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Supplemental Figure S1. Scheme of long-read CAGE library preparation and browser view. (A)
LRCAGE, LRhex and nanoCAGE library preparation workflow. (B) Browser view of LRCAGE and
LRhex reads at NOMO1 gene. For visualization, 40 reads starting from NOMO1 GTSS are

randomly selected from 142 LRCAGE reads and 170 LRhex reads. (C) Heatmap of coverage



across gene bodies. For coverage, 3' ends of read were used for LRCAGE and LRhex. For paired-

end nanoCAGE, 5' ends of read 2 were used.
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Supplemental Figure S2. Characteristics of long-read CAGE and nanoCAGE data. (A) Fragment

size distribution. (B-C) Genomic annotation of 5' ends of LRCAGE, LRhex, and nanoCAGE reads



(B) and peaks (C). (D) Coverage at the closest GTSSs by 5' ends of LRCAGE, LRhex and
nanoCAGE reads. (E) Coverage at the closest GTESs by 3' ends of LRCAGE and LRhex reads,
and by 5' ends of read 2 for nanoCAGE. (F) Venn diagram showing intersections of active GTSSs
detected by LRCAGE, LRhex and nanoCAGE (2x150bp) peaks using 3 million reads. (G) Venn
diagram showing intersections of active GTSSs detected by LRCAGE and LRhex peaks using 3
million reads and nanoCAGE (2x75bp) peaks using 22 million reads. (H-I) Recall by LRCAGE,

LRhex, and nanoCAGE as a function of RNA-seq expression levels (H), and transcript length (1).



A 4 4
3 1 34
=) =)
> >
LRCAGE L2 221
= =
o o
= 14 [ 1
0 1 0
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
TPM (log10) TPM (log10) TPM (log10)
4 4 4
3 31
o o
{2 (o2}
LRhex S 2 L2 Normalized
s s density
o o 1.0
= =g
0 T 0 0.5
0 1 2 3 4
TPM (log10)
4] 0.0
3 g
=)
>
nanoCAGE 22
=
o
[ 14
0
0 1 2 3 4
TPM (log10)
B RNA-seq
~ 4
o
>
5]
= 34
=
o
[
~ 24
[%2}
Q.
w
Q 14
P4
O
2
© 04
c T T T T T
0 1 2 3 4

nanoCAGE ps1 TPM (log10)

Supplemental Figure S3 Gene expression correlations between LRCAGE, LRhex, nanoCAGE
and RNA-seq data. (A) Pairwise scatterplots of gene expression levels based on RNA-seq and
peak strengths of LRCAGE, LRhex, nanoCAGE peaks. (B) Scatterplot of gene expression levels

based on peak strengths of nanoCAGE pseudo-replicates.



A B
100% 100% { 100%
/Pq_’— \‘
B
ol
Bw
22
23 50% 50% 50%
3e
28
S < @ LRCAGE
2
xE @ LRhex
&
=@ nanoCAGE (ps2)
0% 0% 0%
7 T % 5 5 & 9o - 5§ 5 T 5 © 5 <0.5 >0.5
S 5 2 2 &8 8 ¢ 6 2 d e € 8 = (Iow) (high)
- e T 2 g g A =
= = 4 Mappability scores
RNA-seq TPM Transcript length (kbp) B LRCAGE [MLRhex [MnanoCAGE (ps2)

Supplemental Figure S4. Re-discovery rate against active GTSSs detected by nanoCAGE peaks

as a function of expression levels, transcript length, and mappability scores. (A) expression levels.

(B) transcript length. (C) mappability scores.
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Supplemental Figure S5. Pairwise comparison of active GTSSs detected by LRhex, LRCAGE,
and nanoCAGE peaks annotated with GTSSs with low mappability scores. (A) Percentages of
active GTSSs with low mappability scores annotated with LRhex and nanoCAGE peak overlaps.
(B) Percentages of active GTSSs with low mappability scores annotated with LRCAGE and
nanoCAGE peak overlaps. (C) Percentages of active GTSSs with low mappability scores
annotated with nanoCAGE pseudoreplicates (ps1 and ps2) peak overlaps. (A-C) A dashed line

