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Supplemental Methods
Modeling cell population dynamics

To estimate the age distribution of specific cells, we assume a constant (age-independent)

survival rate for a given cell type. We first transformed cellular lifespan of each cell type

in days into survival rate per day. Given a finite survival rate per day as p, the instantaneous

mortality rate 4 = —In (p) (Caswell 1972). Assuming an exponentially distributed survival
-1

function, the expected mean lifespan is T = oy Inversely, given cellular lifespan, we

can calculate finite survival rate as

1
p=exp (-7) (1)
which ranges from 0 to 1.

Using estimates of p, we constructed a demographic model describing cell population
dynamics, adapted from a standard class-structured life-history model (Caswell 2000), to
derive cell type-specific turnover rates, and then working back from cell turnover rates, to
determine the cellular age distribution at any organismal age. Considering the simplest case
which only contains a progenitor compartment and the downstream fully-differentiated
compartment holding cells of different age classes, we aim to derive the distribution of
cellular ages in the downstream compartment provided a continuous influx of cells from
the progenitor compartment. A life-cycle graph for this model is shown in Supplemental
Figure S1. For the purposes of this model, we make the following simplifying
assumptions. Initially, there are C cells in the cell population at the onset of maturation,
and all cellular ages are at age class A=0. At each time unit, three events happen. The
progenitor compartment produces ' new cells which flow into age class A=0. Existing
cells advance from one age class to the next age class with a survival probability of p
irrespective of cellular age, or die with a probability of /-p. Cell turnover starts at the onset
of maturation and is defined as b = F/C.

Assuming a discrete time model, the number of cells in age class i at organismal age 7 is
N(i, 1), where, N(i, f) can be formulated as

N(i,t) =p'*F, for0<i<t-—1
N(i,t) =p'*C, fori=t (2)
Thus, at organismal age ¢, the total number of cells in a cell population, S(t), is

t
S(t) = ZN(i,t) = F 4 pF +p?F + -+ pt=1F + piC

=0
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We assume that the cell population size € remains constant, and so, dividing both side of
equation (3) by C, then we have
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Thus, under the assumption of constant cell population size, the three parameters must
satisfy the above relationship. This makes intuitive sense. In order for the cell population
to stay constant, the number of cells lost from the fully differentiated compartment per time
unit, C * (1 —p), should be equal to the replenishment ( F) from the progenitor
compartment. As a result, the cell turnover rate is

b=F/C=(1~-p) )

Next, to get the number of cells in age class 7 at organismal age 7, we replace F with C *
(1 — p) in the equation (2) of N(j, ?),

N(@,t)=pi*Cx(1—p), for0<i<t-—1
N(i,t) =p'*C, fori=t (6)

The proportion of cells in age class i at organismal age ¢ as f(k, t) is given by dividing
equation (6) by C on both sides:

fG,t) =1 —p)* p,,wheni = 0,...,.t—1
f@i,t) = p,when i =t (7)

This closed-form analytical expression allows the derivation the mean of the cellular age
distribution at organismal age ¢,

tHL_pt+l_puptip

E(A) =X, i*f(i't):t*Pt_t*p p-1

®)

As shown above, E(A4) is fully determined by cell survival rate, p, and the organismal age,
t. As p approaches 1, E(4) approaches ¢ (i.e., lin} E(A) =1t).
p—)

From equation (5), the cell turnover rate isb =1—p =1 —exp (— %) . Assuming the
onset of maturation in mice at 2 months old (Brust et al. 2015) and using equation (8), we



computed the mean cellular age over organismal age for each cell type (Supplemental Fig.
S2).

At a fixed cell turnover rate b, E (A) changes with organismal age ¢. Denoting the mean
cell age at 3 months old as E(4 | £ = 3 months) and that at 24 months old as E(A | t = 24
months) , Aage, or the change in the mean cell age of each cell type within 3-month-old and
24 month-old mice, is calculated as,

Aaee= E(A | t =24 months) - E(A | t = 3 months) 9
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Figure S1. A population dynamic model of cell age distribution. (A) An age-structured
life-history model of cell population dynamics. Each black circle represents one age class.
Cells in class i might die with probability /-p or advance into the next age class i+1 with
probability p per time unit. We assume a constant cell population size, with the progenitor
compartment producing F new cells flowing into age class A =0 each time unit. The matrix
shows the distribution of cells in each age class over organismal ages. (B) The cell age
distributions at different organismal ages with varying turnover rates, following Equation
(7) in the Supplemental Methods. Each column represents one specification of cell turnover
rate and each row represents one given organismal age. (C) The mean of cellular ages of
cell populations at different organismal ages with varying turnover rates. Colors denote
different cell turnover rates.
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Figure S2. The effect of organismal age on cell age. Based on the model presented in the
Supplemental Material, assuming the onset of maturation in mice at 2 months old (Brust et
al. 2015), this figure shows the relationship between cell type-specific turnover rates and
organismal age for specific cell types. Rodent cell-type specific lifespan data are from

