to the background scores: (1) the
cosine similarity between the query and mean values of the best-fit scores, compared to the
mean value of the background scores; (2) the same metric as in (1) but only for traits with more
than one GWAS SNP in the regions sampled (thus removing one-SNP traits); (3) the same metric
as in (1) but only for traits where the query PRS had an absolute Z-score > 2 (i.e. traits for which
the query itself is an outlier relative to the background); and (4) the cosine similarity between
the query genome and each of the best-fit mosaic genomes, followed by the mean of all the
cosine similarity values (same for the background).
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Supplemental Results

Simulation of the degree of correlation of randomly selected SNPs.

As described in the Supplemental Methods, the goal of this analysis was to explore the degree
of SNP correlation that occurs even when randomly sampling SNPs across the entire genome
(one of the possible cases where PLIGHT would be useful). We tested out the longest
chromosome, Chromosome 1, and the shortest autosomal chromosome, Chromosome 22, with
30 randomly selected SNPs, as well as Chromosome 1 with 90 randomly selected SNPs. Shown
below are the number of SNP pairs found with a linkage disequilibrium (LD) R? > 0.5, where we
tested the LD score against 5 superpopulations "AFR","AMR","EAS","EUR","SAS" in the 1000
Genomes cohort (The 1000 Genomes Project Consortium 2015). It is possible for pairs to be
counted in the LD analysis for a single superpopulation, or across multiple superpopulations
(eg., a single SNP pair could be under LD in both the AFR and SAS superpopulations, and this
would count as two pairs in total). The results are:

Chromosome 1 (the longest chromosome), N = 30 : 41 out of the 1,000 simulations produced a
pair of correlated SNPs, with 3 cases of 2 pairs being found.

Chromosome 22 (the shortest autosomal chromosome), N = 30 : 31 out of the 1,000
simulations produced a pair of correlated SNPs, with 1 case of 2 pairs, 3 pairs, 4 pairs and 5
pairs each being found.

Chromosome 1, N =90 : 236 out of the 1,000 simulations produced a pair of correlated SNPs,
with 45 cases of 2 pairs, 14 cases of 3 pairs, 6 cases of 4 pairs and 1 case of 5 pairs being found.

These results indicate that, while a very small number of SNPs randomly selected do not exhibit
much correlation structure, the degree of correlation goes up with an increase in the number of
SNPs. The degree would be higher if we allow for more moderate LD (i.e. if we lower the R?
cutoff to a value below 0.5). In general, given that an attack on privacy would not have to follow
the random selection process (as discussed in the paper), we foresaw a need for a more general
model of SNP matching.

Supplement to Section “ldentification of individuals known to be within a database”. we
examine the reasons for the non-monotonic behavior of the N5257¢¢t values in Table 1. We run
an independent simulation to the one in Table 1, using the same parameters: chose 10
individuals, one at a time, from the 1000 Genomes cohort; for each individual, ran 40 separate
SNP selection runs, corresponding to Ngyp € [1,::-,40]; select SNPs according to a Bernoulli
process with probability 0.003 until we reach the chosen Ngyp value; mutate each SNP’s
genotype as a function of the mutation rate A (according to Supplemental Table S1), and include
the SNP if the mutated genotype is either heterozygous or homozygous in the alternate allele.
This time we run simulations up to higher mutation rates: 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6. We
then run PLIGHT_InRef on these query sets. For the runs where PLIGHT_InRef successfully found
the correct query individual, we count the total number of individuals (including the correct one)
found in the best-fit trajectories across all 10 query individuals and all SNP numbers as a function
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of the mutation rate. The results are shown in Supplemental Fig. S2. Given that the metric of
interest in Table 1 is N&95¢¢t, the number of SNPs needed for both correct and unique
identification, we can see that the distributions up to A = 0.2 are mostly concentrated close to
1. This implies that there are a large number of runs for low mutation rates that have correctly
and uniquely identified the query individual. On the other hand, as A increases to 0.3, the tail of
the distribution is at 1, while for A > 0.3, there are no instances of correct and unique
identification. The numbers of runs with correct and unique identification at each mutation rate
are: A = 0.0, 334 runs; A = 0.05, 285 runs; A = 0.1, 222 runs; A = 0.2, 62 runs; A = 0.3, 8 runs.
When N&ORTeCt as the average minimum number of SNPs required for a correct and unique
identification, we find

NEorTeet = 6.8 4+ 1.5 across 10 individuals, for 1 = 0.0

N&erreet = 8.3 4 2.0 across 10 individuals, for A = 0.05

NEOETeet = 9.9 4 2.6 across 10 individuals, for 1 = 0.1

NEoETeet = 19.7 4+ 6.1 across 10 individuals, for A = 0.2

NEorTeet = 27.0 + 13.0 across 5 individuals, for 1 = 0.3

We see that the number is less stable for A = 0.3 (where only 5 individuals had the requisite
identifications), and that the monotonic trend is recovered.

Supplement to Section “Identification of individuals from contaminated samples”. We
examine the reasons for the non-monotonic behavior of the N&257¢¢t values as a function of the
replacement rate in the contamination study in Table 2. We run replicate simulations using the
same methods as described in the main manuscript, except for the fact that we set the error rate
to be 0.0. The results, shown in Supplemental Fig. S3, indicate that when no possibility of error
is included in the PLIGHT model, there is a monotonic increase (as a function of the replacement
rate) in the number of possible individuals who are found along with the correct individuals. In
other words, there is a steady increase in the difficulty of uniquely picking out the query
individual. As discussed in the main manuscript, a larger input error rate in the inference allows
greater leeway in the overlap between the observed SNPs and the reference database
individuals. This is the reason for the observed increase in the number of unique and correct
identifications at higher replacement rates. Thus, comparing the results in the main manuscript
and those in the replicate analysis here, we suggest that the inference process may improve by
increasing the allowed error in the model.