indicates percentages of active GTSSs with low mappability scores (1.4%).
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Supplemental Figure S6. Percentages of active GTSSs detected by LRhex, LRCAGE, and
nanoCAGE peaks supported by ATAC peaks. (A) Proportions of active GTSSs with high
mappability scores detected by LRhex and nanoCAGE peaks annotated with ATAC peak
overlaps. (B) Proportions of active GTSSs with low mappability scores detected by LRhex and
nanoCAGE peaks annotated with ATAC peak overlaps. (C) Proportions of active GTSSs with high
mappability scores detected by LRCAGE and nanoCAGE peaks annotated with ATAC peak
overlaps. (D) Proportions of active GTSSs with low mappability scores detected by LRCAGE and
nanoCAGE peaks annotated with ATAC peak overlaps. (A-D) A dashed line indicates
percentages of GTSSs with 0 TPM overlapped by ATAC peaks. The dashed line is at 14% (A, C)

and at 4% (B, D).
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Supplemental Figure S7. Re-discovery rate against active GTSSs detected by LRhex peaks as a
function of expression levels, transcript length, and mappability scores. (A) expression levels. (B)
transcript length. (C) mappability scores. (A-C) nanoCAGE (ps1): nanoCAGE pseudo-replicate 1.

nanoCAGE (ps2): nanoCAGE pseudo-replicate 2.
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Supplemental Figure S8. Cryptic TSSs by their overlap with ATAC peaks and TEs. (A) Proportions
of cryptic TSSs overlapping ATAC peaks annotated with mappability scores of cryptic TSSs. (B)

Proportions of cryptic TSSs overlapping TEs. (C) Average mappability scores of TE subfamilies.
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Supplemental Figure S9. Browser view of a SVA_F cryptic promoter (Chr 20:32,175,371-
32,176,478) with LRCAGE and LRhex reads.
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Supplemental Figure S10. Sequence context of promoter activities in SVA elements. (A) Heatmap
of SVA elements aligned to consensus sequence of SVA_D subfamily. Presence of transcription

factor binding sites (TFBSs) in SVA elements are annotated. Bar plot displays the total CTSS



signals across all SVA elements (only CTSS signals on the sense orientation of SVA elements
are shown). (Top) 56 SVA elements having peaks in the sense orientation. SVA elements are
sorted by length and peak location. (Bottom) 5,341 SVA elements without peaks in the sense
orientation. SVA elements are sorted by length. (B) Contingency tables of SVA elements by TFBS
and peak overlap. 4,908 SVA elements overlapping neither peaks nor CTSS signals were used
as background. SREBF1 and SREBF2 motifs shared the binding site. NKX3-1 had two binding

sites ~80bp apart.
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Supplemental Figure S11. Relative orientation of TEs for overlapping cryptic TSSs. (A) Libraries

combined. (B) By library type.
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Supplemental Figure S12. Cryptic TSSs by their overlap with REs. (A) Proportions of cryptic TSSs

overlapping TEs and REs. (B) Average mappability scores of RE subfamilies.
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Supplemental Figure S13. Characteristics of transcripts profiled by LRCAGE data. (A) Venn
diagram of LRCAGE peaks and nanoCAGE peaks. Peaks located within 200bp tolerance window
in strand-sensitive manner are counted in the intersection area. (B) Venn diagram of
transcriptionally-active pseudogenes in our data and Troskie's data. (C) Browser view at ELOBP2
pseudogene. For visualization 30 reads from ELOBP2 GTSS were randomly selected. (D)
Proportions of LRCAGE transcripts by 5' end type annotated with TALON class. (E) Transcript
length by GENCODE transcripts and newly characterized transcripts; Newly characterized
transcripts are classified by their 5' end types: cryptic TSS-derived transcripts, GTSS-derived
transcripts. (F) Proportions of cryptic inner exons overlapping TEs. (G) Cryptic inner exon

enrichment heatmap by TE class and TE subfamily. Enriched TE subfamilies were defined as
having >1.5 enrichment scores, >100 total TE elements, >10 TE elements overlapping cryptic

inner exons. (H) Relative orientation of TEs for overlapping cryptic inner exons.
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Supplemental Figure S14. AluJb-LIN28B transcripts detected by long-read CAGE data.
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Supplemental Figure S15. Peptides from unannotated proteins in the LRCAGE proteome in
H1299 whole cell lysate LC-MS/MS data. (A) Proportions of peptides from H1299 whole cell lysate