Sender and Milo (2021) (Sender and Milo 2021). Colors denote different cell types each
with its own turnover rate.
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Figure S3. Tabula muris senis (TMS) dataset overview. (A) The number of profiled mice
per condition. The TMS FACS data was collected from 10 male mice with ages ranging
from 3 months to 24 months, and from 6 female mice ranging from 3 months to 18 months.
The TMS droplet data was collected from 17 male mice with ages ranging from 1 months
to 30 months, and from 6 female mice ranging from 3 months to 21 months. (B) The
distribution of detected transcripts per cell across conditions. (C) The number of unique
tissue:cell type combinations captured per condition. Within each sex and age group, cells
with at least 500 expressed genes and 5000 transcripts were kept. From these cells, the
tissue:cell type combinations with at least 40 cells were kept. We focused on the TMS
FACS data as it has a much higher sequencing depth and more comprehensive tissue:cell
type coverage.
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Figure SS. Effect of age on transcriptome variability. Each panel represents one
tissue:cell type combination. In each panel, the squared coefficient of variation (CV?) is
plotted for each gene at each age. To avoid an effect driven by a mean-variance correlation,
this analysis was limited to genes that did not show age-related changes in mean expression
levels (P value > 0.1, Methods in the main text). In each panel, lines connect the same gene
measured at the two ages. The number of genes per tissue:cell type ranges from 286 to
3943. Age-related changes in gene expression variability are represented by the slope of
these lines. For each tissue:cell type, the slope (B..) describing the change in CV? with age
was estimated using a linear mixed model with age as a fixed predictor and both gene and
mouse as random effects (Imer(log(CV?)~age+(1|gene)+(1|mouse)), via the Ime4
package in R (Bates et al. 2015).
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Figure S6. Effect of age on transcriptome variability, as measured by cell-cell
correlations. Cell-to-cell correlation analyses were performed among cells from each
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mouse individual (=15 cells) per tissue:cell type combination, using Spearman’s rank
correlation coefficients (p) as the measure of similarity between cells. Each p value
corresponds to a pair of cells. The number of cells per tissue:cell type per age group ranges
from 15 to 1215. The x-axis shows mouse individual id in the TMS. The y-axis shows 1-
p and black dots denote the median value. We took the median of 1—p values within each
mouse individual, and then used the mean across mice of the same age group to represent
cell type-level transcriptome variability measurement. The age effect is measured as
log2(0O/Y), where the transcriptome variability in the young sample is Y and that of the old
is O. Larger values of O compared with Y indicate larger cell-to-cell distances.
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Figure S7. Effect of age on transcriptome variability as measured by GCL. The Global
Coordination Level (GCL) metric, in which the similarity among cells is assessed, based