Supplement to Section “Truncated algorithm”. We ran the same SNP set as in Section “Exact
search within a reference database of 400 haplotypes” through the truncated algorithm to
assess the degree of compressibility of the trajectories, with a recombination rate of 0.5 cM/Mb
and with a search through 200 reference individuals. In interpreting the results, it is worth
bearing in mind the fact that while the algorithm was set up to slowly phase-in the restriction of
the number of considered haplotype pairs to the top few, it yet retained a degree of elasticity to
prevent an abrupt cut-off: all haplotype pairs with the same probability as the last state in the
imposed cut-off were also included (Supplemental Fig. S6). We ran the calculation for two
different asymptotic truncation levels, with the truncation factor f in Equations S7 and S8 = 0.005
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and 0.02 (Figs. S6A and S6B). For reference, the fractions of the matrix sizes at each SNP in the
calculations are shown for f = 0.005 (Fig. S6A) and f = 0.02 (Fig. S6B). The resultant trajectories
for Chromosome 1 were identical to the exact algorithm, implying that reducing the number of
considered trajectories did not impact the search process. For Chromosome 21, the lower
truncation level of 0.005 resulted in fewer trajectories being included, while the higher truncation
of 0.02 reproduced the same trajectories as the exact algorithm. Chromosome 2 appeared to be
less resilient to truncation and produced different results from the exact algorithm (the
trajectories for f = 0.005 are shown in Fig. S6C; compare to Fig. 3B). Note that truncation at later
SNPs favors the prioritization of HG00360 in the earlier parts of the chromosome, whereas the
exact algorithm with the same recombination rate removes this individual from the final results.
The degree to which different trajectories are resilient to truncation is a measure of the degree
to which the best trajectories separate out from the others. In informatic terms, if the best
trajectory probabilities (analogous to the energies of physical states) have low entropy
(analogous to deep, sharp valleys in the energy landscape) trajectory truncation will not impact
the search; if the entropy is high (broad, shallow valleys in the energy landscape) truncation will
impact the results.

Supplement to “Predicting genotypes at GWAS loci and polygenic risk score (PRS)
analysis”

We construct a query set of 90 SNPs, each within +2 kb of known GWAS SNPs for the phenotype
“Height”. This increases the likelihood of LD with GWAS variants. Within these windows, 25
GWAS variants are found for Chromosome 3 and 26 for Chromosome 6. We ran PLIGHT _Iterative
with 1. = 20 and S5 = 300 on the query sets, and study the resulting 5 and 12 trajectories
for Chromosomes 3 and 6, respectively. First, we looked at the 22 and 23 GWAS SNPs in
Chromosomes 3 and 6, respectively, not directly in the query sets and checked how well the
inferred trajectories matched the unseen query genotypes. For Chromosome 3, the 5 trajectories
produced {10, 10, 10, 13, 13} matches out of 22 SNPs. We also checked the same SNP sites for
100 randomly sampled individuals, and ran a Welch’s two-sided, two-sample t-test between the
two distributions, obtaining a p-value of 0.004. However, a few of the background samples
matched the GWAS SNPs to a higher degree (16 SNPs out of 22). We therefore looked at the
consensus across the trajectories and found that the 5 trajectories matched the query genotypes
perfectly at 9 GWAS SNP sites, and were off by a dosage of 1 at the remaining sites. The
background individuals had mixed results across all SNP sites. The trajectories for Chromosome
6 yielded match rates of at most 12 out of 23 and a two-sided, one-sample t-test with respect to
the background distribution for the same 100 individuals yielded a p-value of 0.56. Many of the
background individuals did better than 12 out of 22 matches. Thus, the imputation of GWAS SNPs
did not indicate that the inferred trajectories do better at imputing the GWAS SNPs.

We also assessed whether the inferred PRSs are a better match than a background set of
PRSs from 100 randomly sampled individuals. We consider the statistical significance of the
deviation from the true sample’s PRS (a Welch’s two-sided, two-sample t-test). The resulting p-
values for the absolute PRS deviations: Chromosome 3 = 0.25, and Chromosome 6 = 0.15. In both
cases, the trajectory-based PRSs were not significantly closer to the true sample’s PRS than the
mean of the background PRSs (distributions in Supplemental Fig. S9A-B).
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Supplement to “Sanitization of SNPs based on Inferred Trajectories”
We address specific examples of scenarios where published data may be subject to the type of
sanitization considered in our work.

1.

There are cases where DNA samples from environmental objects may be published,
such as for DNA from historical objects (eg. ongoing work from co-authors of this paper,
https://www.nyhistory.org/blogs/extracting-stories-from-19th-century-dna), which may
also be contaminated with DNA from living individuals. Any such published data can be
sanitized using the method described.

Second, another possible situation where publication is an issue is the production of
functional genomics data where a limited number of SNPs may be extracted, such as
microarray data from targeted sites.

Finally, for nanopore reads, we envisioned using PLIGHT for the case where considerable
contamination from multiple individuals may obscure the provenance of multiple reads.
On the other hand, a single read will undoubtedly be derived from a single individual,
and so it would be worthwhile running the sanitization process on even a single read’s
SNPs to prevent significant identifying information regarding that individual.
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