MS data annotated with protein class by 5' end types of encoding transcripts. (B) Browser view



of TALONGO000051076_NP_1 unannotated protein supported by 10 peptides from H1299 whole
cell lysate MS data. (C) Multiple sequence alignment of TALONG000051076_NP_1, seven
unannotated proteins containing any of 10 peptides aligned to TALONG000051076_NP_1, and
LINE-1 ORF1. (D) Browser view of ENSG00000084070.11_NP_1 unannotated protein validated
by one peptide from H1299 MS data. (B, D) Newly characterized transcripts encoding antigens
are marked with a red asterisk (*). GENCODE transcripts encoding known proteins are marked
with a double red asterisk (**). TSSs are marked with yellow bars. Protein coding regions are

marked with pink bars. Peptide sequences are shown in Supplemental Table 4.
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Supplemental Figure S16. Browser views of noncanonical antigens of two lung cancer patients.
(A) Browser view of genomic locus producing an antigen, TPYRKQQSL. (B) Browser view of
genomic locus producing an antigen, ILAQEIVKV. (A, B) Newly characterized transcripts
encoding antigens are marked with a red asterisk (*). GENCODE transcripts encoding known
proteins are marked with a double red asterisk (**). Protein coding regions are marked with pink

bars.
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Supplemental Figure S17. Characteristics of consensus peaks. (A) Volcano plot of consensus
peaks upon epigenetic treatment. Each dot represented a consensus peak and is annotated with
TE class. (B) Relative peak intensity at consensus peak by LRCAGE data over nanoCAGE data

as a function of mappability scores.
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Supplemental Figure S18. Characteristics of newly characterized TE transcripts. (A) Number of
newly characterized transcripts by 5' end types as a function of epigenetic treatment. (B) Number
of TE elements producing newly characterized transcripts upon epigenetic treatment. (C)
Expression levels of multi-exon LTR transcripts as a function of treatment condition using
LRCAGE data. Number of transcripts (mean TPM in DMSO vs. DACSB conditions) - Gene region:
715 (0.6 vs. 4.9 TPM); Proviral HERV region: 89 (2.0 vs. 15.4 TPM); Unannotated region: 677
(0.4 vs. 5.1 TPM). Red point: mean value. (D) Number of newly characterized multi-exon LTR

transcripts annotated with overlaps with GENCODE gene and proviral HERV annotations.



Transcripts expressed at >1 TPM are counted. Gene region: 225 (DMSO), 689 (DACSB); Proviral
HERYV region: 22 (DMSO), 88 (DACSB); Unannotated region: 104 (DMSO), 673 (DACSB). (E)

Number of drug-induced multi-exon LTR transcript per LTR loci.
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Supplemental Figure S19. Quality assessment of antigens from HLA-pulldown LC-MS/MS data.
(A) Flowchart of preparing H1299 custom proteome using DMSO-treated and DACSB-treated
H1299 LRCAGE data. (B) Size distribution of antigens. (C) Sensitivity of antigen predicted by

NetMHC as a function of expression levels based on LRCAGE data. (D) Sensitivity of digested



peptide predicted by RPG as a function of expression levels based on LRCAGE data. (E)
Correlations of observed predicted retention times and predicted retention times by DeepLC for
antigens. p;: correlation for canonical antigens (p;=0.93, n: 4,593). p,: correlation for
noncanonical antigens (p,=0.59, n: 16). p5: correlation for noncanonical antigens after excluding

one outlier (p;=0.93, n: 15).
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Supplemental Figure S20. Drug-induced noncanonical TE antigens in three glioblastoma cell

lines. (A) Heatmap of noncanonical TE antigens unique to DAC-treated glioblastoma cell lines.



(B) Expression level of TE loci encoding drug-induced TE antigens. Expression levels are based
on H1299 LRCAGE data. (C) MS1 intensity of antigens in LNT229 cells annotated with antigen
types. (D) MS1 intensity of antigens in T98G cells annotated with antigen types. (E) MS1 intensity
of antigens in U87 cells annotated with antigen types. (F) Browser view of a DAC-induced MLT1K
transcript encoding ENSG00000160094.14_NP_1, producing ILDFQPPEL. Transcriptomics data
is from H1299 cells. Newly characterized transcripts encoding antigens are marked with a red
asterisk (*). GENCODE transcripts encoding known protein are marked with a double red asterisk

(**). TSSs are marked with yellow bars. Protein coding regions are marked with pink bars.
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Supplemental Figure S21. A proviral HERV9 locus encoding env-derived antigen upon epigenetic
treatment. (A) Expression level heatmap of HERV transcripts upon epigenetic treatment. An env-
derived antigen coding transcript is marked with a red asterisk (*). (B) Browser view of a HERV9
transcript encoding an env-derived antigen, PAGTFTGLE. (C) MS1 intensity of an env-derived

antigen, PAGTFTGLE.