13



on their distance in gene expression space within subsets (samples) of genes, has been used
to measure similarity among cells (Levy et al. 2020). The x-axis shows mouse individual
id in the TMS. The y-axis shows the 1-GCL value, which increases with an increase in
gene expression divergence. Each dot represents the distance between cells, measured by
the similarity of expression matrices, made from cells of each mouse individual per
tissue:cell type combination, when divided in half using random halves of genes expressed
(Levy et al. 2020). There are 100 such random samples for each mouse individual per
tissue:cell type combination. The black dot inside each violin plot denotes the median value
which represents the mouse individual-specific discoordination value. We used the mean
of mouse individual-specific discoordination values of the same age group to represent cell
type-level transcriptome variability measurement. We express the change in transcriptome
variability captured by this measure as log2(O/Y), where the transcriptome variability in
the young sample is Y and that of the old is O.
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Figure S8. Different metrics for the effect of cell age on transcriptome variability.
Each row of figures illustrates the relationship between age-related increases in
transcriptome variability and cell age, using gene expression variability as shown in main
Figure 2 (A), or two alternative approaches, Spearman rank correlations (B), and GCL (C)
(see Methods). In each row, the leftmost panel shows the transcriptome variability of each
cell type of each of three organismal ages (Month) against their respective mean cell ages
(in days). The middle panels plot mean change in transcriptome variability observed in
cells over 15-month period against the change in estimated mean cell age across cell types.
The rightmost panels plot mean change in transcriptome variability observed in cells over
21-month period against the change in estimated mean cell age across cell types. In all
panels, the lines show ordinary least squares regressions, with shading indicating 95%
confidence intervals. Filled circles indicate the 15 cell types with tissue-specific lifespan
data, and open circles the 7 cell types without tissue-specific lifespan estimates, and so
their Sage is the mean from all tissues in which they are detected (see Methods).
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Figure S9. Cellular age dynamics predict the increase in transcriptome variability in
female mice from 3-month to 18-month old. (A) The average loglO coefficient of
variation (CV) of each cell type at each of three organismal ages (Month) is plotted over
their respective mean cell ages (in days). The colored lines show ordinary least squares
regressions, with shading indicating 95% confidence intervals, each corresponding to one
age group. (B) The mean change in transcriptome variability (fage, Methods) observed in
cells over a 15-month period, from 18-month-old mice compared to cells from 3-month-
old mice, is correlated with the change in estimated mean cell age for 20 cell types. In both
panels, the lines show ordinary least squares regressions, with shading indicating 95%
confidence intervals. Filled circles indicate the 13 cell types with cell- and tissue-specific
lifespan data, and open circles the 7 cell types without tissue-specific lifespan estimates,
and so their fage is the mean from all tissues in which they are detected (see Methods).
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All tissue:cell type combinations
Pearson's r = 0.718, P value=2.6e-07
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Figure S10. Within cell type, transcriptome variability across tissues may be
explained by tissue-specific effects on cell turnover. (A) The change in transcriptome
variability with age (Sage) across tissue:cell types, where point shapes denote cell types
with (triangles) or without (circles) tissue-specific lifespan estimates. The black line shows
an ordinary least squares regression, with shading indicating 95% confidence intervals. (B)
Among the 12 tissues that had transcriptome data for endothelial cells, there are four with
tissue-specific estimates of cell lifespan (triangles), from which we derived four separate
cellular age distributions to get the change in cellular age over a 21-month period, from 24-
month-old mice compared to cells from 3-month-old mice. These tissue-specific Bage and
change in mean cell age values are shown in comparison to the regression of all data (black
line taken from Fig. 2B in the main text).
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Figure S11. Intersection between the Gene Ontology (GO) biological process terms
related to ‘chaperone’, ‘DNA repair’, and ‘autophagy’. Each GO term contains at least
six gene members shown as the horizontal bars (Set size). The top margin shows the
number of genes that intersect between the GO terms. We used gene member expression
abundance to calculate GO term expression and limited this analysis to non-redundant
terms; for the 17 GO terms, there were at most 20 intersecting genes shared between terms,
and 11 of the terms shared fewer than eight genes.
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Figure S13. After removing genes under positive selection, the transcriptome of short-
lived cells still shows relaxed evolutionary constraint. The relaxation of evolutionary
constraint (dn/ds) of genes expressed in 22 cell types in young (panel A) and old (panel B)
mice, is negatively correlated with cell lifespan. Smaller dn/ds values connote greater
evolutionary constraint. The black line shows the ordinary least squares regression with
shading of 95% confidence intervals. The analysis was performed with 14,109 genes after
excluding 76 genes whose dn/ds > 1. (C) Correlation between dn/ds and cell lifespan for
transcriptomes of increasing cell-type specificity. The blue (age 3m) and yellow (age 24
m) dots correspond to the left-side axis, and show the correlation strength. The grey dots
correspond to the right-side axis and show the number of expressed genes per cell type at
each level of specificity.

20



2643 genes 1870 genes 13532 genes
median = 0.417 median = 0.196 median = 0.103

1.000

0.100

0.010

Nonsynonymous/synonymous substitution rate (dN/dS) ratio
of mouse-human orthologous genes

0.001

ortholog_many2many  ortholog_one2many  ortholog_one2one
Types of homolog orthologs

B Cc D

Age 3m Age 24m

Only cell type-specific expressed genes Only cell type-specific expressed genes
gene specificity score > 2 gene specificity score > 2 2500
Pearson's r = -0.633, P value =0.001573 Pearson's r = -0.64, P value =0.001325

o
o

2000
0.150 °

=)
o
]
(]
o
~

1500

0.125 & hd

o
N
[ ]
®
[ ]

1000

<
o

o
=)
o
sauab passaidxa Jo JaquinN

o

o

©
L]

500

Absolute Pearson's correlation coefficient

Mean dN/dS per cell type at 3m
°
°
°
)

Mean dN/dS per cell type at 24m
°

0.075

0.0 0
1e+01 1e+03 1e+05 1e+01 1e+03 1e+05 0 1 2 3

Cell lifespan (day) Cell lifespan (day) Gene specificity score cutoff value

Figure S14. Cell lifespan still predicts evolutionary constraint among expressed genes
with mouse-human orthologous genes. (A) The distribution of dN/dS values among
different types of homolog orthologs between mouse and human. We retrieved dN/dS
ratios of mouse-human orthologous genes from the Ensembl Biomart (v.99) (Yates et al.
2020). Only one-to-one orthologs estimated by Ensembl were included in the study, which
gave 13,532 gene pairs. The relaxation of evolutionary constraint (dn/ds) of genes
expressed in 22 cell types in young (panel B) and old (panel C) mice is negatively
correlated with cell lifespan. Smaller dn/ds values connote greater evolutionary constraint.
The black line shows the ordinary least squares regression with shading of 95% confidence
intervals. The analysis was performed with 13,527 genes after excluding 5 genes whose
dn/ds > 1. (D) Correlation between dn/ds and cell lifespan for transcriptomes of increasing
cell-type specificity. The blue (age 3m) and yellow (age 24 m) dots correspond to the left-
side axis, and show the correlation strength. The grey dots correspond to the right-side axis
and show the number of expressed genes per cell type at each level of specificity.
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